差分方程求解讲课稿

合集下载

数学建模差分方程PPT课件

数学建模差分方程PPT课件
或 G(x , yi , yi1 , , yin ) 0 或 H (x , yi , yi , , n yi ) 0
的方程都是差分方程。 方程中所含未知函数角标的最大值与最小值的差数称为差分
方程的阶。 若一个函数代入差分方程后,方程两端恒等,则称此函数为
差分方程的解。如果解中所含相互独立的任意常数的个数等于方 程的阶数,则称该解为差分方程的通解。满足初始条件的解称为 特解。
• 第一阶段: w(k)每周减1千克, c(k)减至下限10000千卡
w (k)w (k1)1 w ( k 1 ) w ( k ) c ( k 1 ) w ( k )
c(k1) 1[w(k)1] w (k)w (0)k
c(k1) w (0) 1(1k)
1 8000
0.025
120 200 k 00Cm 10000 k 10
2 x k 2 x k 1 x k 2 ( 1 ) x 0 , k 1 , 2 ,
二阶线性常系数差分方程
x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2 x k 2 x k 1 x k 2 ( 1 ) x 0
方程通解
xk
c1
k 1
c2
k 2
(c1, c2由初始条件确定)
相当于70千克的人每天消耗2000千卡 ~ 3200千卡;
3)运动引起的体重减少正比于体重,且与运动 形式有关;
4)为了安全与健康,每周体重减少不宜超过1.5 千克,每周吸收热量不要小于10000千卡。
减肥计划
某甲体重100千克,目前每周吸收20000千卡热量, 体重维持不变。现欲减肥至75千克。
1 2 k 是(3)的 k 重根,则只要将 Y1 (i),Y2 (i),,Yk (i) 换为

第章差分方程上课讲义

第章差分方程上课讲义
序言
• 什么是时间序列? • 时间序列的研究内容和方法——模型? • 时间序列分析的应用?
第 1 章 差分方程
(选自Walter Enders的书“Applied Econometric Time Series”)
1.1 时间序列模型
I. 一般原理: 时间序列通常可以分解为趋势性、季节性、 循环或周期性、和无规律性这四项。前三项 具有可预测性,第四项对前三项有干扰性。 如果其干扰或波动大小可以被估计,那么, 时间序列的预测是可以进行的。
值对yt的当期值的影响越来越小。
IV. 非收敛序列(或收敛性)
当 | a1 |1,式(1.20)收敛到解(1.21)。
当 | a1 |1,式(1.20)不收敛或发散,但只要给出初始
条件 y0,则可使用解(1.18)。
当 | a1 |1,一阶差分方程(1.17)可写为
yt a0yt1t
(1.17*)
使用迭代法,可得到
t
yt a0t i y0 i1
(1.26)
当初始条件 y0 给定时,(1.26)是(1.17*)的一个解。
若没有初始条件,式(1.26)可能是不收敛或发散的,y 0
又未知,因此不是一个解。
• 收敛性图示
右图为一个计 算机随机模拟 的解(1.18) 的表现性质。 其中,细线为 解的序列,实 线为解的确定 性部分的序列。
III. 一般差分方程的解法
对于一般差分方程(1.10),其求解方法通常为 第1步:建立齐次方程(1.30),求出它的n个齐次解
yth1,yth2,,ythn; 第2步:求出(1.10)的一个特解 y tp;
第3步:通解为所有齐次解的线性组合与特解之和,即
n
yt ytp Ai ythi i1

信号与系统4-2差分方程的解法课件

信号与系统4-2差分方程的解法课件
10
例 4.6
差分方程为
y(k 1) 1.1y(k) P
齐次解为 yh (k) C(1.1)k
特解为 y p (k) 10 P
全解为
y(k) C(1.1)k 10P
代入初始条件,可得 C 10P 20000
y(k) (10P 20000)(1.1)k 10P
令y(10)=0,有 0 (10P 20000 )(1.1)10 10P
将yp(k)代入原差分方程,得:
P(2)k 3P(2)k1 2P(2)k2 2k
P(2)k 3 P(2)k 2 P(2)k 2k
2
4
y
p
(k
)
1 3
(2)k
解得:P 1
3
8
例 4.5
(3)用初始值求常数:
全响应为: y(k )
yh (k)
yp (k)
C1 (1) k
C2 (2)k
1 3
这个模型也可以用来计算还贷余额。其中,f(k)代表每 年开始时还贷的金额,y(k)代表扣除当期还贷金额后的 还贷余额,若向银行贷款20000元,每年利息是10%, 即或r=0.1。按等额还贷法计算10年归还贷款本息时每年 所需的还贷额。
解 设每年所需的还贷额为P,则f(k)=P。
初始条件是贷款y(0)=-20000 。注意,由于还贷10次后将 全部还清贷款余额,必须找出使y(10)=0的每年所需还贷 额P。
解 Matlab程序如下:
k=-2:10;n=length(k)-2; y=[1,2,zeros(1,n)];f=k.*u(k); for i=3:n+2 y(i)=y(i-1)-0.24*y(i-2)+f(i)-2*f(i-1); end clf;stem(k,y);xlabel('k');ylabel('y(k)'); disp('k y');disp([num2str([k',y'])])

经济数学 CH6 差分方程PPT精品文档29页

经济数学 CH6 差分方程PPT精品文档29页

2020/4/16
8
蛛网模型
❖ 将需求曲线和供给曲线代 pt 入到均衡方程,得到:
❖ pt=(a+c)/b-(d/b)pt-1 ❖ 这是一个一阶非齐次线性
差分方程。
❖ 当价格不变时,供求达到 均衡。
❖ p*=(a+c)/b-(d/b)p* ❖ 均衡价格p*=(a+c)/(b+d)
p*
Pt-1
当(d/b)>1时,模型 是发散的;反之则是 收敛的。
a≠-1
yt
A(a)t
c ,a1 1a
假设t 0时,yt
y0,得到Ay0
c 1a
yt
(y0
c )(a)t 1a
c ,a1 1a
a=-1 y t A ( a )t c t A c t,a 1
假 设 t0时 , yt y0,得 到 Ay0 yt y0ct,a1
2020/4/16
13
练习
❖ 求解一阶线性差分方程:
❖ 一阶差分: △yt=yt+1-yt ❖ 二阶差分:
❖ △2yt= △ (△ yt) = △(yt+1-yt)= (yt+2-yt+1)- (yt+1-yt)
2020/4/16
1
❖ 一阶差分方程:yt+1=f(yt) ❖ 例子:一阶线性差分方程
❖ △yt=2→yt+1-yt=2 ❖ △yt=yt → yt+1-yt=yt →yt+1=2yt ❖ 一阶线性差分方程一般形式:
如果f(y*) 1,那么均衡点是稳定的。 如果f(y*) 1,那么均衡点是不稳定的。 如果f(y*) 1,无法判断。
f(y*)dyt1 dyt

第4讲 差分方程方法(new)PPT课件

第4讲 差分方程方法(new)PPT课件
它的平衡点 x* 0 是稳定的充要条件是 A 的所有特
征根都有 i 1(i 1,2,, n) 。
对于一阶线性常系数非齐次差分方程组
x(k 1) Ax(k) B(k 0,1,2,)
的情况同样给出。
11
2020年11月23日
二 差分方程的平衡点及其稳定性
3.二阶线性常系数差分方程的平衡点
二阶线性常系数齐次差分方程的一般形式为
则 x* 也是一阶线性差分方程 xk1 f (x*)(xk x*) f (x*)
的平衡点. 故平衡点 x* 稳定的充要条件是 f (x* ) 1 。
2020年11月23日
三 连续模型的差分方法
1. 微分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n 1) ,且 a x0 x1 xn1 b,试求函数的导数值 f (xk )(k 1,2,, n) 。
二 差分方程的平衡点及其稳定性
4.一阶非线性差分方程的平衡点
一阶非线性差分方程的一般形式为
xk1 f (xk ),k 0,1,2,
其中 f 为已知函数,其平衡点定义为方程 x f (x) 的解 x* 。
事实上:将 f (xk ) 在 x* 处作一阶的台勒展开有
xk1 f (x* )( xk x* ) f (x* )
, n)
14
2020年11月23日
三 连续模型的差分方法
2. 定积分的差分方法
问题:已知 f (x) 在点 xk 处的函数值 f (xk )(k 0,1,, n) ,
b
且在[a,b]上可积,试求 f (x) 在[a,b] 上的积分值 f (x)dx 。 a
对应代数方程:
k a1k1 a2k2 ak 0

《高数3差分方程》PPT课件

《高数3差分方程》PPT课件

( yt2 yt1 ) ( yt1 yt ) yt1 yt 2 yt ,
则原方程还可化为 2 yt 3t.
10
又如: 可化为
yt2 2 yt1 yt 3t , yt 2 yt1 yt2 3t2 ,
2 yt 2 yt 3t.
定义5.1.3 如果一个函数代入差分方程后,方程两边 恒等,则称此函数为差分方程的解.
yt (t 2 ) (t 1)2 t 2 2t 1,
2( yt ) 2(t 2 ) (yt ) (2t 1)
2(t 1) 1 (2t 1) 2,
3( yt ) (2 yt ) (2) 2 2 0. 例2 设 yt at (0 a 1), 求 ( yt ). 解 ( yt ) at1 at at (a 1).
kbt1 akbt cbt 即 k(b a) c ,
于是
yt*
b
c
a
bt
.
28
(2) 当 b a 时 , 令yt* ktbt 代 入 方 程(6) , 得 :
k(t 1)bt1 aktbt cbt
即 k(t 1)b akt c ,
解得 k c . a
于是
yt*
c a
tbt
ctbt1 .
当b a 和 b a 时,方程(6) 的通解分别为:
yt
c ba
bt
Aa t

yt ctbt1 Aat .
29
例6 求差分方程
yt 1
1 2
yt
5 t
的2 通解。
解 对应齐次差分方程的通解为 Y A 1 t .
2
由于 a 1 , b 5 , a b,
22
故可设其特解为: yt* kbt .

差分方程求解课件

差分方程求解课件
yx = C(2)x .
再讨论非齐次差分方程 yx+1 ayx = f (x)解的结
构 定理 设 y0*是非齐次差分方程(3)对应的齐次 差分方程(4)的y通x 是解(,3)的一个特解, yx y*x yx 是方
程(3)的通解. 则
下面用待定系数法来求两种类型函数的特解.
(1) 令f (x) = b0 + b1x + +bmxm
2(x3) = (3x2 + 3x + 1) = 3(x + 1)2 + 3(x + 1) + 1 (3x2 += 36x + 16),
3(x3) = (6x + 6) = 6(x + 1) + 6 (6x + 6=) 6,
4(x3) = (6) 6 =
0.
二、差分方程的概念
2 yx = (yx) = yx+2 2 yx+1 + yx
同样可定义三阶差分3yx, 四阶差分4yx,

3yx = (2yx),
(3yx) .
4yx =
例1 求(x3), 2(x3), 3(x3), 4(x3).
解 + 1,
(x3) = (x + 1)3 x3 = 3x2 + 3x
称为齐次差分(方4)程; 当 f (x) 0时, 称为非齐次差分 方程.
先求齐次差分方程 yx+1 ayx = 0的
设解 y0 已知, 代入方程可知
y1 =
ay0,
y2 =
a2y0,


yx =
令y0ax=y0C,, 则得齐次差分方程的通解为

§2.8 差分方程的求解

§2.8 差分方程的求解

X

例2-8-3
学 院
9 页
求方程yn 6 y n 1 12 yn 2 8 y n 3 0的解。
特征方程
y n C1 2 C 2 n 2 C 3 n工 2 程
n n 2
r 6 r 2 0 电r 12 r 8 0 邮 京 所以r 2 三重根 北
3
学 2 大




3
院 学 n
学 C1 , C 2 , C 3 给定初始(边界)条件即可求出常数 大 北 京 邮 电


X

例2-8-4
j r2 Me j 设 r1 Me n n 院 y n C 1 r1 C 2 r2 学
10 页
C 1 Me Me n 大学 cos n j sin n C 2 M n cos n j sin n C1 M 电 邮 n n P C1 C2 京 PM cos n QM sin n 北 Q j (C 院 1 C2 ) P,Q为待定系数 学 程 M 1 y n 为等幅正弦序列 子工 子 C2 电

j n




j n

M 1 M 1
yn 为增幅正弦序列 大 电 邮 为减幅正弦序列 京 yn 北学 电 NhomakorabeaX

2.特解
线性时不变系统输入与输出有相同的形式。
输入 输出
j n
11 页
x n e an
电 邮 x n cos 京 n 北
x n e
电 jn 学 y n A e 大

2 学 r 特征方程 电大 5r 6 0 r 2r 3 0 特征根 京邮 r1 2, r2 3 北 n n y n C1 2 C 2 3 齐次解 院 学 n 0 y 0 C1 C 2 2 工程 定 C1 , C 2 子 电 n 1 y 1 2C1 3C学 2 1 大 解出 C1 5, C 2 3 邮电 n 京 n 所以y n 52北 33

差分方程讲解老师优秀课件

差分方程讲解老师优秀课件
定理1.4 若数列{an}具有性质: 对一切n有2an c, c为一个常数, 则该数列的项遵从二次变化模式, 而且表达其通项的公式是一个二次多项式.
注: 一般地, 由k次多项式定义的数列的k1阶 差分为零, 反之, 若数列{an}的k1阶差分为 零, 则存在一个生成该数列的k次多项式.
§1 数列的差分
问 题 商品数量与价格的振荡在什么条件下趋向稳定
当不稳定时政府能采取什么干预手段使之稳定
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系 需求函数 yk f(xk) 减函数
生产者的供应关系 供应函数 xk1h(yk) 增函数
§2 一阶线性差分方程
解析解给出了一个我们可以直接计算数列 中任何特定项的函数. 解析解的另一个优点 是, 当我们求得一个解析解时, 通常也同时 得到了通解. 相比之下, 用迭代计算求得的 解只从属于某个初始条件.
§2 一阶线性差分方程
二. 齐次线性差分方程的解析解
定理2.1 一阶线性差分方程an1 ran b的解为
§2 一阶线性差分方程
定义2.5 差分方程的一个解析解是一个函数, 当 把它代入差分方程时就得到一个恒等式, 而且还 满足任何给定的初始条件. 差分方程 an1 an 0.07an 若把函数ak (0.07)kc, 其中c为任意常数, 代入差 分方程就得到一个恒等式:
ak1 (1.07)k1c (1.07)k c 0.07(1.07)k c,
an
an
2an
1
0
1
2
2
1
1
2
3
0
3
2
4
3
5
2
5
8
7

复习-系统-差分方程省公开课获奖课件市赛课比赛一等奖课件

复习-系统-差分方程省公开课获奖课件市赛课比赛一等奖课件
稳定系统:是指有界输入产生有界输出(BIBO)旳系统。 定理:一种线性时不变系统是稳定系统旳充分必要条件是
单位脉冲响应绝对可和, 即 S | h(n) | n
2
因果稳定系统
显然,既满足稳定条件又满足因果条件旳系统,即稳定旳因果系 统是最主要旳系统。
这种线性时不变系统旳单位脉冲响应应该既是因果旳(单边旳)
因果系统
因果系统:系统此时旳输出y(n)只取决于此时, 以及此时此前 旳输入,即x(n), x(n-1), x(n-2), …。
定理:线性时不变系统是因果系统旳充分必要条件是 h(n)=0 n<0
依此,我们将n<0,x(n)=0 旳序列称为因果序列。所以因果系统旳 单位取样响应必然是因果序列 。
稳定系统
r0
k 1
式中,x(n)和y(n)分别是系统旳输入序列和输出序列,ai和bi均 为常数,式中y(n-i)和x(n-i)项只有一次幂,也没有相互交叉项,故 称为线性常系数差分方程。
差分方程旳阶数是用方程y(n-i)项中i旳取值最大与最小之差拟 定旳。在上式中, y(n-i)项i最大旳取值为N,i旳最小取值为零,所 以称为N阶旳差分方程。
所以,一种因果稳定系统旳系统函数H(z)收敛域必须从单位圆到 ∞旳整个z域内收敛,即
1 z
也就是说H(z)旳全部极点应落在单位圆之内。
差分方程
一种N阶线性常系数差分方程用下式表达:
N
M
Hale Waihona Puke ak yn k br xn r
k 0
r0
M
N
或y(n) br xn r ak yn k , a0 1
h(n) ah(n 1) (n) an 0 an
a n , n 0 h(n)

差分方程的求解

差分方程的求解

计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
Y ( z) G( z ) R( z ) 1 G ( z ) E( z) 1 R( z ) 1 G ( z )
16
计算机控制技术课程讲义
例:已知采样控制系统如下图,求计算系统的闭环脉冲传递 函数
r(t) + —
10 s ( s 1)
Y(z)
y(t)
解: 系统开环脉冲传递函数为:
三、有零阶保持器的开环脉冲传递函数 Ts 1 e 零阶保持器的传递函数为Gh(s) = s
1 e Ts s
G(s)
带有零阶保持器的控制系统方框图
采样后经零阶保持器相当于串联环节之间无采样开关的情况
1 e Ts G ( z ) Z [Gh ( s ) G ( s )] Z [ G ( s )] s 1 1 Z [ G ( s )] Z [ G ( s ) e Ts ] s s 1 1 Z [ G ( s )] z 1 Z [ G ( s )] s s 1 z 1 G(s) 1 (1 z ) Z [ G ( s )] Z[ ] s z s 计算机控制技术课程讲义
计算机控制技术课程讲义
6
二、连续系统的脉冲传递函数

所谓连续系统的脉冲传递函数是指连续系统的输入与输 出采样函数Z变换之比,即: 在输出端虚设一采样开关,对输出的连续时间信号做假 想采样,采样周期与输入端采样开关的周期T相同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)
称为齐次差分方程; 当 f (x) 0时, 称为非齐次差分方程.
先求齐次差分方程 yx+1 ayx = 0的解 设 y0 已知, 代入方程可知
y1 = ay0, y2 = a2y0,
yx = axy0,
令y0 = C, 则得齐次差分方程的通解为
yx = Cax.
(5)
例4 求差分方程 yx+1 + 2yx = 0的通解. 解 这里 a = 2, 由公式(5)得, 通解为
yx = C(2)x .
再讨论非齐次差分方程 yx+1 ayx = f (x)解的结构
定理 设 y0*是非齐次差分方程(3)对应的齐次差分方
程(4)的通解, °y x 是(3)的一个特解, 则 yx y*x °yx 是方
程(3)的通解.
下面用待定系数法来求两种类型函数的特解.
(1) 令f (x) = b0 + b1x + +bmxm 设特解的待定式为
y
* x
C.
这里 a = 1, 设 °yxx(B0B1x),代入差分方程, 得
(x+1)[B0+B1(x+1)] x(B0+B1x) = x +1.
整理, 得
2B1 x + B0 + B1 = x +1.
比较系数, 得
2B1 = 1,
解出 故所求通解为
B0 + B1 = 1, B0 B°y1x12C, 12x(x1).
2
2
°y x
k
5 2
x
,

k52x112k52x 52x,
解出
k 1. 2
则所求通解为
yx
1 2
5x 2
1x 2
.
四、二阶常系数线性差分方程
形如
yx+2 + ayx+1 + byx = f (x).
(10)
(其中 a , b 0, 且均为常数)的方程, 称为二阶常系数线性 差分方程. 当 f (x) = 0 时, 即
(2) f (x) = Cbx
设特解的待定式为
°yx kbx (b a)
(8)

°yx kxbx (b a)
(9)
其中 k 为待定系数.
例7
求差分方程
yx1
1 2
yx
5 2
x
的通解.

对应的齐次方程
yx1
1 2
yx
0
的通解为
y
* x
C
1 2
x
,
因为 a 1 , b 5 , 故可设特解为
定义3 含有未知函数几个时期值的符号的方程, 称 为差分方程.
其一般形式为
G(x, yx, yx+1, , yx+n) = 0.
(2)
定义3中要求 x, yx, yx+1, , yx+n不少于两个.
例如, yx+2 + yx+1 = 0为差分方程, yx = x不是差分方 程.
差分方程式(2)中, 未知函数下标的最大差数为 n, 则 称差分方程为n 阶差分方程.
(B0+B1 +B2)+ ( B1+2B2) xB2x2=3x2.
比较系数, 得
B0+B1 +B2=0,
B1+2B2 = 0,
B2 = 3.
解出
B0= 9, B1 = 6, B2 = 3,
故所求特解为 °yx96x3x2.
例6 求差分方程 yx+1 yx = x +1 的通解.
解 对应的齐次方程 yx+1 yx = 0的通解为
3(x3) = (6x + 6) = 6(x + 1) + 6 (6x + 6)
= 6, 4(x3) = (6) 6 = 0.
二、差分方程的概念
定义2 含有自变量、未知函数及其差分的方程, 称 为差分方程.
差分方程的一般形式为
F(x, yx, yx, , n yx) = 0.
(1)
差分方程中可以不含自变量 x 和未知函数 yx, 但必须含 有差分.
°yxB0B1xBmxm (a1) (6)

° yx(B0B1xBmxm)x(a1) (7)
其中B0 , B1 , , Bm为待定系数.
例5 求差分方程 yx+1 2yx = 3x2 的一个特解.
解 这里 a = 2, 设 ° yxB0B 1xB2x2,
代入差分方程, 得
B0+B1(x+1)+B2(x+1)2 2(B0+B1x+B2x2)=3x2. 整理, 得
式(1)中, 当 n = 1时, 称为一阶差分方程;当n = 2时, 称为二阶差分方程.
例2 将差分方程 2yx + 2yx = 0
表示成不含差分的形式. 解 yx = yx+1 yx , 2yx = yx+2 yx+1 + yx ,
代入得 yx+2 yx = 0.
由此可以看出, 差分方程能化为含有某些不同下标 的整标函数的方程.
定义5 差分方程的解中含有任意常数, 且任意常数 的个数与差分方程的阶数相等, 这样的解称为差分方程 的解通.
三、一阶常系数线性差分方程
一阶常系数线性差分方程的一般形式为
yx+1 ayx = f (x).
(3)
其中 a 为不等于零的常数. 当 f (x) = 0 时, 即
yx+1 ayx = 0
4yx = (3yx) .
例1 求(x3), 2(x3), 3(x3), 4(x3). 解 (x3) = (x + 1)3 x3 = 3x2 + 3x + 1,
2(x3) = (3x2 + 3x + 1) = 3(x + 1)2 + 3(x + 1) + 1 (3x2 + 3x + 1) = 6x + 6,
定义4 如果一个函数代入差分后, 方程两边恒等, 则 称此函数为该差分方程的解.
例3 验证函数 yx = 2x + 1是差分方程 yx+1 yx = 2的 解.
解 yx+1 = 2(x + 1) + 1 = 2x +3, yx+1 yx = 2x + 3 (2x +1) = 2,
所以yx = 2x + 1是差分方程 yx+1 yx = 2的解.
差分方程求解
(yx) = yx+1 yx = (yx+2 yx+1) (yx+1 yx) = yx+2 2 yx+1 + yx
为二阶差分, 记为2 yx, 即 2 yx = (yx) = yx+2 2 yx+1 + yx
同样可定义三阶差分3yx, 四阶差分4yx, 即 3yx = (2yx),
yx+2 + ayx+1 + byx = 0
(பைடு நூலகம்1)
称为齐次差分方程; 当 f (x) 0时, 称为非齐次差分方程.
类似于二阶线性常微分方程, 二阶线性差分方程与 其有相同的解的结构. 故先求齐次方程(11)的通解.
当 为常数时, yx = x和它的各阶差商有倍数关系, 所以可设 yx = x为方程(11)的解.
相关文档
最新文档