商业智能分析论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据仓库与数据挖掘论文题目BI技术应用现状及相应软件工具介绍评语:
学院计算机工程学院班级计算1314
姓名__苏帅豪___ 学号201321121109
成绩指导老师曾勇进
2016年 6 月12 日
BI技术应用现状及相应软件工具介绍
[摘要]
商业智能是从大量的数据和信息中发掘有用的知识,并用于决策以增加商业利润,是一个从数据到信息到知识的处理过程。本文从当前商业智能实际出发,清晰阐述了商业智能的概念,总结和分析了商业智能发展的现状,并对商业智能今后的发展做出了展望。与此同时,客观分析了目前我国商业智能发展的状况,介绍了BI工具的情况。使我们能够认清形势,更好地发展。
[关键词]
商业智能、cognos、数据仓库、查询与报表
[正文]
1.商业智能概念:
提到“商业智能”这个词,网上普遍认为是Gartner机构在1996年第一次提出来的,但事实上IBM的研究员Hans Peter Luhn早在1958年就用到了这一概念。他将“智能”定义为“对事物相互关系的一种理解能力,并依靠这种能力去指导决策,以达到预期的目标。”
在1989年,Howard Dresner将商业智能描述为“使用基于事实的决策支持系统,来改善业务决策的一套理论与方法。”商业智能通常被理解为将企业中现有的数
据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商等来自企业所处行业和竞争对手的数据以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。
可以认为,商业智能是对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者获得知识或洞察力,促使他们做出对企业更有利的决策。商业智能一般由数据仓库、联机分析处理、数据挖掘、数据备份和恢复等部分组成。商业智能的实现涉及到软件、硬件、咨询服务及应用,其基本体系结构包括数据仓库、联机分析处理和数据挖掘三个部分。因此,把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取、转换和装载,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、联机分析处理工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
2.商业智能的出现背景
企业的“数据监狱”现象。商务活动从办公自动化出现的早期开始就在其运作
过程中收集大量的数据,包括销售、成本、质量控制、库存、客户服务等各方面息息相关的企业数据,分别存储于数据库、数据集市、数据仓库、多维数据库、第三方的应用或其它文件中。因此对大部分企业来说数据处理的问题不是数据缺乏,而是大量的数据冗余和数据不一致。庞大的数据量和传统数据管理方法的缺陷,使大部分企业出现了“数据监狱”现象,既不利于企业的管理也不利于信息的有效利用。因此,如何解决数据拥挤,同时又能使这些数据充分地发挥作用这已成为企业商务发展的一个热点问题。
“数据=资产”新企业观念的建立。在企业界,数据资产的观念正在进入企业的资源规划系统中,而把数据转换为资产的方法和技术也正在成为企业投资IT 的热点。因为目前大部分大中规模的企业都是信息丰富的组织,而一个信息丰富的组织的绩效不仅仅依赖于产品、服务或地点等因素,而更重要的是依赖知识。而从数据——信息——知识是一个并不简单的过程。商业智能的本质正是把数据转化为知识,致力于知识发现和挖掘,使企业的数据资产能带来明显的经济效益,减少不确定性因素的影响,使企业取得新的竞争优势。
电子商务正在改变着全球商务活动的方式,信息在经济活动中越来越占据着重要的地位。对企业来说信息包括生产、销售、市场、顾客和竞争对手的信息,信息是企业竞争的战略性资源。建立在Internet之上的企业经营模式电子商务:电子邮件、电子数据交换、电子支付系统、电子营销等技术的发展和应用为商业智能系统提供了市场和生存环境。商业智能的发展也得益于相关技术的发展,并行处理系统、廉价数据存储、新数据挖掘算法、神经网络技术、人工智能技术、决策支持技术、从大量数据中发现其后潜藏的商业机会等等技术的发展,使企业能以更低的成本投资商业智能,并取得更高的IT投资回报率。
3.商业智能典型应用
(1)产品销售管理。它包括产品的销售策略、销售量分析,影响产品销售的因素分析,以及产品销售的改进方案的预测。通过系统存储的产品销售信息建立销售模型,分总体销售模型和区域、部门销售模型。对产生不同结果的销售模型分析其销售量和销售策略,进行销售影响的因素分析和评估,根据不同的销售环境对相应的产品销售方案进行改进和创新,及时进行产品上架和下架计划,提高企业营销额。通过对历史数据的分析还可以建立提高销售量的预测模型。
(2)顾客关系管理。顾客是企业生存的“上帝”,对企业来说进行客户关系管理是一项重要的工作。通过顾客关系管理子系统,使企业可以分析顾客购买习惯和购买倾向,调查顾客满意度,进而采取相应对策增强顾客保持力,培养忠实顾客,维持良好的顾客关系。
(3)产品创新和推广。新产品促进企业的发展,然而新产品的开发和推广必须建立在一定的市场基础上。良好的企业历史信息可用来预测市场需求趋势;了解哪种产品需要更新,是否需要开展某种广告运动;广告运动针对何种用户;具备哪些条件的用户最有可能是企业的潜在客户,针对这样的客户进行直接的广告策略必能胜过无的放矢的收获;预先预测项目的未来收益等。
(4)异常处理等。它是商业智能数据挖掘应用的典型事例,通过发展曲线企业及时发现市场和顾客异常情况,快速采取措施,降低企业风险提高企业收益。如信用卡分析,银行、保险等行业的欺诈监测等。
4.商业智能国内外现状