简单物体的三视图达标测试题及答案
三视图试题(含答案)5
1.圆柱的左视图是________,俯视图是_________.
2.一个几何体的三种视图如图所示,这个几何体是________.
3.如果一个几何体的主视图、左视图、俯视图完全一样,那么这个几何体可能是___________.
4.如图,是某立体图形的三视图,请在横线上填写该立体图形的名称.
图①中物体名称:_________;
图②中物体名称:_________;
图③中物体名称:_________;
图④中物体名称:_________.
②①俯视图
左视图
主视图主视图俯视图左视图
5.请画出一个高为5cm ,底边长为2cm 的5棱柱的三视图.•人的视线与其中一个侧面垂直.
答案:
1.矩形圆形 2.圆锥 3.6 4.圆柱三棱锥圆锥六棱柱 5.略。
三视图-配套练习(含答案)
三视图-练习
一、选择题
1.如图所示的几何体的俯视图是()
A. B. C. D.
2. 如图所示的几何体的俯视图是D
A. B. C. D.
3. 如图,由几个小正方体组成的立体图形的左视图是A
A. B. C. D.
4. 某同学把下图所示的几何体的三种视图画出如下
(不考虑尺寸);在这三种是图中,其正确的是B
A. ①②
B. ①③
C. ②③
D. ②
二、解答题
5.画出图中三棱柱的三视图.
三视图-练习
参考答案
一、选择题
1.B.解:从物体的上面观察图形可知:该俯视图是一个矩形,且矩形的中间有
一条实线.
故选B.
2.D.解:从上面可看到是三个左右相邻的长方形.
故选D.
3.A. 解:从物体左面看,左边2列,右边是1列.
故选A.
4.B.解:该几何体的主视图和俯视图都正确,左视图还要一条线段,故选B.
二、解答题
5. 三棱柱的三视图如图.。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图练习题含答案
23正视图侧视图2俯视图 2第3题三视图练习题 (一)1.某几何体的三视图如图所示,则它的体积是( )A.283π-B.83π-C.π28-D.23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162 C.48 D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+D.9182π+5.一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A. 48 B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.35233cmB.32033cmC.22433cmD.16033cm7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( ) A.π816+ B.π88+ C.π1616+ D.π168+9. 某四棱台的三视图如图所示,则该四棱台的体积是() A.4 B.314 C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( )A .1B .3C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )332正视图侧视图俯视图第4题第5题第7题 第1题 第2题 第8题第9题第6 题A .(8)36π+B .(82)36π+C .(6)36π+D .(92)36π+12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .413.某几何体的三视图如图所示,则其体积为______.14.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm . 15.某几何体的三视图如图所示,则该几何体的体积是______.16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是. 18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383 D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( )A.π964 B. π38 C. π4 D. π91622. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( ) A.4 B.3 C.2.5 D.224.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 25.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B 10.A 11.A 12.A 13.3π14.24 15.1616-π 16.1 17.67π18.29π 19. 20+82 20.A 21.A 22.233第10题3122正视图侧视图俯视图第11题 211俯视图侧视图正视图13第12题第17题24 3正视图 侧视图俯视图第18题 第15题 第14题第13题 第16题 第19题23.B 24. 2 25. ︒90 26.3500π27.π6 28.π29 29.72 30. 3629+3226-31.2500π 32.π1200。
物体三视图的认识 小学数学 练习题
一、选择题1. 一个几何体从正面和左面看都是,从上面看是,这个几何体是()。
C.A.B.2. 如图从右面看到的形状是()。
A.B.C.D.3. 如图,从前面看到的图形与从()面看到的图形相同。
A.上B.后C.左D.右4. 从上面观察,看到的形状相同的立体图形是()。
A.①③④B.①②④C.①②③D.②③④5. 下面立体图形中,()从左面观察,所看到的图形不是。
A.B.C.二、填空题6. 分别从前面、右面和上面观察下边的物体,从( )面和( )面看到的图形完全相同。
7. 我能选择对.(1)从正面看图________,看到的是图a.(2)从正面看图________,看到的是图b.(3)从侧面看图________,看到的是图c.8. 是从物体(如图)的( )面看到的。
9. 一个几何体从上面看是,图中的数字表示在这个位置上的小正方体的个数,则这个几何体从正面看是___________,从左面看是___________,从右面看是___________。
(填序号)10. 从( )面看是,从( )面看是,从( )面看是。
三、解答题11. 把8个棱长是1厘米的小正方体拼在一起(如图),从上面,正面和左面看到的图形面积和是多少?最多取走几个小正方体使得从正面看到的图形不变?12. 下面3个几何体都是由棱长1cm的小正方体摆成的。
(1)下面的图形是聪聪从上面看到的,它们分别是从哪个几何体的上面看到的?将序号写在括号中。
()()()(2)①的体积是②的体积的()(3)③的体积是()cm3,如果要把它继续拼搭成一个大正方体,至少还需要()个小正方体。
(4)你还能提出一个数学问题并解答吗?13. 把4个同样大小的正方体横着摆成一个长方体,说说下面的图形是从哪一面看到的.14. 看一看,写一写,画一画。
(1)上面的物体都是由()个小正方体组成的。
(2)从左面看到的图形相同的是(),从前面看到的图形相同的是()。
(填序号)(3)分别画出物体③和④从上面看到的图形。
三视图习题50道(含答案)
word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。
三视图(直视图)、表面积、体积(含答案)
三视图(直视图)、表面积、体积姓名:得分:一、选择题1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()()A6()B9()C12()D182.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()3.若一个几何体的三视图如图所示,则此几何体的体积为A.112B.5C.4D.924.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可..能.是5. 某几何体的三视图如图1所示,它的体积为A. 72πB. 48πC. 30πD. 24π 6. 一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是A 球B 三棱锥C 正方体D 圆柱7. 已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是A.1cm 3B.2cm 3C.3cm 3D.6cm 38. 某三棱锥的三视图如图所示,该三棱锥的表面积是(A )28+B )30+C )56+图1正视图 俯视图侧视图(D )60+二、填空题1. 一个高为2的圆柱,底面周长为2π,该圆柱的表面积为2. 已知某几何体的三视图如图所示,则该几何体的体积为____________.3. 一个几何体的三视图如图所示,则该几何体的体积为_______________.4. 如图,在长方体1111ABCD ABC D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 ▲ cm 3.5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m .6. 某几何体的三视图如上右图所示,则该几何体的体积等于______。
7. 如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.2,已知三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为为 。
三视图练习题有答案
三视图练习1.下面是一些立体图形的三视图(如图),•请在括号内填上立体图形的名称.2.如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是()A.钢笔B.生日蛋糕C.光盘D.一套衣服5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如图所示,试举例说明物体的形状.7.已知一个几何体的三视图如图所示,则该几何体的体积为多少?8.已知几何体的主视图和俯视图如图所示.(1)画出该几何体的左视图;(2)该几何体是几面体?它有多少条棱?多少个顶点?(3)该几何体的表面有哪些你熟悉的平面图形?9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?10.一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.11.如图所示,下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.13.马小虎准备制作一个封闭的正方体盒子,他先用5•个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的每个图形上再接一个正方形,•使新拼接成的图形经过折叠能成为一个封闭的正方体盒子.(注:添加的正方形用阴影表示)14.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.参考答案:1.圆柱,正三棱锥2.圆锥圆柱正方体三棱柱3.上正侧4.B 5.略6.如粉笔,灯罩等7.1208.(1)略(2)六面体,12条,8个(3)等腰梯形,•正方形9.长方体木板的正前方放置了一个圆柱体10.略11.不存在12.1或2,3 13.略14.12个,7个。
三视图(含答案)
立体几何三视图1. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π2. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π3. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A. 90πB. 63πC. 42πD. 36π4. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A. 13+23πB. 13+ 23π C. 13+ 26π D. 1+ 26π5.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A. 32B. 23C. 22D. 26.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π7.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3B. 12 cm3C. 32cm33D. 40cm338.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为()A. 13B. 16C. 83D. 439.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A. 圆锥B. 三棱锥C. 三棱柱D. 三棱台10.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是()A. 25500立方尺B. 34300立方尺C. 46500立方尺D. 48100立方尺11.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A. πB. 2πC. 3πD. 4π12.某棱柱的三视图如图示,则该棱柱的体积为()A. 3B. 4C. 6D. 1213. 某几何体的三视图如图所示,则它的体积是( )A. 8−2π3B. 64−16π3C. 8−π3D. 64−12π3答案和解析1.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉其中后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.2.【答案】C【解析】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.3.【答案】B【解析】【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.【解答】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10-•π•32×6=63π,故选:B.4.【答案】C【解析】【分析】本题考查的知识点是由三视图求体积,根据已知的三视图,判断几何体的形状是解答的关键.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得.故,故半球的体积为:,棱锥的底面面积为:1,高为1,故棱锥的体积,故组合体的体积为:.故选C.5.【答案】B【解析】解:由三视图可得直观图,再四棱锥P-ABCD中,最长的棱为PA,即PA===2,故选:B.根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.6.【答案】A【解析】解:由三视图可知,该几何体为一圆柱通过轴截面的一半圆柱,底面半径直径为2,高为2.体积V==π.故选:A.由三视图可知,该几何体为底面半径直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.7.【答案】C【解析】解:由已知中的三视图可得,该几何体是一个正方体与一个正四棱锥的组合体,且正方体的棱长为2,正四棱锥的高为2;所以该组合体的体积为V=V 正方体+V 正四棱锥=23+×22×2=cm 3.故选:C .根据已知中的三视图可分析出该几何体是一个正方体与一个正四棱锥的组合体,结合图中数据,即可求出体积.本题考查了由三视图求体积的应用问题,是基础题目.8.【答案】D【解析】 解:由三视图和题意知,三棱锥的底面是等腰直角三角形,底边和底边上的高分别为、,三棱锥的高是2,∴几何体的体积V==,故选:D .由三视图和题意知,三棱锥的底面边长和三棱锥的高,由锥体的体积公式求出几何体的体积.本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形,则可得出该几何体为三棱柱(横放着的)如图.故选C .如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形,易得出该几何体的形状.本题考查简单几何体的三视图,考查视图能力,是基础题.10.【答案】C【解析】解:由已知,堑堵形状为棱柱,底面是直角三角形,其体积为立方尺.故选C.由三视图得到几何体为横放的三棱柱,底面为直角三角形,利用棱柱的体积公式可求.本题主要考查空间几何体的体积.关键是正确还原几何体.11.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,圆锥的底面半径为2,高为3,圆锥的体积为V圆锥=.此几何体的体积为.故选:B.由三视图可知:此几何体为圆锥的一半,即可得出.本题考查了由三视图恢复原几何体的体积计算,属于基础题.12.【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S=×(2+4)×2=6,棱柱的高为1,故棱柱的体积V=6.故选:C.由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.13.【答案】B【解析】解:由题意,几何体的直观图是正方体挖去一个圆锥,体积为=64-,故选B.由题意,几何体的直观图是正方体挖去一个圆锥,即可求出体积.本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.。
三视图练习题含答案
23正视图侧视图2俯视图2第3题三视图练习题1.某几何体的三视图如图所示,则它的体积是( ) A.283π-B.83π-C.π28-D.23π 2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162 C.48 D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4 C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 5.一个空间几何体的三视图如图所示,则该几何体的表面积为( )A. 48B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( ) A.35233cm B.3203 3cm C.2243 3cm D.16033cm7.若某空间几何体的三视图如图所示,则该几何体的体积是( )3 32正视图侧视图俯视图第4题第5题第1题 第2题第6 题A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( )A.π816+B. π88+C. π1616+D. π168+ 9. 某四棱台的三视图如图所示,则该四棱台的体积是( ) A.4 B.314 C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( ) A .1 B .3 C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )A .(8)36π+ B .(82)36π+ C .(6)36π+ D .(92)36π+12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .413.某几何体的三视图如图所示,则其体积为______.14.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm . 15.某几何体的三视图如图所示,则该几何体的体积是______.第7题第8题第9题第10题3122第11题 211俯视图正视图13第12题16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是 .18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( ) A.π964 B. π38 C. π4 D. π91622. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( ) A. 4 B.3 C.2.5 D. 224.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.第17题 24 3正视图 侧视图 俯视图第18题 第15题第14题第13题第16题 第19题25. 当圆锥的侧面积与底面积的比值是2时,圆锥的轴截面的顶角等于 26.一平面截一球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积为 27.一个正四面体的棱长为2,四个顶点在同一个球面上,则此球的表面积为 28.已知一个三棱锥ABC P -的三条侧棱PC PB PA ,,两两垂直,且长度分别为2,3,4,则 该棱锥的外接球的表面积为29.已知用斜二测画法得到的正方形的直观图的面积为218,则原来正方形的面积为 30.正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求该棱锥的表面积与体积,内切球的半径.31. 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.32. 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B 10.A 11.A 12.A 13.3π 14.24 15.1616-π 16.1 17.67π 18.29π 19. 20+8220.A 21.A 22.233 23.B 24. 2 25.︒9026.3500π 27.π628.π29 29.72 30. 3629+32 26-31.2500π 32.π1200。
三视图习题(含答案)
几何体的三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A.2 C..66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,的体积为().A.2π+B. 4π+C. 23π+D. 43π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )第7题侧(左)视图正(主)视俯视图俯视图 正(主)视图 侧(左)视图(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
手绘三视图考试题及答案
手绘三视图考试题及答案
一、选择题
1. 正投影法中,主视图、左视图和俯视图分别表示物体的哪个方向?
A. 前面、左面、上面
B. 后面、右面、下面
C. 前面、右面、上面
D. 后面、左面、下面
答案:A
2. 在三视图中,哪个视图可以展示物体的高度和宽度?
A. 主视图
B. 左视图
C. 俯视图
D. 以上都可以
答案:A
3. 如果一个物体的俯视图是一个圆形,那么这个物体可能是?
A. 圆柱
B. 圆锥
C. 球体
D. 长方体
答案:C
二、填空题
4. 在三视图中,物体的三个视图应该保持_______方向一致,以确保视图的准确性。
答案:正交
5. 当物体的一个视图是矩形时,这个视图可能是物体的_______视图。
答案:主视图或俯视图
三、简答题
6. 描述三视图的投影原理,并解释为什么需要三个视图来完整表达一
个物体。
答案:三视图的投影原理基于正投影法,即物体的三个视图分别从物
体的正面、左面和上面进行投影。
需要三个视图来完整表达一个物体,是因为每个视图只能展示物体的一个方向的尺寸和形状,而一个物体
在空间中有三个维度,因此需要三个不同的视图来全面展示物体的几
何特征。
四、作图题
7. 根据所给物体的主视图和左视图,绘制出该物体的俯视图。
答案:[此处应附上主视图和左视图的图示,以及根据这两个视图绘制
出的俯视图]
8. 给定一个物体的俯视图和主视图,请补全该物体的左视图。
答案:[此处应附上俯视图和主视图的图示,以及根据这两个视图补全
的左视图]。
三视图练习题
三视图练习题一、基本概念题1. 请简述三视图的概念及其作用。
2. 三视图包括哪三个视图?分别表示物体的哪些信息?3. 在三视图中,主视图、俯视图和左视图之间的位置关系是怎样的?二、识图题(1)正方体(2)长方体(3)圆柱体(1)球体(2)圆锥体(3)圆环体(1)三棱柱(2)四棱锥(3)六棱柱三、绘图题(1)一个长方体,长、宽、高分别为10cm、6cm、4cm。
(2)一个圆柱体,底面直径为8cm,高为10cm。
(3)一个圆锥体,底面直径为6cm,高为8cm。
(1)一把直尺(2)一个手机(3)一个茶壶四、分析题(1)主视图为矩形,俯视图为圆形,左视图为矩形。
(2)主视图为三角形,俯视图为矩形,左视图为三角形。
(1)主视图、俯视图和左视图均为正方形。
(2)主视图、俯视图和左视图均为圆形。
五、应用题(1)主视图为长方形,长、宽、高分别为10cm、6cm、4cm。
(2)主视图为圆形,直径为8cm,高为10cm。
(1)一个长方体木箱,长、宽、高分别为60cm、40cm、20cm。
(2)一个圆柱形水桶,底面直径为40cm,高为50cm。
六、综合题(1)一个长方体上放置一个正方体。
(2)一个圆柱体和一个圆锥体组合在一起。
(1)一个长方体挖去一个圆柱体形成的组合体,长方体的长、宽、高分别为20cm、10cm、5cm,圆柱体直径为5cm,高为10cm。
(2)一个正方体和一个四棱锥组合在一起,正方体边长为8cm,四棱锥底面边长为6cm,高为4cm。
七、判断题1. 三视图中,主视图和俯视图的长度方向一定相同。
()2. 在三视图中,左视图的宽度方向与主视图的高度方向一致。
()3. 任何物体的三视图都可以通过旋转和翻转得到。
()八、选择题A. 主视图B. 俯视图C. 正视图D. 左视图A. 主视图B. 俯视图C. 左视图D. 所有视图A. 主视图反映了物体的长度和高度B. 俯视图反映了物体的长度和宽度C. 左视图反映了物体的宽度和高度D. 三视图中的每个视图都包含了物体的所有尺寸信息九、填空题1. 三视图是用于表达物体______、______和______三个方向尺寸的图样。
三视图经典习题
三视图经典习题
1.正确答案为C。
水平放置的正四面体的三视图都是正三角形。
2.正确答案为D。
几何体②和几何体④的主视图和左视图相同。
3.该几何体的左视图为一个正方形和一个等腰直角三角形组成的图形。
4.俯视图可能是一个边长为1的正方形。
5.直观图可能是一个长方体。
6.最长的一条棱的长为2.
7.表面积为70平方厘米,体积为24立方厘米。
8.四棱锥的表面积无法确定,需要知道它的高才能计算。
9.体积为216立方厘米。
10.体积为48立方厘米。
11.无法确定几何体的形状和尺寸,无法计算体积。
初中三视图试题及答案
初中三视图试题及答案
1. 题目:观察下列物体的正视图和侧视图,画出其俯视图。
答案:根据正视图和侧视图,我们可以确定物体的俯视图是一个圆形。
2. 题目:给出一个物体的三视图,判断该物体的形状。
答案:该物体是一个长方体。
3. 题目:如果一个物体的正视图和俯视图都是矩形,而侧视图是一个
三角形,那么这个物体是什么形状?
答案:这个物体是一个三角柱。
4. 题目:观察下列物体的三视图,计算其体积。
答案:物体的体积为长×宽×高,具体数值根据三视图中给出的尺
寸计算得出。
5. 题目:根据下列物体的三视图,判断其表面积。
答案:物体的表面积为各面面积之和,具体数值根据三视图中给出
的尺寸计算得出。
6. 题目:如果一个物体的正视图是一个正方形,侧视图是一个矩形,
俯视图是一个圆形,那么这个物体是什么形状?
答案:这个物体是一个圆柱。
7. 题目:观察下列物体的三视图,判断其是否为对称图形。
答案:该物体是对称图形,因为它的三视图在对称轴两侧是相同的。
8. 题目:给出一个物体的三视图,计算其棱长总和。
答案:物体的棱长总和为各棱长度之和,具体数值根据三视图中给出的尺寸计算得出。
9. 题目:如果一个物体的三视图都是相同的圆形,那么这个物体是什么形状?
答案:这个物体是一个球体。
10. 题目:观察下列物体的三视图,判断其是否为多面体。
答案:该物体是一个多面体,因为它的三视图显示了多个平面的交线。
三视图练习题含答案
第6题4.如图是某几何体的三视图,A. 9龙+42B. 36/F + 18 则该几何体的体积为( 9C. 一龙 + 122D. 5. 一个空间几何体的三视图如图所示, 则该几何体的表而积为(9—兀 + 18 2A. 48C. 48+8 V17D. 806•若某几何体的三视图(单位:cm )如图所示, 224 T则此几何体的体积是(n 160 3D. ----- cm3cnr三视图练习题1•某几何体的三视图如图所示,则它的体积是() A. 8-—B. 8-—C.8-2/TD.—33 32•某四棱锥的三视图如图所示,该四棱锥的表而积是()3•如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()A. 32B. 16+16 J?C. 48D. 16 + 32 血)C. 侧视第12题7.若某空间几何体的三视图如图所示,则该几何体的体积是()2 1 A. 2B. 1C. —D.—338•某几何体的三视图如图所示,则该几何体的体积为( )10.某三棱锥的三视图如图所示•已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为() A ・1B ・3C ・4D ・511・一个几何体的三视图如图所示,则这个几何体的体积为()(8 +龙)馆 口 (8 + 2龙)苗 ------------- B.----------------------- 6 6 (6 + ^)>/3 6 (9 + 2兀)馆6 12.某几何体的底而为正方形,其三视图如图所示,则该几何体的体积等于(A. 16 + 8龙 B ・ 8 + 8/rC. 16 + 16兀D. 8 +16/r9.某四棱台的三视图如图所示,则该四棱台的体枳是(A. 4T 2 1\ 4 2 ->1正视图n1俯觇图3D. 6第8题)侧视图13•某几何体的三视图如图所示,则其体积为 ・414. _______________________________________________________________ 若某几何体的三视图(单位:如图所示,则此几何体的体积等于 _______________________ 15. 某几何体的三视图如图所示,则该几何体的体积是 ______ ・16•已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 _________________ 17. 一个空间几何体的三视图如图所示,则这个空间几何体的体积是 __________________ . 18. 如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为—19. 若某空间几何体的三视图如下图所示,则该几何体的表面积是20. 一个正方体的内切球与它的外接球的体积比是(r2!正视图y 4—T2俯视图側视图第19题A. 1 : 3^3B. 1 : 2“第17题第16题))・的视图俯视图第15题iEStffi 笺找 IE隔视剳俯视图第18题侧视图13•某几何体的三视图如图所示,则其体积为・C. 1:|石421 •已知球而上A、B、C三点的截而和球心的距离都是球半径的一半,且AB=BC=CA=2,则球表面积是/ 、64 8() A. ----- 71 B. — 7T C. 4/T9 322.P、A、B、C是球0而上的四点,且PA、PB、PC的两两垂直,PA二PB二PC二9,则球心0到截而ABC 的距离为_______________________23.半径为5的球被一个平而所截,截面面积为16兀,则球心到截而的距离为()A. 4B. 3C. 2.5D. 224.____________________________________________________________________ 表而积为3刃的圆锥,它的侧而展开图是一个半圆,则该圆锥的底面直径为 ___________________________ .25.答案1. A2.B3. C4. D5. C6. B7.B8. A9. B 10. A 11. A 12. A 13. - 14. 24 15. 16兀-16 16.117.—18.29兀19.3620+872 20. A 21. A 22.空23. B24. 225. 90°226. 500兀27. 6兀28. 29〃29. 7230.972+6^32込 V6-2331. 2500兀32. 1200兀(注:文档可能无法思考全面,请浏览后下载,供参考。
三视图作图试题及答案大全
三视图作图试题及答案大全三视图作图是工程制图和设计领域中的一项基本技能,它要求学生能够根据物体的三个不同方向(通常是正视图、侧视图和俯视图)来理解和构建三维物体。
以下是一些三视图作图的试题及答案,供学生练习和参考。
试题 1题目:根据所给的正视图和侧视图,绘制出俯视图。
正视图:```AB| |CD```侧视图:```E/|FG D| |H CA B```答案:俯视图```EF| |GH```试题 2题目:根据所给的俯视图和侧视图,绘制出正视图。
俯视图:```12| |34```侧视图:```1/ |23 4\ |56```答案:正视图```56| |34```试题 3题目:根据所给的正视图和俯视图,绘制出侧视图。
正视图:```AB| |CD```俯视图:```AB| |CD| |EF```答案:侧视图```A/|BC D| |E F```试题 4题目:绘制一个长方体的三视图。
答案:- 正视图:```I/ |GH| |JK```- 侧视图:```I/ \GL\H\K```- 俯视图:```IG| |JH```试题 5题目:根据所给的俯视图和侧视图,绘制出正视图。
俯视图:```12| |34```侧视图:```1/ \2 3\ /4```答案:正视图```23| |14```请注意,这些试题和答案仅供参考,实际的三视图作图可能需要根据具体的物体形状和视角进行调整。
在实际应用中,三视图作图需要结合物体的实际尺寸和比例,以及可能的对称性和几何关系来进行绘制。
29.2 《三视图》测试题练习题常考题试卷及答案
29.2 三视图一、单选题(共20题;共40分)1.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A. B. C. D.2.如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为()A. B.C. D.3.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A. B. C. D.4.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A. B. C. D.5.右边几何体的左视图是()A. B. C. D.6.如图所示的工件,其俯视图是()A. B. C. D.7.如图的几何体是由五个同样大小的正方体搭成的,其主视图是()A. B. C. D.8.一个立体图形的三视图如图所示,则该立体图形是()A. 圆柱B. 圆锥C. 长方体D. 球9.如图几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.10.下列四个几何体:其中左视图与俯视图相同的几何体共有()A. 1个B. 2个C. 3个D. 4个11.用4个完全相同的小正方体组成如图所示的立体图形,它的主视图是()A. B. C. D.12.下列立体图形中,主视图是圆的是()A. B. C. D.13.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,俯视图是()A. B. C. D.14.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A. B. C. D.15.如图竖直放置的圆柱体的俯视图是()A. 长方体B. 正方体C. 圆D. 等腰梯形16.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A. B. C. D.17.图中所示的几何体的左视图是()A. B. C. D.18.下列几何体中,左视图与主视图不相同的只可能是()A. B. C. D.19.桌面上放置的几何体中,主视图与左视图可能不同的是()A. 圆柱B. 正方体C. 球D. 直立圆锥20.下列几何体中,俯视图是矩形的是()A. B. C D.二、填空题(共20题;共27分)21.从正面看,从左面看,从上面看都一样的几何体可能是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单物体的三视图达标测试题及答案
4.3 简单物体的三视图同步练习◆基础训练 1.球的三视图是()A.三个圆 B.三个圆且其中一个包括圆心 C.两个圆和一个半圆弧D.以上都不对 2.若一个几何体的三视图都是正方形,则这个几何
体是() A.长方体 B.正方体 C.圆柱 D.圆锥 3.下列命题正
确的是() A.三视图是中心投影 B.小华观察牡丹花,牡丹花就
是视点 C.球的三视图均是半径相等的圆 D.阳光从矩形窗子里照射到地面上,得到的光区仍是矩形 4.如图是由四个相同的小立方体堆成的几何体,试指出其余三个平面图形分别是这个物体的哪个视图. 5.如图,A是一组立方块,请说出B,C各是什么视图. 6.如图,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则A•图像是_____号摄像机所拍;B图像是______号摄像机所拍;C图像是______号摄像机所拍;•D图像是_____号摄像机所拍. 7.画出下列几何体(尺寸如图所示)的三视图. 8.在一个长方体上搁一个圆柱,如图(1)所示,它的主视图,•左视图如图(2)所示,请你补画出
它的俯视图.◆提高训练 9.一个正六棱柱和长方体如图所示放置,你能说出下面的(a),(b),(c)三个视图分别是哪个视图吗?10.如图是正三棱锥,请你画出它的三视图.
11.如图是一个圆台及其主视图,你能把它的俯视图和左视图补上吗?•请试一试.
12.如图所示,是一个槽形块(它是长方体中间切去一个小三角形块),请你画出它的三视图.
13.已知一个几何体的主视图,俯视图如图,你能补画出它的左视图吗?动手画一画. 14.小明在学完了画几何体的三视图的方法后,
画出了如图所示的几何体的俯视图,你认为小明画得对吗?如果不对,请你改正;如画得正确,•请你补画它的主视图与左视图.
◆拓展训练 15.小强把一个由若干个小立方体叠成的几何体的俯视
图画成如图所示,每个小方格上的数字表示该位置上重叠的小立方体的个数,请你想一想:•应该怎样画出它的主视图与左视图?请与同
伴交流.
答案: 1.A 2.B 3.C 4.俯视图,主视图,左视图 5.主视图,俯视图 6.3,4,1,2 7.略 8.略 9.左视图,俯视图,主视图 10.略11.略 12.略 13.略 14.不对,图略 15.略。