2017年中考数学选择题压轴题汇编
2017年河北省中考数学压轴试卷及解析答案word版(一)

2017年河北省中考数学压轴试卷(一)一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合题目要求的,请把正确的答案涂在答题卡上.1.(3分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.(3分)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D3.(3分)下列运算正确的是()A.a2⋅a3=a6 B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b24.(3分)下列图形中,不是中心对称图形的是()A. B.C. D.5.(3分)的算术平方根是()A.2 B.±2 C.D.±6.(3分)要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数8.(3分)将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.9.(3分)如图几何体的俯视图是()A.B.C.D.10.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)11.(2分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.1212.(2分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)13.(2分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个 C.2个 D.1个14.(2分)如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD 的面积为6,则k的值为()A.6 B.﹣6 C.3 D.﹣315.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形16.(2分)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250米B.600﹣250米C.350+350米D.500米二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中的横线上)17.(3分)若|a|=20160,则a=.18.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.19.(3分)在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是按照这种移动规律移动下去,第n次移动到点A N,如果点A N与原点的距离不小于20,那么n的最小值是.三、解答题(本大题6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)﹣2.21.(9分)先化简,再求值:,其中x=+1.22.(10分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.23.(9分)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?24.(10分)已知一次函数y=﹣x+6的图象与坐标轴交于A、B点(如图),AE 平分∠BAO,交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB 的面积.25.(10分)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.26.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m 经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2017年河北省中考数学压轴试卷(一)参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合题目要求的,请把正确的答案涂在答题卡上.1.(3分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【解答】解:﹣3的相反数是3,故选:A.2.(3分)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.3.(3分)下列运算正确的是()A.a2⋅a3=a6 B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b2【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于乘方的积,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.4.(3分)下列图形中,不是中心对称图形的是()A. B.C. D.【解答】解:A、是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意.故选B.5.(3分)的算术平方根是()A.2 B.±2 C.D.±【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.6.(3分)要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2,即x的取值应满足:x≠﹣2.故选:D.7.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:D.8.(3分)将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,剪去右上角,展开得到结论.故选A.9.(3分)如图几何体的俯视图是()A.B.C.D.【解答】解:该几何体的俯视图为,故选D10.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.11.(2分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.12【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.12.(2分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选D13.(2分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个 C.2个 D.1个【解答】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:C.14.(2分)如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD 的面积为6,则k的值为()A.6 B.﹣6 C.3 D.﹣3【解答】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S=S矩形ADOE,平行四边形ABCD=|﹣k|,而S矩形ADOE∴|﹣k|=6,而k<0,即k<0,∴k=﹣6.故选B.15.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【解答】解:∵AB⊥CD,AB过O,∴DE=CE,=,根据已知不能推出OE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选:B.16.(2分)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250米B.600﹣250米C.350+350米D.500米【解答】解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中的横线上)17.(3分)若|a|=20160,则a=±1.【解答】∵|a|=20160,∴|a|=1,∴a=±1.故答案为:±1.18.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S=S四边形DMCN=.四边形DGCH则阴影部分的面积是:﹣.故答案为﹣.19.(3分)在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是﹣5按照这种移动规律移动下去,第n次移动到点A N,如果点A N与原点的距离不小于20,那么n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A N与原点的距离不小于20,那么n的最小值是13,故答案为:﹣5,13.三、解答题(本大题6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)﹣2.【解答】解:原式=1+﹣1﹣2×+2+9=2+9.21.(9分)先化简,再求值:,其中x=+1.【解答】解:∵x=+1,∴x=3+1=4,原式=×=,当x=4时,原式==2.22.(10分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.23.(9分)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?【解答】解:(1)把B(12,20)代入y=中得:k=12×20=240(2)设AD的解析式为:y=mx+n把(0,10)、(2,20)代入y=mx+n中得:解得∴AD的解析式为:y=5x+10当y=15时,15=5x+10,x=115=,x==16∴16﹣1=15答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15小时.24.(10分)已知一次函数y=﹣x+6的图象与坐标轴交于A、B点(如图),AE 平分∠BAO,交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB 的面积.【解答】解:(1)当y=﹣x+6=0时,x=8,∴点B的坐标为(8,0).(2)当x=0时,y=﹣x+6=6,∴点A的坐标为(0,6),∴OA=6,OB=8,∴AB==10.∵AE平分∠BAO,交x轴于点E,∴=,∴OE=BE.∵OE+BE=OB=8,∴OE=3,BE=5,∴点E的坐标为(3,0).设直线AE的表达式为y=kx+b,将A(0,6)、E(3,0)代入y=kx+b,,解得:,∴直线AE的表达式为y=﹣2x+6.(3)过点F作FG⊥x轴于点G,如图所示.∵BF⊥AE,∴∠BFE=90°=∠AOE.∵∠AEO=∠BEF,∴△AOE∽△BFE,∴==.∵OA=6,OE=3,∴AE=3.∵BE=5,∴BF=2,EF=.同理可得:△BEF∽△BFG,∴BG=4,FG=2.∵OB=8,∴OG=4=BG,∴△OFB为等腰三角形,∴S=OB•FG=8.△OFB25.(10分)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.【解答】解:(1)AB=AC,理由如下:连接OB.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,则AB2=OA2﹣OB2=52﹣r2,AC2=PC2﹣PA2=﹣(5﹣r)2,∴52﹣r2=﹣(5﹣r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,又∵∠DPB=∠CPA,∴△DPB∽△CPA,∴=,∴=,解得:PB=.∴⊙O的半径为3,线段PB的长为;(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=AC=AB=又∵圆O与直线MN有交点,∴OE=≤r,≤2r,25﹣r2≤4r2,r2≥5,∴r≥,又∵圆O与直线相离,∴r<5,即≤r<5.26.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m 经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【解答】(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S=AB×OC=×4×3=6,△ABC∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,=PM•OH+PM•HB=PM(OH+HB)=PM•OB=PM,∴S△PBC∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+,∴当x=时,PM max=,则S△PBC=×=,此时P点坐标为(,﹣)(3)如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中,∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x﹣1,即存在满足条件的直线m,其解析式为y=x﹣1.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。
2017届中考数学专题选择填空压轴题总复习最新版

A.1.5cm C.1.8cm
B.1.2cm D.2cm
首页
末页
6.如图,点G、E、A、B在一条直线上,Rt△EFG 从如图所示的位置出发,沿直线AB向右匀速运动 ,当点G与B重合时停止运动.设△EFG与矩形 ABCD重合部分的面积为S,运动时间为t,则S与t 的图象大致是( D )
首页
末页
二、填空题
专题一 选择填空压轴题
一、选择题
1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,
图象过点(﹣1,0),对称轴为直线x=2,下列结
论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④
当x>﹣1时,y的值随x值的增大而增大.其中正 确的结论有( B )
A.1个
B.2个
C.3个
D.4个
7.如图-1,三个正方形的边长分别为2,6,8; 则图中阴影部分的面积为 21 .
8.如图-2,D是△ABC的边BC上任意一点,E、F分 别是线段AD、CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是 5 cm2.
首页
末页
9.如图-3,在矩形ABCD中,AD=9cm,AB=3cm,
将其折叠,使点D与点B重合,则重叠部分 (△BEF)的面积为 7.5cm2 .
A.
B.
C.
D.
首页
末页
4.如图,一根长5米的竹杆AB斜立于墙AC的右侧 ,底端B与墙角C的距离为3米,当竹杆顶端A下滑x 米时,底端B便随着向右滑行y米,反映y与x变化 关系的大致图象是( A )
首页
末页
5.如图1,在Rt△ABC中,∠ACB=90°,点P以每 秒1cm的速度从点A出发,沿折线AC﹣CB运动,到 点B停止,过点P作PD⊥AB,垂足为D,PD的长y (cm)与点P的运动时间x(秒)的函数图象如图 2所示,当点P运动5秒时,PD的长是( B )
2017中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。
解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。
2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。
2017中考数学压轴题及答案精选

A O C
Bx
y = a(x + 1) ( x − 3) ( a ≠ 0 ),
-
把 C(0, ∴C1:
1 3 a= 2 2 )代入可得 1 2 3 x −x− 2 2
…………………………………………………………4 分
y=
1 2 3 n −n− 2) 设 P( n , 2
∴ △ PBC 3 3 2 27 − (n − ) + 4 2 16 = S = S △ POC + S △ BOP – S △ BOC
…………………………………6 分 3 3 27 a=− n= 16 4 2 ∵ <0, ∴当 时, S△PBC 最大值为 . ……………………………………7 分 (3)由 C2 可知: B(3,0),D(0, −3m ),M(1, − 4m )
2 2 2 BD2= 9m + 9 , BM2= 16m + 4 ,DM2= m + 1 ,
图 12
3 1 5 y = x2 − x + 4 4 2 (2)sin ∠ ACB= 5 ,
--------------4 分
P
N
90° , (3)证明:因为 D 为圆心,A 在圆周上,DA=r=5,故只需证明 ∠DAF =
9 25 9 2 15 9 2 (5, − ) DF = 4 + = , AF = 3 + ( ) = 4 4 4 4 , 4 , 抛物线顶点坐标:F
1
∵2.25<4, ∴x 轴下方不存在 B 点, ∴点 B 的坐标为:(4,4); ③∵点 B 的坐标为:(4,4), ∴∠BOD=45°,BO= =4 ,
当∠POB=90°, ∴∠POD=45°, 设 P 点横坐标为:﹣x,则纵坐标为:x2﹣3x, 即﹣x=x2﹣3x, 解得 x=2 或 x=0, ∴在抛物线上仅存在一点 P (2,﹣2). ∴OP= =2 ,
2017年河北中考压轴题数学含答案

2017年河北中考压轴题【17·河北·25·11分】平面内,如图,在▱ABCD中,AB=10,AD=15,tan A=,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在▱ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)【解答】解:(1)如图1中,①当点Q在平行四边形ABCD内时,∠AP′B=180°﹣∠Q′P′B﹣∠Q′P′D=180°﹣90°﹣10°=80°,②当点Q在平行四边形ABCD外时,∠APB=180°﹣(∠QPB﹣∠QPD)=180°﹣(90°﹣10°)=100°,综上所述,当∠DPQ=10°时,∠APB的值为80°或100°.(2)如图2中,连接BQ,作PE⊥AB于E.∵tan∠ABP:tan A=3:2,tan A=,∴tan∠ABP=2,在Rt△APE中,tan A==,设PE=4k,则AE=3k,在Rt△PBE中,tan∠ABP==2,∴EB=2k,∴AB=5k=10,∴k=2,∴PE=8,EB=4,∴PB==4,∵△BPQ是等腰直角三角形,∴BQ=PB=4.(3)①如图3中,当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形.在Rt△AEB中,∵tan A==,∵AB=10,∴BE=8,AE=6,∴PF=BE=8,∵△BPQ是等腰直角三角形,PF⊥BQ,∴PF=BF=FQ=8,∴PB=PQ=8,∴PB旋转到PQ所扫过的面积==32π.②如图4中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.易证△PBE≌△QPF,∴PE=QF=x,EB=PF=8,∴DF=AE+PE+PF﹣AD=x﹣1,∵CD∥AB,∴∠FDQ=∠A,∴tan∠FDQ=tan A==,∴=,∴x=4,∴PE=4,=4,在Rt△PEB中,PB==4,∴PB旋转到PQ所扫过的面积==20π③如图5中,当点Q落在AD上时,易知PB=PQ=8,∴PB旋转到PQ所扫过的面积==16π,综上所述,PB旋转到PQ所扫过的面积为32π或20π或16π.。
上海市2017年中考数学压轴题专项训练(含答案).docx

上海市 2017 年中考数学压轴题专项训练( 含答案 )上海市 2017 年中考数学压轴题专项训练1. (本分 12分,第( 1)小分 3 分,第( 2)小分 4 分,第( 3)小分 5分)如,已知抛物y x2bx cA 0, 1 、 B4, 3两点 .(1)求抛物的解析式;(2 求tan ABO 的;y(3)点 B 作 BC x ,垂足点C,点 M 是抛物上一点,直 MN 平行于y交直 AB 于点 N,如果 M、 N、 B、 C点的四形是平行四形,求点N 的坐 .oxAB(第 24 题图)1.解:( 1)将 A( 0, -1)、 B( 4, -3)分代入y x2bx cc1,,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)得4b c316解,得b 91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分 ) , c29 x所以抛物的解析式y x21⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)2( 2)点 B 作 BC x ,垂足C,点A作AH OB,垂足点 H ⋯⋯⋯( 1 分)在 Rt AOH 中,OA=1,sin AOH sin OBC4,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5∴ AH OA sin AOH 4,∴ OH3, BH OB OH22,⋯⋯⋯⋯⋯⋯(1 分)555在 Rt ABH 中,tan ABO AH4222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)BH5511(3)直 AB 的解析式y 1 x1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2点 M 的坐(m, m29 m1) ,点N坐 (m, 1 m1)22那么 MN= (m29 m1)( 1 m1)m24m ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)22∵ M、 N、 B、 C 点的四形是平行四形,∴MN =BC=3解方程m24m =3得m27 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)解方程 m 24m3 得 m 1或 m3 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)所以符合 意的点N 有 4 个 (27,7 7 3 5 22),(27,2),(1, ),(3,)222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2. (本 分 14 分,第( 1)小 分 4 分,第( 2)小 分 5分,第( 3)小 分 5分)在 Rt △ABC 中,∠ ACB = 90 °, 点 B 的直 l ( l 不与直 AB 重合)与直BC 的角等于∠ ABC ,分 点 C 、点 A 作直 l 的垂 ,垂足分 点D 、点E .(1)如 1,当点 E 与点 B 重合 ,若 AE=4,判断以 C 点 心 CD 半径的C 与直 AB 的位置关系并 明理由;(2)如 2,当点 E 在 DB 延 上 ,求 :AE=2CD ;ACF 5(3) 直 CE 与直 AB 相交于点 F ,若EF, CD = 4,求 BD 的 .6ACCDB(E)lD Bl(第 25 题图 1)E(第 25 题图 2 )2.解:( 1) 点 C 作 CF ⊥ AB ,垂足 点 F. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ AED =90°,∠ ABC=∠ CBD ,∴∠ ABC=∠ CBD =45°,∵∠ ACB=90 °,∠ ABC=45°, AE=4,∴ CF=2 ,BC= 2 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) 又∵∠ CBD=∠ ABC=45°, CD ⊥ l ,∴ CD =2, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ∴CD =CF=2,∴ C 与直 AB 相切 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) (2) 明:延 AC 交直 l 于点 G . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∠ ABC =∠GBC ,∴∠ BAC =∠BGC .∴AB = GB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ( 1 分) ∴AC = GC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵AE ⊥l ,CD ⊥ l ,∴ AE ∥ CD .∴CD GC 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯AE GA 2∴AE = 2CD . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3)( I )如 1,当点 E 在 DB 延 上 :点 C 作 CG ∥ l 交 AB 于点 H ,交 AE 于点 G , ∠ CBD =∠ HCB .∵∠ ABC =∠CBD ,∴∠ ABC =∠ HCB .∴ CH = BH .⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∴∠ ABC +∠BAC =∠ HCB +∠ HCA = 90 °. CH∴∠ BAC =∠HCA .∴ CH = AH = BH .F∵CG ∥ l ,∴CHCF 5FBEEF.D B6(第 25 题图CH = 5x , BE = 6x , AB = 10 x .( 1 分)( 1 分)AGlE1)在 Rt △ ABE 中, AEAB 2BE 28x .由( 2)知 AE = 2CD = 8,∴ 8x 8 ,得 x 1 .∴CH = 5 , BE = 6 ,AB = 10.∵CG ∥ l ,∴HGAH 1 ,∴ HG=3.⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)ABEAB 2∴CG = CH + HG = 8 .易 四 形 CDEG 是矩形,∴ DE = CG = 8.CGH∴ BD DE BE2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)(II )如 2,当点 E 在 DB 上 :DEl同理可得 CH = 5 , BE = 6 , HG = 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)B(第 25题图 2)∴ DE CG CH HG 2 .∴BD =DE + BE = 8 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)上所述, BD 的 2 或 8.3.已知点 A ( 2, 2)和点 B ( 4, n )在抛物 y=ax 2( a ≠0)上.(1)求 a 的 及点 B 的坐 ;(2)点 P 在 y 上,且 △ ABP 是以 AB 直角 的三角形,求点P 的坐 ;(3)将抛物 y=ax 2(a ≠0)向右并向下平移, 平移后点 A 的 点A ′,点B 的点 B ′,若四 形 ABB ′A ′ 正方形,求此 抛物 的表达式.【考点】二次函数图象上点的坐标特征;坐标与图形变化 -平移.【分析】( 1)把点 A (2,﹣ 2)代入 y=ax 2,得到 a ,再把点 B 代入抛物线解析式即可解决问题.(2)求出直线 AB 解析式,再分别求出过点 A 垂直于 AB 的直线的解析式,过点直线 AB 的解析式即可解决问题.B 垂直于( 3)先求出点 A ′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:( 1)把点 A ( 2,﹣ 2)代入 y=ax 2,得到 a=﹣, ∴抛物线为 y= ﹣ x 2, ∴x= ﹣ 4 时, y= ﹣ 8, ∴点 B 坐标(﹣ 4,﹣ 8),∴a=﹣,点 B 坐标(﹣ 4,﹣ 8).(2)设直线AB为 y=kx+b ,则有,解得,∴直线 AB 为 y=x ﹣ 4,∴过点 B 垂直 AB 的直线为 y= ﹣ x ﹣ 12,与 y 轴交于点P ( 0,﹣ 12),过点 A 垂直 AB 的直线为 y= ﹣ x ,与 y 轴交于点 P ′( 0, 0),∴点 P 在 y 轴上,且 △ ABP 是以 AB 为直角边的三角形时.点 P 坐标为( 0,0),或( 0,﹣12).(3)如图四边形 ABB ′A ′是正方形,过点 A 作 y 轴的垂线,过点B 、点 A ′作 x 轴的垂线得到点 E 、 F .∵直线 AB 解析式为 y=﹣ x ﹣ 12, ∴△ ABF , △ AA ′E 都是等腰直角三角形, ∵AB=AA ′= =6 ,∴AE=A ′E=6 ,∴点 A ′坐标为( 8,﹣ 8),∴点 A 到点 A ′是向右平移 6 个单位,向下平移 6 个单位得到,∴抛物线 y=﹣ x 2的顶点( 0,0),向右平移 6 个单位,向下平移6 个单位得到( 6,﹣ 6),∴此时抛物线为 y=﹣( x ﹣ 6) 2﹣ 6.4.已知, AB=5 , tan∠ABM= ,点 C、 D、 E 为动点,其中点 C、D 在射线 BM 上(点 C 在点 D 的左侧),点 E 和点 D 分别在射线 BA 的两侧,且 AC=AD ,AB=AE ,∠ CAD= ∠BAE .(1)当点 C 与点 B 重合时(如图 1),联结 ED ,求 ED 的长;(2)当 EA ∥BM 时(如图 2),求四边形 AEBD 的面积;(3)联结 CE,当△ ACE 是等腰三角形时,求点B、 C 间的距离.【考点】三角形综合题.【分析】( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H ,先证明 BF⊥ DE ,EF=DF ,再利用△ ABH ∽△ DBF ,得= ,求出 DF 即可解决问题.(2)先证明四边形 ADBE 是平行四边形,根据 S 平行四边形ADBE =BD?AH ,计算即可.(3)由题意 AC≠AE ,EC≠AC,只有 EA=EC ,利用四点共圆先证明四边形ADBE 是平行四边形,求出 DH 、 CH 即可解决问题.【解答】解:( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H .在RT△ABH 中,∵∠AHB=90°,∴sin ∠ABH= =,∴AH=3 , BH==4,∵A B=AD ,AH ⊥BD ,∴BH=DH=4 ,在△ ABE 和△ ABD 中,,∴△ ABD ≌△ ABE ,∴B E=BD ,∠ ABE= ∠ ABD ,∴B F ⊥ DE, EF=DF ,∵∠ ABH= ∠ DBF ,∠ AHB= ∠ BFD ,∴△ ABH ∽△ DBF ,∴= ,∴D F= ,∴D E=2DF=.(2)如图 2 中,作 AH ⊥ BD 于 H.∵AC=AD , AB=AE ,∠ CAD= ∠ BAE ,∴∠ AEB= ∠ABE= ∠ACD= ∠ADC , ∵AE ∥ BD ,∴∠ AEB+ ∠EBD=180° , ∴∠ EBD+ ∠ADC=180° , ∴EB ∥AD , ∵AE ∥ BD ,∴四边形 ADBE 是平行四边形, ∴ B D=AE=AB=5 ,AH=3 , ∴S 平行四边形 ADBE =BD?AH=15 .( 3)由题意 AC ≠AE ,EC ≠AC ,只有 EA=EC .如图 3 中,∵∠ ACD= ∠ AEB (已证), ∴A 、 C 、 B 、 E 四点共圆,∵ A E=EC=AB , ∴ = , ∴ = ,∴∠ AEC= ∠ABC , ∴AE ∥ BD ,由( 2)可知四边形 ADBE 是平行四边形, ∴AE=BD=AB=5 ,∵ A H=3 , BH=4 , ∴DH=BD ﹣ BH=1 , ∵AC=AD , AH ⊥ CD , ∴ C H=HD=1 , ∴BC=BD ﹣ CD=3 .5.如图,已知二次函数y=x 2+bx +c 图象顶点为 C ,与直线 y=x +m 图象交于 AB 两点,其中A 点的坐标为( 3, 4),B 点在 y 轴上.(1)求这个二次函数的解析式;(2)联结 AC ,求∠ BAC 的正切值;(3)点 P 为直线 AB 上一点,若△ ACP 为直角三角形,求点 P 的坐标.【分析】 ( 1)先把 A 点坐标代入 y=x +m 求出 m 得到直线 AB 的解析式为 y=x +1,这可求出直线与 y 轴的交点 B 的坐标, 然后把 A 点和 B 点坐标代入 y=x 2+bx+c 中得到关于 b 、c 的方程组,再解方程组求出b 、c 即可得到抛物线解析式;(2)如图,先抛物线解析式配成顶点式得到C ( 1, 0),再利用两点间的距离公式计算出BC 2=2, AB 2=18, AC 2=20,然后利用勾股定理的逆定理可证明△ABC 为直角三角形,∠ACB=90°,于是利用正切的定义计算tan ∠ BAC 的值;(3)分类讨论:当∠ APC=90° 时,有( 2 )得点 P 在 B 点处,此时 P 点坐标为( 0, 1);当∠ ACP=90°时,利用( 2tan ∠ PAC= = ,则 PC= AC P t t 1 )中结论得,设 ( , + ), 然后利用两点间的距离公式得到方程 t 2t 1 1 220,再解方程求出t 即可得到时 P 点 +( + ﹣ ) = 坐标.【解答】解:( 1 )把 A( 3 4 )代入 y=x m 得 3 +m=4 ,解得 m=1, +∴直线 AB 的解析式为 y=x 1+ ,∵当 x=0 时, y=x +1=1,∴B ( 0,1),把 B ( 0,1), A ( 3,4)代入 y=x 2+bx+c 得,解得 ,∴抛物线解析式为y=x 2﹣ 2x+1;(2)如图,∵ y =x 2﹣ 2x+1=( x ﹣ 1)2,∴C ( 1,0),22 2 2 2 +( 4 2 2 2 2∴BC =1 +1 =2,AB =3 ﹣ 1) =18 ,AC =( 3 ﹣ 1) +4 =20,而 2+18=20,∴BC 2+AB 2=AC 2,∴△ ABC 为直角三角形,∠ ACB=90° ,∴tan∠BAC===;(3)当∠ APC=90°时,点 P 在 B 点处,此时P 点坐标为( 0, 1);当∠ ACP=90°时,∵ tan∠ PAC==,∴P C= AC ,设P( t, t+1),∴t2t 1 1220,解得 t 1=﹣, t2=(舍去),此时P 点坐标为(﹣,+( + ﹣) =﹣+ 1),综上所述,满足条件的P 点坐标为( 0, 1)或(﹣,﹣+ 1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;能运用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式;能利用勾股定理的逆定理证明直角三角形.6.如图, ? ABCD 中, AB=8 ,AD=10 , sinA=,E、F分别是边AB 、BC 上动点(点 E 不与A 、B 重合),且∠ EDF= ∠ DAB , DF 延长线交射线 AB 于G.(1)若 DE⊥AB 时,求 DE 的长度;(2)设 AE=x , BG=y ,求 y 关于 x 的函数解析式,并写出函数的定义域;(3)当△ BGF 为等腰三角形时,求AE 的长度.【分析】( 1) DE⊥ AB 时,根据sinA=即可解决问题.(2)如图 2 中,作 DM ⊥AB 于 M ,根据 DG 2=DM2+MG2=AGEG ,列出等式即可解决问题.(3)分三种情形① BF=BG ,②FB=FG ,③ GB=GF ,根据 BF ∥AD ,得出比例式,列方程即可解决.【解答】解:( 1)如图 1 中,∵DE ⊥ AB ,∴sinA==,∵A D=10 ,∴DE=8 .(2)如图 2 中,作DM ⊥AB 于 M ,由( 1)可知 DM=8 , AM=6 , MG=AB ﹣ AM=8 ﹣ 6=2 ,∴DG 2=DM2+MG2,∵∠ DGE= ∠ DGA ,∠ GDE= ∠ A,∴△ DGE∽△ AGD ,∴= ,∴DG 2=AGEG ,∴DM 2+MG2=AGEG ,∴82+( 2+y)2=( 8+y)( 8+y﹣ x),∴y=(0<x<8)(3)①当 BF=FG 时,∵ BF∥ AD ,∴= ,∴AD=AG=10 ,∴y=2 ,即=2,解得 x=2 ,∴A E=2 .②当 FB=FG 时,∵ BF ∥AD ,∴=,∴A D=DG=10 ,∵DM ⊥AG ,∴A M=MB=6 ,∴A G=12 ,∴y=4 ,即=4,解得 x=.③当 GB=GF 时,∵ BF ∥ AD ,∠ GBF= ∠ BFG,∴∠ A= ∠ GBF ,∠ ADG= ∠ BFG ,∴∠ A= ∠ ADG ,∵∠ A= ∠ EDG ,∴∠ EDG= ∠ ADG ,∴此时点 E 与点 A 重合,不合题意.综上所述 AE=2 或时,△ BFG是等腰三角形.【点评】本题考查四边形综合题、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会用方程的思想解决问题,属于中考常考题型.。
2017年挑战中考数学压轴题(全套)

第一部分 函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题 §1.2 因动点产生的等腰三角形问题 §1.3 因动点产生的直角三角形问题 §1.4 因动点产生的平行四边形问题§1.5 因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题第二部分 图形运动中的函数关系问题§2.1 由比例线段产生的函数关系问题第三部分 图形运动中的计算说理问题§3.1 代数计算及通过代数计算进行说理问题§3.2 几何证明及通过几何计算进行说理问题第四部分 图形的平移、翻折与旋转§4.1 图形的平移§4.2 图形的翻折§4.3 图形的旋转§4.4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分AB DE AC DF =和AB DF AC DE=两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A 、B 两点的坐标,怎样求A 、B 两点间的距离呢?我们以AB 为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB 的长了.水平距离BC 的长就是A 、B 两点间的水平距离,等于A 、B 两点的横坐标相减;竖直距离AC 就是A 、B 两点间的竖直距离,等于A 、B 两点的纵坐标相减.图1 图1 图2例 1 湖南省衡阳市中考第28题二次函数y =a x 2+b x +c (a ≠0)的图象与x 轴交于A (-3, 0)、B (1, 0)两点,与y 轴交于点C (0,-3m )(m >0),顶点为D .(1)求该二次函数的解析式(系数用含m 的代数式表示);(2)如图1,当m =2时,点P 为第三象限内抛物线上的一个动点,设△APC 的面积为S ,试求出S 与点P 的横坐标x 之间的函数关系式及S 的最大值;(3)如图2,当m 取何值时,以A 、D 、C 三点为顶点的三角形与△OBC 相似?动感体验 请打开几何画板文件名“14衡阳28”,拖动点P 运动,可以体验到,当点P运动到AC 的中点的正下方时,△APC 的面积最大.拖动y 轴上表示实数m 的点运动,抛物线的形状会改变,可以体验到,∠ACD 和∠ADC 都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP ,△APC 可以割补为:△AOP 与△COP 的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A (-3, 0)、B (1, 0)两点,设y =a (x +3)(x -1).代入点C (0,-3m ),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m (x +3)(x -1)=mx 2+2mx -3m .(2)如图3,连结OP .当m =2时,C (0,-6),y =2x 2+4x -6,那么P (x , 2x 2+4x-6).由于S △AOP =1()2P OA y ⨯-=32-(2x 2+4x -6)=-3x 2-6x +9, S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9,所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++. 所以当32x =-时,S 取得最大值,最大值为274.图3 图4 图5 图6(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F .由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB =.所以△CDA ∽△OBC . ②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m =.解得22m =. 此时222DA FD DC EC m===,而3232OC m OB ==.因此△DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .考点伸展 第(2)题还可以这样割补: 如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H (x ,-2x -6).又因为P (x , 2x 2+4x -6),所以HP =-2x 2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH =32(-2x 2-6x )=23273()24x -++. 例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD 中,AB //CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .2·1·c ·n ·j ·y(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;图1(3)设△ADP 与△PCB 的外接圆的面积分别为S 1、S 2,若S =S 1+S 2,求S 的最小值. 动感体验请打开几何画板文件名“14益阳21”,拖动点P 在AB 上运动,可以体验到,圆心O的运动轨迹是线段BC 的垂直平分线上的一条线段.观察S 随点P 运动的图象,可以看到,S 有最小值,此时点P 看上去象是AB 的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB 是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB 的外接圆的圆心O 很关键,圆心O 在确定的BC 的垂直平分线上,同时又在不确定的BP 的垂直平分线上.而BP 与AP 是相关的,这样就可以以AP为自变量,求S 的函数关系式.图文解析(1)如图2,作CH ⊥AB 于H ,那么AD =CH . 在Rt △BCH 中,∠B =60°,BC =4,所以BH =2,CH =23.所以AD =23.(2)因为△APD 是直角三角形,如果△APD 与△PCB 相似,那么△PCB 一定是直角三角形.①如图3,当∠CPB =90°时,AP =10-2=8.所以AP AD =23=43,而PC PB=3.此时△APD 与△PCB 不相似.图2 图3 图4②如图4,当∠BCP =90°时,BP =2BC =8.所以AP =2.所以AP AD 233.所以∠APD =60°.此时△APD ∽△CBP . 综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m .在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM=BF -BM =4-(5-m )=m -1,∠OFM =30°,所以OM 31)m -. 所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-.在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2.于是S =S 1+S 2=π(GP 2+OB 2)=22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+.所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10.这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m )-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式. 例 3 2015年湖南省湘西市中考第26题如图1,已知直线y =-x +3与x 轴、y 轴分别交于A 、B 两点,抛物线y =-x 2+bx+c 经过A 、B 两点,点P 在线段OA 上,从点O 出发,向点A 以每秒1个单位的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以每秒2个单位的速度匀速运动,连结PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE //y 轴,交AB 于点E ,过点Q 作QF //y 轴,交抛物线于点F ,连结EF ,当EF //PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连结BP 、BM 、MQ ,问:是否存在t 的值,使以B 、Q 、M 为顶点的三角形与以O 、B 、P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由. 图1动感体验请打开几何画板文件名“15湘西26”,拖动点P 在OA 上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF 有一个时刻可以成为平行四边形,△MBQ与△BOP 有一次机会相似.思路点拨1.在△APQ 中,∠A =45°,夹∠A 的两条边AP 、AQ 都可以用t 表示,分两种情况讨论直角三角形APQ .2.先用含t 的式子表示点P 、Q 的坐标,进而表示点E 、F 的坐标,根据PE =QF 列方程就好了.3.△MBQ 与△BOP 都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y =-x +3,得A (3, 0),B (0, 3).将A (3, 0)、B (0, 3)分别代入y =-x 2+bx +c ,得930,3.b c c -++=⎧⎨=⎩ 解得2,3.b c =⎧⎨=⎩所以抛物线的解析式为y =-x 2+2x +3.(2)在△APQ 中,∠PAQ =45°,AP =3-t ,AQ =2t .分两种情况讨论直角三角形APQ :①当∠PQA =90°时,AP =2AQ .解方程3-t =2t ,得t =1(如图2).②当∠QPA =90°时,AQ =2AP .解方程2t =2(3-t ),得t =1.5(如图3).图2 图3图4 图5(3)如图4,因为PE //QF ,当EF //PQ 时,四边形EPQF 是平行四边形.所以EP =FQ .所以y E -y P =y F -y Q .因为x P =t ,x Q =3-t ,所以y E =3-t ,y Q =t ,y F=-(3-t )2+2(3-t )+3=-t 2+4t .因为y E -y P =y F -y Q ,解方程3-t =(-t 2+4t )-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).(4)由y =-x 2+2x +3=-(x -1)2+4,得M (1, 4).由A (3, 0)、B (0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =2由B (0, 3)、M (1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM 2.所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BM OB BQ OP =23322t t =-.解得94t =(如图5). ②当BM OP BQ OB =23322t t =-.整理,得t 2-3t +3=0.此方程无实根. 考点伸展第(3)题也可以用坐标平移的方法:由P (t , 0),E (t , 3-t ),Q(3-t , t ),按照P→E 方向,将点Q 向上平移,得F (3-t , 3).再将F (3-t , 3)代入y =-x 2+2x +3,得t =1,或t =3.§1.2 因动点产生的等腰三角形问题课前导学 我们先回顾两个画图问题:1.已知线段AB =5厘米,以线段AB 为腰的等腰三角形ABC 有多少个?顶点C 的轨迹是什么?2.已知线段AB =6厘米,以线段AB 为底边的等腰三角形ABC 有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C .已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3 图1例 9 2014年长沙市中考第26题如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1(,)16a 两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2). (1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.动感体验 请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0. 将1(,)16a 代入y =ax 2,得2116a =.解得14a =(舍去了负值). (2)抛物线的解析式为21y x =,设点P 的坐标为21(,)4x x . 已知A (0, 2),所以222411(2)4416PA x x x +-+>214x . 而圆心P 到x 轴的距离为214x ,所以半径PA >圆心P 到x 轴的距离. 所以在点P 运动的过程中,⊙P 始终与x 轴相交. (3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PM PA x ==+,22411()416PH x x ==,所以MH 2=4. 所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3图4 图5 ②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =23.此时x =OH =232+.所以点P 的纵坐标为22211(232)(31)42344x =+=+=+. 如图5,当NA =NM 时,根据对称性,点P 的纵坐标为也为423+.③如图6,当NA =NM =4时,在Rt △AON 中,OA =2,AN =4,所以ON =23.此时x =OH =232-.所以点P 的纵坐标为22211(232)(31)42344x =-=-=-. 如图7,当MN =MA =4时,根据对称性,点P 的纵坐标也为423-.图6 图7考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B (0, 1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为: 设点P 的坐标为21(,)4x x .已知B (0, 1),所以222222111(1)(1)1444PB x x x x =+-=+=+. 而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O 为坐标原点,抛物线y =ax 2+bx +c (a ≠0)过O 、B 、C 三点,B 、C 坐标分别为(10, 0)和1824(,)55-,以OB 为直径的⊙A 经过C 点,直线l 垂直x 轴于B 点.(1)求直线BC 的解析式;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O 、B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想mn 的值,并证明你的结论;(4)若点P 从O 出发,以每秒1个单位的速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t (0<t ≤8)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.图1动感体验请打开几何画板文件名“14张家界25”,拖动点M 在圆上运动,可以体验到,△EAF 保持直角三角形的形状,AM 是斜边上的高.拖动点Q 在BC 上运动,可以体验到,△BPQ 有三个时刻可以成为等腰三角形.思路点拨1.从直线BC 的解析式可以得到∠OBC 的三角比,为讨论等腰三角形BPQ 作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE 、AF 容易看到AM是直角三角形EAF 斜边上的高. 4.第(4)题的△PBQ 中,∠B 是确定的,夹∠B 的两条边可以用含t 的式子表示.分三种情况讨论等腰三角形.图文解析(1)直线BC 的解析式为31542y x =-.(2)因为抛物线与x 轴交于O 、B (10, 0)两点,设y =ax (x -10).代入点C 1824(,)55-,得241832()555a -=⨯⨯-.解得524a =. 所以2255255125(10)(5)2424122424y x x x x x =-=-=--.抛物线的顶点为125(5,)24-.(3)如图2,因为EF 切⊙A 于M ,所以AM ⊥EF .由AE =AE ,AO =AM ,可得Rt △AOE ≌Rt △AME .所以∠1=∠2.同理∠3=∠4.于是可得∠EAF =90°.所以∠5=∠1.由tan ∠5=tan ∠1,得MA ME MF MA=. 所以ME ·MF =MA 2,即mn =25.图2 (4)在△BPQ 中,cos ∠B =45,BP =10-t ,BQ =t .分三种情况讨论等腰三角形BPQ : ①如图3,当BP =BQ 时,10-t =t .解得t =5.②如图4,当PB =PQ 时,1cos 2BQ BP B =∠.解方程14(10)25t t =-,得8013t =. ① 如图5,当QB =QP 时,1cos 2BP BQ B =∠.解方程14(10)25t t -=,得5013t =.图3 图4 图5 图6考点伸展在第(3)题条件下,以EF为直径的⊙G与x轴相切于点A.如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G到x轴的距离等于圆的半径,所以⊙G与x轴相切于点A.例11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以OC OB=.OA OC所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.(3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n).讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2.①当AB=AC时,解方程(n-2)2=4+4n2,得4n=-(如图2).3②当CA =CB 时,解方程4+4n 2=5n 2,得n =-2(如图3),或n =2(A 、B 重合,舍去).当BA =BC 时,解方程(n -2)2=5n 2,得512n +=-(如图4),或512n -=(如图5).图1 图2 图3图4 图5考点伸展第(2)题常用的方法还有勾股定理的逆定理.由于C (0, mn ),当点C 的坐标是(0,-1),mn =-1.由A (m , 0),B (n , 0),C (0,-1),得AB 2=(m -n )2=m 2-2mn +n 2=m 2+n 2+2,BC 2=n 2+1,AC 2=m 2+1.所以AB 2=BC 2+AC 2.于是得到Rt △ABC ,∠ACB =90°.第(3)题在讨论等腰三角形ABC 时,对于CA =CB 的情况,此时A 、B 两点关于y轴对称,可以直接写出B (-2, 0),n =-2.例 12 2014年湖南省娄底市中考第27题如图1,在△ABC 中,∠ACB =90°,AC =4cm ,BC =3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连结PQ ,设运动时间为t (s )(0<t <4),解答下列问题:(1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值?S 的最大值是多少?(2)如图2,连结PC ,将△PQC沿QC 翻折,得到四边形PQP ′C ,当四边形PQP ′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形?图1 图2 图3 图4动感体验 请打开几何画板文件名“14娄底27”,拖动点Q 在AC 上运动,可以体验到,当点P 运动到AB 的中点时,△APQ 的面积最大,等腰三角形APQ 存在三种情况.还可以体验到,当QC =2HC 时,四边形PQP ′C 是菱形.思路点拨1.在△APQ 中,∠A 是确定的,夹∠A 的两条边可以用含t 的式子表示. 2.四边形PQP ′C 的对角线保持垂直,当对角线互相平分时,它是菱形,. 图文解析(1)在Rt △ABC 中,AC =4,BC =3,所以AB =5,sin A =35,cos A =45. 作QD ⊥AB 于D ,那么QD =AQ sin A =35t .所以S =S △APQ =12AP QD ⋅=13(5)25t t -⨯=23(5)10t t --=23515()+1028t --.当52t =时,S 取得最大值,最大值为158. (2)设PP ′与AC 交于点H ,那么PP ′⊥QC ,AH =AP cos A =4(5)5t -. 如果四边形PQP ′C 为菱形,那么PQ =PC .所以QC =2HC . 解方程4424(5)5t t ⎡⎤-=⨯--⎢⎥⎣⎦,得2013t =.(3)等腰三角形APQ 存在三种情况: ①如图5,当AP =AQ 时,5-t =t .解得52t =.②如图6,当PA =PQ 时,1cos 2AQ AP A =.解方程14(5)25t t =-,得4013t =.如图7,当QA =QP 时,1cos 2AP AQ A =.解方程14(5)25t t -=得2513t =.图5 图6 图7图8考点伸展在本题情境下,如果点Q 是△PP ′C 的重心,求t 的值.如图8,如果点Q 是△PP ′C 的重心,那么QC =23HC .解方程2444(5)35t t ⎡⎤-=⨯--⎢⎥⎣⎦,得6023t =.例 13 2015年湖南省怀化市中考第22题如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒.(1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)动感体验请打开几何画板文件名“15怀化22”,拖动点P 在AC 上运动,可以体验到,PQ与BD保持平行,等腰三角形PQC存在三种情况.思路点拨1.过点B作QP的平行线交AC于D,那么BD的长就是PQ的最大值.2.线段PQ扫过的面积S要分两种情况讨论,点Q分别在AB、BC上.3.等腰三角形PQC分三种情况讨论,先罗列三边长.图文解析(1)在Rt△ABC中,AC=8,BC=6,所以AB=10.如图2,当点Q在AB上时,作BD//PQ交AC于点D,那么22AB AQ tAD AP t===.所以AD=5.所以CD=3.如图3,当点Q在BC上时,16228CQ tCP t-==-.又因为623CBCD==,所以CQ CBCP CD=.因此PQ//BD.所以PQ的最大值就是BD.在Rt△BCD中,BC=6,CD=3,所以BD=35.所以PQ的最大值是35.图1图2 图3 图4 (2)①如图2,当点Q在AB上时,0<t≤5,S△ABD=15.由△AQP∽△ABD,得2()AQPABDS APS AD=△△.所以S=S△AQP=215()5t⨯=235t.②如图3,当点Q在BC上时,5<t≤8,S△ABC=24.因为S△CQP=12CQ CP⋅=1(162)(8)2t t--=2(8)t-,所以S=S△ABC-S△CQP=24-(t-8)2=-t2+16t-40.(3)如图3,当点Q在BC上时,CQ=2CP,∠C=90°,所以△PQC不可能成为等腰三角形.当点Q在AB上时,我们先用t表示△PQC的三边长:易知CP=8-t.如图2,由QP//BD,得QP APBD AD=535t=.所以35QP=.如图4,作QH⊥AC于H.在Rt△AQH中,QH=AQ sin∠A=65t,AH=85t.在Rt△CQH中,由勾股定理,得CQ22QH CH+2268()(8)55t t+-分三种情况讨论等腰三角形PQC:(1)①当PC=PQ时,解方程358t-=,得6510t =-≈3.4(如图5所示).②当QC =QP 时,226835()(8)555t t t +-=.整理,得2111283200t t -+=.所以(11t -40)(t -8)=0.解得4011t =≈3.6(如图6所示),或t =8(舍去).③当CP =CQ 时,22688()(8)55t t t -=+-.整理,得25160t t -=.解得165t ==3.2(如图7所示),或t =0(舍去). 综上所述,当t 的值约为3.4,3.6,或等于3.2时,△PQC 是等腰三角形.图5 图6 图7图8 图9考点伸展第(1)题求P 、Q 两点间距离的最大值,可以用代数计算说理的方法:①如图8,当点Q 在AB 上时,PQ =22QH PH +=2268()()55t t t +-=35t . 当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为35.②如图9,当点Q 在BC 上时,PQ =22CQ CP +=22(2)CP CP +=5(8)t -.当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为35.综上所述,PQ 的最大值为35.§1.3 因动点产生的直角三角形问题课前导学我们先看三个问题:1.已知线段AB ,以线段AB 为直角边的直角三角形ABC有多少个?顶点C 的轨迹是什么?2.已知线段AB ,以线段AB 为斜边的直角三角形ABC有多少个?顶点C 的轨迹是什么?3.已知点A (4,0),如果△OAB 是等腰直角三角形,求符合条件的点B 的坐标.图1 图2 图3图4如图1,点C 在垂线上,垂足除外.如图2,点C 在以AB 为直径的圆上,A 、B 两点除外.如图3,以OA 为边画两个正方形,除了O 、A 两点以外的顶点和正方形对角线的交点,都是符合题意的点B ,共6个.解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341mm-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.例19 2015年湖南省益阳市中考第21题如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y轴的对称点分别为点A′、B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.图1 图2图3 图4动感体验请打开几何画板文件名“15益阳21”,拖动点P在抛物线E1上运动,可以体验到,点P始终是线段OP′的中点.还可以体验到,直角三角形QBB′有两个.思路点拨1.判断点P是线段OP′的中点是解决问题的突破口,这样就可以用一个字母表示点P、P′的坐标.2.分别求线段AA′∶BB′,点P到AA′的距离∶点P′到BB′的距离,就可以比较△PAA′与△P′BB′的面积之比.图文解析(1)当x=1时,y=x2=1,所以A(1, 1),m=1.设抛物线E2的表达式为y=ax2,代入点B(2,2),可得a=12.所以y=12x2.(2)点Q在第一象限内的抛物线E1上,直角三角形QBB′存在两种情况:①如图3,过点B 作BB ′的垂线交抛物线E 1于Q ,那么Q (2, 4).②如图4,以BB ′为直径的圆D 与抛物线E 1交于点Q ,那么QD =12BB '=2. 设Q (x , x 2),因为D (0, 2),根据QD 2=4列方程x 2+(x 2-2)2=4.解得x =3±.此时Q (3,3).(3)如图5,因为点P 、P ′分别在抛物线E 1、E 2上,设P (b , b 2),P ′(c , 212c ). 因为O 、P 、P ′三点在同一条直线上,所以P PM N OM ON =',即2212c b b c =. 所以c =2b .所以P ′(2b , 2b 2).如图6,由A (1, 1)、B (2,2),可得AA ′=2,BB ′=4.由A (1, 1)、P (b , b 2),可得点P 到直线AA ′的距离PM ′=b 2-1.由B (2,2)、P ′(2b , 2b 2),可得点P ′到直线BB ′的距离P ′N ′=2b 2-2.所以△PAA ′与△P ′BB ′的面积比=2(b 2-1)∶4(2b 2-2)=1∶4.考点延伸第(2)中当∠BQB ′=90°时,求点Q (x , x 2)的坐标有三种常用的方法:方法二,由勾股定理,得BQ 2+B ′Q 2=B ′B 2.所以(x -2)2+(x 2-2)2+(x +2)2+(x 2-2)2=42.方法三,作QH ⊥B ′B 于H ,那么QH 2=B ′H ·BH .所以(x 2-2)2=(x +2) (2-x ).图5 图6图1 图2例 20 2015年湖南省湘潭市中考第26题如图1,二次函数y =x 2+bx +c 的图象与x 轴交于A (-1, 0)、B (3, 0)两点,与y 轴交于点C ,连结BC .动点P 以每秒1个单位长度的速度从点A 向点B 运动,动点Q 2个单位长度的速度从点B 向点C 运动,P 、Q 两点同时出发,连结PQ ,当点Q 到达点C时,P 、Q 两点同时停止运动.设运动的时间为t 秒.(1)求二次函数的解析式;(2)如图1,当△BPQ 为直角三角形时,求t 的值;(3)如图2,当t <2时,延长QP 交y 轴于点M ,在抛物线上是否存在一点N ,使得PQ 的中点恰为MN 的中点,若存在,求出点N 的坐标与t 的值;若不存在,请说明理由.动感体验请打开几何画板文件名“15湘潭26”,拖动点P 在AB 上运动,可以体验到,△BPQ 有两次机会可以成为直角三角形.还可以体验到,点N 有一次机会可以落在抛物线上.思路点拨1.分两种情况讨论等腰直角三角形BPQ .2.如果PQ 的中点恰为MN 的中点,那么MQ =NP ,以MQ 、NP 为直角边可以构造全等的直角三角形,从而根据直角边对应相等可以列方程..图文解析(1)因为抛物线y =x 2+bx +c 与x 轴交于A (-1, 0)、B (3, 0)两点,所以y =(x +1)(x -3)=x 2-2x -3.(2)由A (-1, 0)、B (3, 0)、C (0,-3),可得AB =4,∠ABC =45°.在△BPQ 中,∠B =45°,BP =4-t ,BQ =2t .直角三角形BPQ 存在两种情况:①当∠BPQ =90°时,BQ =2BP .解方程2t =2(4-t ),得t =2(如图3).②当∠BQP =90°时,BP =2BQ .解方程4-t =2t ,得t =43(如图4).图3 图4 图5(3)如图5,设PQ 的中点为G ,当点G 恰为MN 的中点时,MQ =NP .作QE ⊥y 轴于E ,作NF ⊥x 轴于F ,作QH ⊥x 轴于H ,那么△MQE ≌△NPF .由已知条件,可得P (t -1, 0),Q (3-t ,-t ).由QE =PF ,可得x Q =x N -x P ,即3-t=x N -(t -1).解得x N =2.将x =2代入y =(x +1)(x -3),得y =-3.所以N (2,-3).由QH //NF ,得QH PH NF PF=,即(3)(1)32(1)t t t t ---=--.整理,得t 2-9t +12=0.解得933t ±=.因为t <2,所以取933t -=. 考点伸展第(3)题也可以应用中点坐标公式,得(1)(3)122P QG x x t t x +-+-===. 所以x N =2x G =2.§1.4 因动点产生的平行四边形问题课前导学我们先思考三个问题:1.已知A 、B 、C 三点,以A 、B 、C 、D 为顶点的平行四边形有几个,怎么画?2.在坐标平面内,如何理解平行四边形ABCD 的对边AB 与DC 平行且相等?3.在坐标平面内,如何理解平行四边形ABCD 的对角线互相平分?图1 图2 图3图4 如图1,过△ABC的每个顶点画对边的平行线,三条直线两两相交,产生三个点D.如图2,已知A(0, 3),B(-2, 0),C(3, 1),如果四边形ABCD是平行四边形,怎样求点D的坐标呢?点B先向右平移2个单位,再向上平移3个单位与点A重合,因为BA与CD平行且相等,所以点C(3, 1) 先向右平移2个单位,再向上平移3个单位得到点D(5, 4).如图3,如果平行四边形ABCD的对角线交于点G,那么过点G画任意一条直线(一般与坐标轴垂直),点A、C到这条直线的距离相等,点B、D到这条直线的距离相等.关系式x A+x C=x B+x D和y A+y C=y B+y D有时候用起来很方便.我们再来说说压轴题常常要用到的数形结合.如图4,点A是抛物线y=-x2+2x+3在x轴上方的一个动点,AB⊥x轴于点B,线段AB交直线y=x-1于点C,那么点A的坐标可以表示为(x,-x2+2x+3),点C的坐标可以表示为(x, x-1),线段AB的长可以用点A的纵坐标表示为AB=y A=-x2+2x+3,线段AC的长可以用A、C两点的纵坐标表示为AC=y A-y C=(-x2+2x+3)-(x-1)=-x2+x+2.通俗地说,数形结合就是:点在图象上,可以用图象的解析式表示点的坐标,用点的坐标表示点到坐标轴的距离.例24 2014年湖南省岳阳市中考第24题三点.设点E(x, y)是抛物线上一动点,如图1,抛物线经过A(1, 0)、B(5, 0)、C10(0,)3且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.(1)求抛物线的解析式;(2)当点E(x, y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求点E、F的坐标;若不存在,请说明理由.动感体验请打开几何画板文件名“14岳阳24”,拖动点E运动,可以体验到,当点E运动到抛物线的顶点时,S最大.当点E运动到OB的垂直平分线上时,四边形OEBF恰好是正方形.思路点拨1.平行四边形OEBF的面积等于△OEB面积的2倍.2.第(3)题探究正方形OEBF,先确定点E在OB的垂直平分线上,再验证EO=EB.图文解析(1)因为抛物线与x轴交于A(1, 0)、B(5, 0)两点,设y=a(x-1)(x-5).。
山东省诸城市桃林镇2017届中考数学压轴题专项汇编 专题17 一线三等角模型

专题17 一线三等角模型破解策略在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BP D .321DBPAC(2)如图,若∠1为锐角,则有△ACP ∽△BP D .3CDBPA证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,∵∠1=∠2,∴△ACP ∽△BPD(3)如图,若∠1为钝角,则有△ACP ∽△BP D .231DBPAC2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BP D .321CPDBA证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BP D .321CDBAP证明:∵∠C =∠1-∠CPB ,∠BPD =∠3-∠CPB ,而∠1=∠3 ∴∠C =∠BP D .∵∠1=∠2,∴∠PAC =∠DBP .∴△ACP ∽△BP D . 例题讲解例1:已知:∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与点A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为S 1,△BND 的面积为S 2.(1)如图1,当△ABC 是等边三角形,∠EDF =∠A 时,若AB =6,AD =4,求S 1S 2的值; (2)当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.①如图2,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1S 2的表达式(结果用a ,b 和a 的三角函数表示).②如图3,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1S 2的表达式.NFC ME BDAF NM E BDACFN DABEM C图1 图2 图3 解:(1)如图4,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .H G ADBE MC FN则S 1S 2=12MG AD12NH BD =14AD AM sin A BD BN sinB .由题意可知∠A =∠B =60º,所以sin A =sin B. 由“一线三等角模型”可知△AMD ∽△BDN . ∴AM ADBD BN,从而AM BN =AD BD =8,∴S 1S 2=12.(2)①如图5,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .HG CADBE M N F则S 1S 2=12MG AD 12NH BD =14AD AM sin ABD BN sinB .由“一线三等角模型”可得△AMD ∽△BDN , 所以AM ADBD BN=,从而AM BN =AD BD =ab , 所以S 1S 2=14a ²b ²sin²a ; ②如图6,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .HGCM EBA DN F则S 1S 2=12MG AD12NH BD =14AD AM sin A BD BN sinB .由“一线三等角模型”可得△AMD ∽△BDN , 所以AM ADBD BN=,从而AM BN =AD BD =ab , 所以S 1S 2=14a ²b ²sin²a ; 例2:如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC =2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE =30°.(1)设BD =x ,AE =y ,求y 关于x 的函数关系式并写出自变量x 的取值范围; (2)当△ADE 是等腰三角形时,求AE 的长.ECD B A解(1)∵△ABC 是等腰三角形,且∠BAC =120°, ∴∠ABD =∠ACB =30°, ∴∠ABD =∠ADE =30°,∵∠ADC =∠ADE +∠EDC =∠ABD +∠DAB ,∴∠EDC =∠DAB , ∴△ABD ∽△DCE ;∵AB =AC =2,∠BAC =120°, 过A 作AF ⊥BC 于F , ∴∠AFB =90°,∵AB =2,∠ABF =30°, ∴AF =12AB =1, ∴BF∴BC =2BF= 则DC=x ,EC =2-y ∵△ABD ∽△DCE , ∴AB DCBD CE =,∴2x =,化简得:2122y x =+(0x <<. ECDBA(2)①当AD =DE 时,如图2, △ABD ≌△DCE ,则AB =CD ,即2=x ,x=2,代入2122y x =+解得:y=4-AE=4- ②当AE =ED 时,如图,∠EAD =∠EDA =30°,∠AED =120°, 所以∠DEC =60°,∠EDC =90°则ED =12 EC ,即y =12 (2-y ) 解得y =23,即AE =23;③当AD =AE 时,有∠AED -∠EDA =30°,∠EAD =120°此时点D和点B重合,与题目不符,此情况不存在.所以当△是ADE等腰三角形时,AE=4-AE=23AB C进阶训练1.如图,在△ABC中,AB=AC,点E在BC边上移动(不与点B,C重台).满足∠DEF=∠B,且点D,F.分别在边AB,AC上.当点E移动到BC的中点时,求证:FE平分∠DF C.1.略【提示】由题意可得∠B=∠DEF=∠C.由“一线三等角模型”可得△BDE∽△CEF,可得BECF=DEEF.而BE=CE·所以CECF=DEEF,从而△DEF∽ECF.所以∠DEF=∠EFC,即FE平分∠DF C.2.如图,在等边△ABC中,点D,E分别在AB,BC边上,AD=2BE=6.将DE绕点E顺时针旋转60°,得到EF.取EF的中点G,连结AG.延长CF交AG于点H.若2AH=5HG,求BD的长.B2.BD=9.【提示】如图,过点F作FI∥AC交BC于点I.则∠FIE=∠ACB=∠AB C.易证△DBE≌△E IF,则IF=BE,IE=BD,所以BC+BE=AD,即IC=BE=IF,则∠ACH=∠BCH=30°.延长CH变AB于点J,则CJ⊥AB,.A=BJ分别过点G,E作AB的垂线段,垂足为K,L,·则KL=KJ·AJJK=AHHG=52,所以AJ:JK:KL:BL=5:2:2:l.因为BE=3,∠LEB= 30°,所以BL=1.5.AB=15.所以BD =9.IB本文档仅供文库使用。
2017全国各地中考数学压轴题汇编之1

2017全国各地中考数学压轴题汇编之1D角三角形?若存在,请求出运动时间t ;若不存在,请说明理由;(4)如图②,点N 的坐标为(32 ,0),线段PQ 的中点为H ,连接NH ,当点Q 关于直线NH 的对称点Q ′恰好落在线段BC 上时,请直接写出点Q ′的坐标.CQ ABPO yx图① CQ HABNPO yx图②A【分析】(1)将A (-3,0)、B (4,0)代入y =213x bx c -++即可求解;(2)若△APQ 为直角三角形,则∠APQ =90°(∠PAQ 与∠PQA 不可能为直角).连接QC ,则AQ 2-AP 2=QC 2-PC 2=PQ 2,据此列出关于t 的方程求解,若t 的值满足0≤t ≤4,则△APQ 可能是直角三角形,否则不可能;(3)①过点P 作DE ∥x 轴,分别过点M 、Q 作MD ⊥DE ,QE ⊥DE ,垂足分别为D 、E ,构成“一线三直角”全等模型,用含t 的式子表示点M 的坐标;②将点M 的坐标代入二次函数的表达式求解;(4)①分别求直线BC 、直线NQ ′的函数表达式;②解直线BC 、NQ ′的函数达式组成的方程组.【解析】(1)b =13,c =4. (2)在点P 、Q 运动过程中,△APQ 不可能是直角三角形.理由如下:若△APQ 是直角三角形,因为在点P 、Q 运动过程中,∠PAQ 、∠PQA 始终为锐角,所以∠APQ =90°.∴AQ 2-AP 2=QC 2-PC 2=PQ 2. 连接QC .由(1)知抛物线的函数表达式为y =211433xx -++,当x=0时,y =4.∴C (0,4). ∴OC =4. ∵A (-3,0), ∴OA =3.由题意,得AP =OQ =t . ∴AQ =OA +OQ =3t +.在Rt △AOC 中,由勾股定理得AC5.∴PC =5t -.在Rt △OCQ 中,QC 2=OQ 2+OC 2=224t +.∵∠APQ =90°,∴AQ 2-AP 2=QC 2-PC 2=PQ 2. ∴22(3)t t +-=2224(5)tt +--.解得t =4.5. 由题意知0≤t ≤4.∴t =4.5不符合题意,舍去.∴在点P 、Q 运动过程中,△APQ 不可能是直角三角形.(3)如图,过点P 作DE ∥x 轴,分别过点M 、Q 作MD ⊥DE 、QE ⊥DE ,垂足分别为点D 、E ,MD 交x 轴于点F ,过点P 作PG ⊥x 轴,垂足为点G ,则PG ∥y 轴,∠D =∠E =90°. ∴△APG ∽△ACO .∴PG OC =AG OA =AP AC ,即4PG =3AG =5t . ∴PG =45t ,AG =35t . CQ ABPO yx∴PE =GQ =GO +OQ =AO -AG +OQ =335t t -+=235t +,DF =EQ =45t .∵∠MPQ =90°,∠D =90°,∴∠DMP +∠DPM =∠EPQ +∠DPM =90°. ∴∠DMP =∠EPQ . 又∵∠D =∠E ,PM =PQ , ∴△MDP ≌△PEQ .∴PD =EQ =45t ,MD =PE =235t +. ∴AM =MD -DF =24355t t +-=235t -, OF =FG +GO =PD +OA -AG =43355t t +-=135t +. ∴M (135t --,235t -+). ∵点M 在x 轴下方的抛物线上,∴235t -+=21111(3)(3)43535t t ---+--+.解得t.∵0≤t ≤4,∴t.(4)Q ′(67,227).CQ A BPO yxMD EFG提示:连接OP,取OP中点R,连接RH、NR,延长NR交线段BC于点Q′.∵点H为PQ的中点,点R为OP的中点,∴RH=12OQ=12t,RH∥OQ.∵A(-3,0)、N(32-,0),∴点N为OA的中点.又∵点R为OP的中点,∴NR=12AP=12t,RN∥AC.∴RH=NR.∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO.∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的函数表达式为y=mx n+,把A(-3,0)、C (0,4)代入,得034m n n =-+⎧⎨=⎩,.解得m =43,n =4. ∴直线AC 的函数表达式为y =443x +. 同理可求,直线BC 的函数表达式为y =4x -+.设直线NR 的函数表达式为y =43x s +,把N (32-,0)代入,得0=43()32s ⨯-+. 解得s =2.∴直线NR 的函数表达式为y =423x +. 解方程组4234y x y x ⎧=+⎪⎨⎪=-+⎩,得67227x y ⎧=⎪⎪⎨⎪=⎪⎩.,∴Q ′(67,227).2.(2017江苏南京,27,11分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD (AB >BC )(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,CQ H A B NPO yxRQ折出PB,PC,得到△PB C.(1)说明△PBC是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD和等边三角形PB C.他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为acm.对于每一个确定的a的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.【分析】(1)由折叠的性质,线段垂直平分线的性质可判断;(2)根据旋转的性质和位似变换直接作图,写出过程即可;(3)根据图形,由勾股定理和等边三角形的性质求解;(4)由勾股定理和正方形的性质的性质直接求解.【解析】(1)由折叠,PB=PC,EF是BC的垂直平分线,∴PB=PC,∴PB=PC=BC,∴△PBC是等边三角形.(2)本题答案不惟一.例如,如图,以点B为中心,在矩形ABCD中把△PBC 逆时针方向旋转适当的角度,得到△P1B1C1;再以点B为位似中心,将△P1B1C1放大,使C1的对应点C2落在CD上,得到△P2BC2.(3)当等边三角形的边长为3cm,acm为高时,则a=3√3,2当等边三角形的边长为a cm,3cm为高时,则a=2√3,然后分0<a ≤3√32,3√32<a <2√3,a ≥2√3画出示意图.(4)165. 当以4cm 的直角边与正方形的边重合时,边长为4cm ,正方形的面积为16cm 2;当直角三角形的一个顶点与正方形的顶点重合,两外两个顶点在边上时,如图,∵四边形ABCD 是正方形,∴BC =CD ,∠C =∠D =90°.∵∠BFE =90°,∴∠BFC+∠EFD=90°,∠BFC+∠CBF=90°,∴∠EFD=∠CBF,∴△BCF∽△FDE,∴BC∶DF=BF∶EF.设BC=a,由BF=4,得CF=√16−a2,则DF=a-√16−a2,可知a∶( a-√16−a2)=4∶1解得a=16.5.正方形得面积为25625因为256<16,25.所以a=1653.(2017江苏连云港,27,14分)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2S 四边形EFGH =S 矩形ABCD .(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1. 如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +1111A B C D S 矩形.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与1111A B C D S矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE>DG,S=11,HF EG的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG连接EF、HG,请直接写出四边形EFGH面积的最大值.【分析】问题呈现:根据矩形的性质,通过割补法利用三角形的面积和矩形的面积可得到结论;实验探究:由题意得当将点G向点D靠近(DG AE)时,通过割补法利用三角形的面积和矩形的面积可得到结论;迁移应用:(1)由上面的结论,结合图形,通过割补法利用三角形的面积和矩形的面积可得到结论;(2)直接根据规律写出结果即可.【解析】问题呈现:证明:如图1中,∵四边形ABCD 是矩形, ∴AB ∥CD ,∠A =90°, ∵AE =DG ,∴四边形AEGD 是矩形, ∴S △HGE =12S 矩形AEGD , 同理S △EGF =12S 矩形BEGC , ∴S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC . 实验探究:结论:2S 四边形EFGH =S 矩形ABCD -1111A B C D S矩形.理由:∵1EHC S△=121AEC HS 矩形,1HGD S△=121HDGD S 矩形,1EFB S△=121EBFB S 矩形,1FGA S △=121CFA GS 矩形,∴S 四边形EFGH =1EHC S △+1HGD S△+1EFB S△+1FGA S△-1111A B C D S矩形,∴2S 四边形EFGH =21EHCS △+21HGD S△+21EFB S△+21FGA S△-21111A B C D S矩形,∴2S 四边形EFGH =S 矩形ABCD -1111A B C D S 矩形.迁移应用:解:(1)如图4中,∵2S 四边形EFGH =S 矩形ABCD -1111A B C D S 矩形.∴1111A B C D S矩形=25-2×11=3=A 1B 1·A 1D 1,∵正方形的面积为25,∴边长为5, ∵A 1D 12=HF 2-52=29-25=4, ∴A 1D 1=2,A 1B 1=32, ∴EG 2=A 1B 12+52=1094, EG(2)∵2S 四边形EFGH =S 矩形ABCD +1111A B C D S 矩形.∴四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.①如图5-1中,当G与C重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.B1C1D1面积=1·2)=此时矩形A②如图5-2中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.此时矩形A1B1C1D1面积=2·1=2,∵22,∴矩形EFGH的面积最大值=1724.(2017江苏南通,28,13分)已知直线y=kx +b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a 的值;(2)若∠AOB=90°,点A的横坐标为-4,AC =4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【分析】(1)如图1,由条件可知△AOB为等边三角形,则可求得OA的长,在Rt△AOD中可求得AD和OD的长,可求得A点坐标,代入抛物线解析式可得a的值;(2)如图2,作辅助线,构建平行线和相似三角形,根据CF∥BG,由A的横坐标为-4,得B 的横坐标为1,所以A(-4,16a),B(1,a),证明△ADO∽△OEB,则AD OD=,得a的值及BOE BE的坐标;(3)如图3,设AC=nBC由(2)同理可知:A 的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),分别根据两三角形相似计算DE和CO的长即可得出结论.【解析】解:(1)如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC,∴A(-1把A(-1代入抛物线y=ax2(a>0)中得:a(2)如图2,过B作BE⊥x轴于E,过A作AG ⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴AC AF=,BC FG∵AC=4BC,=4,∴AFFG∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD +∠DAO =90°, ∴∠BOE =∠DAO , ∵∠ADO =∠OEB =90°, ∴△ADO ∽△OEB ,∴AD OD OE BE=, ∴1641a a=, ∴16a 2=4, a =±12, ∵a >0, ∴a =12; ∴B (1,12); (3)如图3,设AC =nBC ,由(2)同理可知:A 的横坐标是B 的横坐标的n 倍,则设B (m ,am 2),则A (-mn ,am 2n 2), ∴AD =am 2n 2, 过B 作BF ⊥x 轴于F , ∴DE ∥BF , ∴△BOF ∽△EOD ,∴OB OF BF OE OD DE==, ∴2OB m am OE mn DE==,∴1OB OE n=,DE =am 2n , ∴11OB BE n=+,∵OC ∥AE , ∴△BCO ∽△BAE ,∴11CO OB AE BE n ==+, ∴22211CO am n am n n=++, ∴CO =()211am n n n++=am 2n ,∴DE =CO .5.(2017江苏苏州,28,10分)如图,二次函数y =x 2+bx +c 的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,OB =OC .点D 在函数图象上,CD ∥x 轴,且CD =2,直线l 是抛物线的对称轴,E 是抛物线的顶点. (1)求b 、c 的值;(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标;(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN 的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN 中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解析】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴-b=2,b=-2.2∵OB=OC,C(0,c),∴B点的坐标为(-c,0),∴0=c2+2c+c,解得c=-3或c=0(舍去),∴c=-3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2-2x-3=(x-1)2-4,∴E(1,-4),∵直线BE经过点B(3,0),E(1,-4),∴利用待定系数法可得直线BE的表达式为y=2x-6.∵点F在BE上,∴m=2×2-6=-2,即点F的坐标为(0,-2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3-n,PN=-n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴12(n+1)(3-n)=12(-n2+2n+3)·QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n-1,n2-4n),R点的坐标为(n,n2-4n),N点的坐标为(n,n2-2n-3).∴在Rt△QRN中,NQ2=1+(2n-3)2,∴n=32时,NQ取最小值1.此时Q点的坐标为(1 2,-154);②点Q在直线PN的右侧时,Q点的坐标为(n+11,n2-4).同理,NQ2=1+(2n-1)2,∴n=12时,NQ取最小值1.此时Q点的坐标为(3 2,-154).综上可知存在满足题意的点Q,其坐标为(12,-154)或(32,-154).6.(2017江苏泰州,26,14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=-x2+(m-2)x+2m的图象经过点A、B,且a、m满足2a-m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=-1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=-4且a≠-2、a≠-4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由.【分析】(1)①当a=1、d=-1时,m=2a-d=3,于是得到抛物线的解析式,然后求得点A和点B 的坐标,最后将点A和点B的坐标代入直线AB 的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A 和点B的纵坐标,然后依据y1随着x的增大而减小,可得到-(a-m)(a+2)>-(a+2-m)(a+4),结合已知条件2a-m=d,可求得d的取值范围;(2)由d=-4可得到m=2a+4,则抛物线的解析式为y=-x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB 与x轴的位置关系;(3)先求得点A 和点B 的坐标,于是得到点A 和点B 运动的路线与字母a 的函数关系式,则点C (0,2m ),D (0,4m -8),于是可得到CD 与m 的关系式.【解析】解:(1)①当a =1、d =-1时,m =2a -d =3,所以二次函数的表达式是y =-x 2+x +6.∵a =1,∴点A 的横坐标为1,点B 的横坐标为3,把x =1代入抛物线的解析式得:y =6,把x =3代入抛物线的解析式得:y =0,∴A (1,6),B (3,0).将点A 和点B 的坐标代入直线的解析式得:⎩⎨⎧=+=+036b k b k ,解得:⎩⎨⎧=-=93b k , 所以k 的值为-3.②∵y =-x 2+(m -2)x +2m =-(x -m )(x +2), ∴当x =a 时,y =-(a -m )(a +2);当x =a +2时,y =-(a +2-4)(a +4),∵y1随着x的增大而减小,且a<a+2,∴-(a-m)(a+2)>-(a+2-m)(a+4),解得:2a-m>-4,又∵2a-m=d,∴d的取值范围为d>-4.(2)∵d=-4且a≠-2、a≠-4,2a-m=d,∴m=2a+4.∴二次函数的关系式为y=-x2+(2a+2)x+4a+8.把x=a代入抛物线的解析式得:y=a2+6a+8.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)线段CD的长随m的值的变化而变化.∵y=-x2+(m-2)x+2m过点A、点B,∴当x=a时,y=-a2+(m-2)a+2m,当x=a+2时,y=-(a+2)2+(m-2)(a+2)+2m,∴A(a,-a2+(m-2)a+2m)、B(a+2,-(a+2)2+(m-2)(a+2)+2m).∴点A运动的路线是的函数关系式为y1=-a2+(m-2)a+2m,点B运动的路线的函数关系式为y2=-(a+2)2+(m-2)(a+2)+2m.∴点C(0,2m),D(0,4m-8).∴DC=|2m-(4m-8)|=|8-2m|.∴线段CD的长随m的值的变化而变化.当8-2m=0时,m=4时,CD=|8-2m|=0,即点C 与点D重合;当m>4时,CD=2m-8;当m<4时,CD=8-2m.7.(2017江苏无锡,28,8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=x.则PA=6-x.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC 的距离为3;【解析】解:(1)如图1中,设PD=x.则PA =6-x.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=6,在Rt△ABP中,∵AB2+AP2=PB2,∴42+(6-x)2=62,6+,∴x=6-∴PD=6-∴t=(6-s时,B、E、P共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM 227CM,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,,AD DCDM EM∴AD,77∴AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ =3,CE=DC=4在Rt△ECQ中,QC=DM=7,由△DME∽△CDA,,∴DM EMCD AD,AD,∴AD综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC≤m<.的距离等于3,这样的m的取值范围E在边片ABCD中,已知AB=1,BCCD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1),求线段CE 的长;(2)若B′C′分别交边AD,CD于点F,G,且∠DAE =22.5°(如图2),求△DFG的面积;(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.【分析】(1)如图1中,设CE=EC′=x,则DE=1-x,由△ADB′′∽△DEC,可得ADDE =DBEC,列出方程即可解决问题;(2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题;(3)如图3中,点C的运动路径的长为CC的长,求出圆心角、半径即可解决问题.【解析】解:(1)如图1中,设CE=EC′=x,则DE=1-x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=1,AD∴DB′∴△ADB′′∽△DEC,∴ADDE =DBEC,,∴x2.∴CE2.(2)如图2中,∵∠BAD =∠B ′=∠D =90°,∠DAE =22.5°, ∴∠EAB =∠EAB ′=67.5°, ∴∠B ′AF =∠B ′FA =45°,∴∠DFG =∠AFB ′=∠DGF =45°, ∴DF =FG ,在Rt △AB ′F 中,AB ′=FB ′=1, ∴AF′, ∴DF =DG∴S△DFG =122=52. (3)如图3中,点C 的运动路径的长为CC 的长,在Rt △ADC 中,∵tan ∠DAC =CD AD, ∴∠DAC =30°,AC =2CD =2, ∵∠C ′AD =∠DAC =30°, ∴∠CAC ′=60°,∴CC 的长=602180π=23π.9.(2017江苏徐州,28,10分)如图,已知二次函数y =49x 2-4的图象与x 轴交于A ,B 两点,与y 轴交于点C ,⊙CP 为⊙C 上一动点.(1)点B ,C 的坐标分别为B ( ),C ( ); (2)是否存在点P ,使得△PBC 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值= .【分析】(1)在抛物线解析式中令y =0可求得B 点坐标,令x =0可求得C 点坐标;(2)①当PB 与⊙相切时,△PBC 为直角三角形,如图1,连接BC ,根据勾股定理得到BC =5,BP 2=P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,根据相似三角形的性质得到2222P F CP P E BP=2,设OC =P 2E =2x ,CP 2=OE =x ,得到BE =3-x ,CF=2x -4,于是得到FP 2=115,EP 2=225,求得P 2(115,-225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(-1,-2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图3中,连接AP ,∵OB =OA ,BE =EP,推出OE=1AP,可知当AP最大时,OE的值最2大,x2-4中,令y=0,则x 【解析】解:(1)在y=49=±3,令x=0,则y=-4,∴B(3,0),C(0,-4);故答案为:3,0;0,-4;(2)存在点P,使得△PBC为直角三角形,①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP⊥BP2,CP2∴BP 2=过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F , 则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形,∴2222P F CP P E BP==2, 设OC =P 2E =2x ,CP 2=OE =x , ∴BE =3-x ,CF =2x -4,∴BE CF =324x x --=2, ∴x =115,2x =225, ∴FP 2=115,EP 2=225, ∴P 2(115,-225), 过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H , 同理求得P 1(-1,-2),②当BC ⊥PC 时,△PBC 为直角三角形,如图(2)b 过P 4作P 4H ⊥y 轴于H ,则△BOC∽△CHP4,∴4CH P HOB OC=4P C BC=,∴CH,P4H∴P4-4);同理P3(--4);综上所述:点P的坐标为:(-1,-2)或(115,-225)或-4)或(--4);(3)如图(3),连接AP,∵OB=OA,BE=EP,∴OE =12AP , ∴当AP 最大时,OE 的值最大,∵当P 在AC 的延长线上时,AP 的值最大,最大值=5∴OE的最大值为10.(2017江苏盐城,27,14分)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B . (1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点; ①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求12S S 的最大值;②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于。
最新-2017年安徽中考数学压轴题集

精品文档2008-2017年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1 .则点P到A=3.动点P满足,B两点距离之和1.如图,在矩形ABCD中,AB=5,AD S S PAB矩形ABCD3)A+PB的最小值为(P3429 A. D.B. C.4125,则∠PBCPAB=,2.如图,Rt△ABC,AB⊥BC,AB=6BC=4,P是△ABC内部的一个动点,且满足∠)CP线段长的最小值为(12131383A. D. B.2 C. 13132题图第2 第1题图22xy?c1)x??ax?(b?yc?bx?ax+y两点,则函数Q和二次函数图象相交于3.如图,一次函数P,12)的图象可能是(D.C. B. A.第3题图l满足:的对角线BD长为,若直线4.如图,正方形ABCD223的距离为;到直线①点Dl.两点到直线l距离相等A②,C )l则符合题意的直线的条数是(D.4C.3 A.1 B.2)ABC.5如图,点P是等边三角形外接圆⊙O上点,在以下判断中,不正确的是(APC当弦A.PB最长时,△是等腰三角形⊥POAC 是等腰三角形时,△B.当APC POC.当⊥=30°ACPAC时,∠精品文档.精品文档D.当∠ACP=30°时,△BPC是直角三角形题图第5 第4题图分别沿斜边中点与这两点的连线6.在一张直角三角形纸片的两直角边上各取一点,,、4、3剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2 )则原直角三角形纸片的斜边长是(1725454或 B. C.10 或D.10A.106题图第、的边于M上一点,过P垂直于AC的直线交菱形ABCD7.如图所示,P是菱形ABCD的对角线ACx的函数图象的大致形状是的面积为y,则y关于=2,BD=1,AP=x,△AMNN两点,设ACB.A.第7题图D. C.,6m/s甲、乙跑步的速度分别为4m/s和米的笔直公路上进行跑步,8.甲、乙两个准备在一段长为1200则两人从起跑至其中一人先到达终点的过程中,若同时起跑,起跑前乙在起点,甲在乙前面100米处,)m甲、乙两之间的距离y()与时间t(s)的函数图象是(D. C. A. B.的度数AIBACD的内切圆圆心,则∠为中,9.△ABCAB=AC,∠A为锐角,CDAB 边上的高,I为△是 C.135° D.150° B.125° A.120°于点N,则MN等于MNM,AB如图,在10.△ABC中,=AC=5BC=6,点为BC中点,⊥AC691212 B. A. C. D.5555精品文档.精品文档第10题图第11题图二、填空题11.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列3的正确FG.其中;③;④AG+DF=∠结论:①EBG=45°;②△DEF∽△ABG S=S FGH△△ABG2(把所有正确结论的序号都选上).是14题图第第12题图11ca?b?ab?;=9b+c则有下列结论:①若c≠0,满足13.已知实数a、b、c;②若a=3,则,1??ba把.(其中正确的是bb=c,则abc=0;④若a、、c中只有两个数相等,则a+b+c=8.③若a=所有正确结论的序号都选上)、EFAD的中点,作CE⊥AB,垂足E在线段AB上,连接如图,在14.?ABCD中,AD=2AB,F是.(把所有正确结论的序号都填在横线上)CF,则下列结论中一定成立的是1S=2S.∠AEF;④∠=①;②EFCF;③DFE=3BCD??DCF?CEFBEC△△2,A不经过点(E15.已知矩形纸片ABCD中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF为正方形时,给出以下判断:A'CDF①当四边形F是该矩形边界上的点),折叠后点A落在点A'处,为等腰梯形;④当四边BA'CD=5时,四边EF=2;②当EF=2时,四边形A'CDF为正方形;③当EF (把所有正确结论的序号都填在横线上)EF=5. 其中正确的是.形BA'CD为等腰梯形时,,AB、△PBC、△PDAPCD、△△、如图,16.P是矩形ABCD内的任意一点,连接PAPB、PC、PD,得到P,;③若SS=2S+S,给出如下结论:①、设它们的面积分别是SS、S、SS+S=+S;②SS= S+14142333412132(把所有正确.点在矩形的对角线上其中正确的结论的序号是.,则SS则S=2 ④若=SP2214结论的序号都填在横线上)16 15第题图第题图题图第18精品文档.精品文档a?b?b?a;定义运算,下面给出了关于这种运算的几个结论:①;②17.62?(??b)2)?a?b?a(1a?b?0a?b?0,则a=0.其中正确结论的序号是③若,则;④若.(填ab2)?b(a?a)?(?b上你认为所有正确结论的序号)18.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________ _.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.11,则该x轴的另一交点到原点的距离为1,且图象与19.已知二次函数的图象经过原点及点),?(?42.二次函数的解析式为2c?ax?bx?y的根是a;②方程c20.如图为二次函数<0的图象,在下列说法中:①20?cax??bx x??1x?3a?b?c>0;④当x>1时,y随x,的增大而增大.;③正确的说法有__________.(把正12确的答案的序号都填在横线上)20题图第三、解答题经市场调查,.元,规定每千克不低于成本,且不高于80元21.某超市销售一种商品,成本每千克40(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:每天的(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?精品文档.精品文档22.已知正方形ABCD,点M为AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:. 2CE?BCBE?(2)如图2,在边BC上取一点E,满足,连接AE交CM 于点G,连接BG并延长2CEBE??BC交CD于点F,求tan∠CBF的值.2 22 题图第 1 第22题图2bxy ax+ 23.如图,二次函数的图象经过点与.(6,0)A(2,4)B的值;1()求a,bOACB,写出四边形<(两点之间的一动点,横坐标为x2<x6)BAC)(2点是该二次函数图象上,.S的最大值的函数表达式,并求的横坐标关于点的面积SCx精品文档.精品文档24.如图,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;AB②如图3,若△ARB∽△PEQ,求∠MON大小和的值.PQ第24题图 1第题第24 2 图3 24题图精品文档.精品文档25.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,2.的面积为ym矩形区域ABCD(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?题图第25作F作AB的垂线,过点AB、CD的中点,过点E,在四边形26.如图1ABCD 中,点E、F分别是BGC.、DG,且∠AGD=∠CD的垂线,两垂线交于点G,连接AG、BG、CG BC;1)求证:AD=(EGF;AGD)求证:△∽△(2AD.的值、BC所在直线互相垂直,求(3)如图2,若AD EF2 26题图第题图第261精品文档.精品文档27.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;222y1?2m?y?2x?4mx5ax?bx?y?,已知关于x的二次函数其中的图象经过点,和2()(1,1)A112y?yyyy的最大值. ≤3时,”,求函数0若的表达式,并求出当≤与x 为“同簇二次函数2121228.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.3第28题图 2 28 1 28第题图第题图精品文档.精品文档29.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD即为“准等腰梯形”;其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可)(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB ∥DE,AE∥DC,求证:ABBE;?DCEC(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图3精品文档.精品文档31.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG 与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.2 题图第31 第31题图1处发出,把球看成点,其运2m的A.如图,排球运动员站在点O处练习发球,将球从O点正上方322h?(x?6)y?a点的水平距离为)满足关系式(m.已知球网与O)与运行的水平距离行的高度y(mx O点的水平距离为18m. 2.43m9m,高度为,球场的边界距(不要求写出自变量与x的关系式;x的取值范围)y)当(1h=2.6时,求h)当=2.6时,球能否越过球网?球会不会出界?请说明理由;(2. )若球一定能越过球网,又不出边界,求h的取值范围(3题图第32精品文档.精品文档33.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为. △A'B'C',得到?? )180(0?<?<.3 第33题图第33题图2 第33题图1CD相交于点D,证明:△CDA是等边三角形;时,设(1)如图(1),当AB∥BCBA与SS求证:.ACA'和△BCB'的面积分别为和)如图((22),连接A'A、B'B,设△'BCB'ACA1:3S?S: . ''BCBACA长P °时,E θ= a'3(3)如图(),设AC中点为E,BA'中点为P,AC=,连接EP,当. 度最大,最大值为上,这四条直线中相邻两条之间l、l如图,正方形ABCD的四个顶点分别在四条平行线l、l、.344312. )0,h>0>(的距离依次为h、h、hh>0,h313122 h)求证h=;(13122h??(hh)?S(2)设正方形ABCD求证;的面积为S.1233. 随S)若(3h的变化情况的面积变化时,说明正方形h,当ABCD1hh??11212精品文档.精品文档第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg)20x?5 /kg)单位捕捞成本(元5950?x kg)捕捞量((1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入(y元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?36.如图,已知△ABC∽△ABC,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),111△ABC的三边长分别为a、b、c. 111111(1)若c=a,求证:a=kc1(2)若c=a,试给出符合条件的一对△ABC和△ABC,使得a、b、c和a、b、c都是正整数,1111111并加以说明;(3)若b=a,c=b,是否存在△ABC和△ABC,使得k=2?请说明理由. 11111精品文档.精品文档第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.24题图37 第)所示.138.已知某种水果的批发单价与批发量的函数关系如图(1)请说明图中①、②两段函数图象的实际意义.(函数关系式;在下图的坐)之间的kg (元)与批发量(2)写出批发该种水果的资金金额wm(么范围内,以同样的资金可以批发到较多数量的该种水果.标系中画出该函数图象;指出金额在什)所示,该2 3()经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(精品文档.精品文档经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.2 第38题图第38题图1OC. OB的两边AB、AC所在直线的距离相等,且=到39.已知:点O△ABC ;AC在BC上,求证:AB=1(1)如图,若点O ;的内部,求证:AB=ACO(2)如图2,若点在△ABC. =AC成立吗?请画图表示ABC(3)若点O在△的外部,AB21 39 第题图题图第39精品文档.精品文档40.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义.d)( c b )( a ()()第40题图精品文档.。
中考数学选择填空压轴题专题(含答案)

专题01代数式的求值问题例1.观察下列等式:1=2=3=4=5=6=64,…,根据这个规律,则1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是()A.0 B.2 C.4 D.6同类题型1.1计算:1=2=3=4=5=31,…归纳各计算结果中的个位数字规律,猜测2016的个位数字是()A.1 B.3 C.7 D.5同类题型1.2观察下列算式1=2=3=4=5=6=7=2187…根据上述算式中的规律,你认为2018的末位数字是()A.3 B.9 C.7 D.1例2.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2\S\UP6(k)(其中k是使n2\S\UP6(k)是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8同类题型2.1定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2\S\UP6(k) (其中k是使n2\S\UP6(k)为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.同类题型2.2对于任意正整数n,定义"n!!"如下:当n是偶数时,n!!=n﹒(n-2)﹒(n-4)…6﹒4﹒2,当n是奇数时,n!!=n﹒(n-2)﹒(n-4)…5﹒3﹒1,且有n!=n﹒(n-1)﹒(n-2)…3﹒2﹒1则有四个命题:①(2015!!)﹒(2016!!)=2016!②2016!!=2018③2015!!的个位数是5④2014!!的个位数是0其中正确的命题有()A.1个B.2个C.3个D.4个例3.一列数123满足条件:1=12n=1n-1且n为整数),则2017等于()A.-1 B.12C.1 D.2同类题型 3.1一列数123满足条件:1=12n=1n-1且n为整数),则1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=________.同类题型3.2 1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分1),E\S\DO(1是其分点,连接1)BD\S\DO(1交于点1得到四边形1)F\S\DO(1)E\S\DO(1其面积1=13.如图2,分别将AC,BC边3等分1),D\S\DO(2),E\S\DO(1),E\S\DO(2是其分点,连接2)BD\S\DO(2交于点2得到四边形2)F\S\DO(2)E\S\DO(2其面积2=16如图3,分别将AC,BC边4等分1),D\S\DO(2),D\S\DO(3),E\S\DO(1),E\S\DO(2),E\S\DO(3是其分点,连接3)BD\S\DO(3交于点3得到四边形3)F\S\DO(3)E\S\DO(3其面积3=110…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形n)F\S\DO(n)E\S\DO(n其面积n =________.同类题型4.1庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=112)3)n.4.2图图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作1于点1再过点1作1)C\S\DO(2于点2又过点2作2)C\S\DO(3于点3如此无限继续下去,则可将利△ABC分割成1、1)C\S\DO(2、1)C\S\DO(2)C\S\DO(3、2)C\S\DO(3)C\S\DO(4、…、n-2)C\S\DO(n-1)C\S\DO(n、….假设AC=2,这些三角形的面积和可以得到一个等式是________________________________.同类题型4.2 如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为________.例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.aa+b B.ba+b C.ha+b D.ha+h例5图 5.1图同类题型5.1如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm,则瓶中水的体积和瓶子的容积之比为________.(瓶底的厚度不计)同类题型5.2一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能例6.若1x=3,求2)x\S\UP6(4)+x\S\UP6(2)+1的值是()A.18 B.110 C.12 D.14同类题型6.1 已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,则a-b+c的值为()A.2 B.4 C.6 D.8同类题型6.2已知a,b,c满足ab-ca+c5,则a+c2a+b的值为()A.12 B.34 C.1 D.2参考答案例1.观察下列等式:1=2=3=4=5=6=64,…,根据这个规律,则1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是()A.0 B.2 C.4 D.6解:∵1=2=3=4=5=6=64,…,∴2017÷4=504…1,∵(2+4+8+6)×504的末尾数字是0,∴1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是2,选B.同类题型1.1计算:1=2=3=4=5=31,…归纳各计算结果中的个位数字规律,猜测2016的个位数字是()A.1 B.3 C.7 D.5解:∵1=2=3=4=15,5=6=7=8=255…∴由此可以猜测个位数字以4为周期按照1,3,7,5的顺序进行循环,知道2016除以4为504,而第4个数字为5,所以可以猜测2016的个位数字是5.选D.同类题型1.2观察下列算式1=2=3=4=5=6=7=2187…根据上述算式中的规律,你认为2018的末位数字是()A.3 B.9 C.7 D.1解:以3为底的幂的末位数字是3,9,7,1依次循环的,2018÷4=504…2,所以2018的个位数字是9,选B.例2.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2\S\UP6(k)(其中k是使n2\S\UP6(k)是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8解:第一次:3×449+5=1352,第二次:1352k根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:8k因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.选D.同类题型2.1定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2\S\UP6(k) (其中k是使n2\S\UP6(k)为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.解:根据题意,得当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44,第3次的计算结果是442\S\UP6(2)=11,第4次的计算结果是11×3+5=38,第5次的计算结果是382=19,第6次的计算结果是19×3+5=62,第7次的计算结果是622=31,第8次的计算结果是31×3+5=98,第9次的计算结果是982=49,第10次的计算结果是49×3+5=152,第11次的计算结果是1522\S\UP6(3)=19,以下每6次运算一循环,∵(2016-4)÷6=335…2,∴第2016次“F运算”的结果与第6次的计算结果相同,为62,故答案为:62.同类题型2.2对于任意正整数n,定义"n!!"如下:当n是偶数时,n!!=n﹒(n-2)﹒(n-4)…6﹒4﹒2,当n是奇数时,n!!=n﹒(n-2)﹒(n-4)…5﹒3﹒1,且有n!=n﹒(n-1)﹒(n-2)…3﹒2﹒1则有四个命题:①(2015!!)﹒(2016!!)=2016!②2016!!=2018③2015!!的个位数是5④2014!!的个位数是0其中正确的命题有()A.1个B.2个C.3个D.4个解:根据题意,依次分析四个命题可得:对于①,(2015!!)﹒(2016!!)=(2﹒4﹒6﹒8…2008﹒2010﹒2012﹒2014﹒2016)﹒(1﹒3﹒5﹒7…2009﹒2011﹒2013﹒2015)=1﹒2﹒3﹒4﹒5…﹒2012﹒2013﹒2014﹒2015﹒2016=2016!,故①正确;对于②,2016!!=2﹒4﹒6﹒8﹒10…2008﹒2010﹒2012﹒2014﹒2016=1008)(1﹒2﹒3﹒4…1008=1008故②正确;对于③,2015!=2015×2011×2009×…×3×1,其个位数字与1×3×5×7×9的个位数字相同,故其个位数字为5,故正确;对于④,2014!!=2﹒4﹒6﹒8…2008﹒2010﹒2012﹒2014,其中含有10,故个位数字为0,故正确;选D.例3.一列数123满足条件:1=12n=1n-1且n为整数),则2017等于()A.-1 B.12C.1 D.2解:∵1=12n=1n-1∴2=11-a\S\DO(1)=112=2,3=11-a\S\DO(2)=11-2=-1,4=11-a\S\DO(3)=11-(-1)=12…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴2017=1=12选B.同类题型 3.1一列数123满足条件:1=12n=1n-1且n为整数),则1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=________.解:∵1=12n=1n-1∴2=11-a\S\DO(1)=112=2,3=11-a\S\DO(2)=11-2=-1,4=11-a\S\DO(3)=11-(-1)=12…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴2017=1=12又∵1)+a\S\DO(2)+a\S\DO(3=12=32∴1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=312=12.答案为12.同类题型3.2 1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14解:∵1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,∴-1的个数有8个,则1的个数有12个.故选C.例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分1),E\S\DO(1是其分点,连接1)BD\S\DO(1交于点1得到四边形1)F\S\DO(1)E\S\DO(1其面积1=13.如图2,分别将AC,BC边3等分1),D\S\DO(2),E\S\DO(1),E\S\DO(2是其分点,连接2)BD\S\DO(2交于点2得到四边形2)F\S\DO(2)E\S\DO(2其面积2=16如图3,分别将AC,BC边4等分1),D\S\DO(2),D\S\DO(3),E\S\DO(1),E\S\DO(2),E\S\DO(3是其分点,连接3)BD\S\DO(3交于点3得到四边形3)F\S\DO(3)E\S\DO(3其面积3=110…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形n)F\S\DO(n)E\S\DO(n其面积n =________.解:如图所示,连接12)E\S\DO(23∵图1中1),E\S\DO(1是△ABC两边的中点,∴1)∥ABD\S\DO(1)E\S\DO(1=12∴1)E\S\DO(1且1)E\S\DO(1)BF\S\DO(1)=1)E\S\DO(1)AB=12∴△CD1E1=14)S\S\DO(△ABC=14∵1是BC的中点,∴△BD1E1=△CD1E1=14∴△D1E1F1=13)S\S\DO(△BD1E1=114=112∴1=△CD1E1)+S\S\DO(△D1E1F1=1112=13同理可得:图2中2=△CD2E2)+S\S\DO(△D2E2F2=1118=16图3中3=△CD3E3)+S\S\DO(△D3E3F3=1380=110以此类推,将AC,BC边(n+1)等分,得到四边形n)E\S\DO(n)F\S\DO(n其面积n=1n+1)\S\UP6(2)n+1)\S\UP6(2)1+n+1=2n+1)(n+2答案为2(n+1)(n+2).同类题型4.1庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=112)3)n.图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作1于点1再过点1作1)C\S\DO(2于点2又过点2作2)C\S\DO(3于点3如此无限继续下去,则可将利△ABC分割成1、1)C\S\DO(2、1)C\S\DO(2)C\S\DO(3、2)C\S\DO(3)C\S\DO(4、…、n-2)C\S\DO(n-1)C\S\DO(n、….假设AC=2,这些三角形的面积和可以得到一个等式是________.解:如图2,∵AC=2,∠B=1∴1中1=30°,且BC=3∴1=12=1=3)AC\S\DO(1=3∴△ACC1=12)﹒AC\S\DO(1)﹒CC\S\DO(1=13=32∵1)C\S\DO(2∴1)C\S\DO(2=1=30°,∴2=12)CC\S\DO(1=321=3)CC\S\DO(2=32∴△CC)\S\DO(1)C\S\DO(2=12)﹒CC\S\DO(2)﹒C\S\DO(1)C\S\DO(2=1\R(332=334同理可得,△C)\S\DO(1)C\S\DO(2)C\S\DO(3=3(\l(\F(32△C)\S\DO(2)C\S\DO(3)C\S\DO(4=3(\l(\F(33…∴△C)\S\DO(n-2)C\S\DO(n-1)C\S\DO(n=3(\l(\F(3n-1又∵△ABC=12=13=3∴3=3\R(33\R(3(\l(\F(323(\l(\F(333(\l(\F(3n-1∴3=3\l(1+\F(3(\l(\F(323n-1n)+….答案为3=3\l(1+\F(3(\l(\F(323n-1n)+….同类题型4.2 如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为________.解:记原来三角形的面积为s,第一个小三角形的面积为1第二个小三角形的面积为2∵1=14=122=114=143=16∴n=12\S\UP6(2n)=12n)2=12n-1答案为12\S\UP6(2n-1).例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.aa+b B.ba+b C.ha+b D.ha+h解:设规则瓶体部分的底面积为S平方厘米.倒立放置时,空余部分的体积为bS立方厘米,正立放置时,有墨水部分的体积是aS立方厘米,因此墨水的体积约占玻璃瓶容积的asas+bs=aa+b.选A.同类题型5.1如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm,则瓶中水的体积和瓶子的容积之比为________.(瓶底的厚度不计)解:设瓶的底面积为2,则左图V水=12S cm3,右图V空=10S cm3,∵V瓶=V水+V空=22S cm3,∴V水:V瓶=6:11.故答案为611.同类题型5.2一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能解:设两次航行的路程都为S,静水速度设为v,第一次所用时间为:SS2vS2)-a\S\UP6(2第二次所用时间为:SS2vS2)-b\S\UP6(2∵b>a,∴2)>a\S\UP6(2,∴2)-b\S\UP6(2)<v\S\UP6(2)-a\S\UP6(2∴2vS2)-b\S\UP6(2)2)-a\S\UP6(2∴第一次的时间要短些.选A.例6.若1x=3,求2)x\S\UP6(4)+x\S\UP6(2)+1的值是()A.18 B.110 C.12 D.14解:∵1x=3,∴1x))\S\UP6(2=9,即1x\S\UP6(2)=9-2=7,∴4)+x\S\UP6(22))=x\S\UP6(22=7+1=8,∴24)+x\S\UP6(2)+18.选A.同类题型6.1 已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,则a-b+c的值为()A.2 B.4 C.6 D.8解:∵已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,∴|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac=2,…①且(a-3)b\S\UP6(2)必有意义,又∵2≥0,∴a-3≥0①当a-3>0时,|2a-4|>2,有|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac>2,则这与①式相矛盾,即a-3>0不成立;②当a-3=0时,a=3,则|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac=2+|b+2|2=2,|b+2|2=0,又∵|b+2|≥0,2≥0,∴必有b+2=0,c-3=0即:b=-2,c=3∴a-b+c=3-(-2)+3=8选D.同类题型6.2已知a,b,c满足ab-ca+c5,则a+c2a+b的值为()A.12 B.34 C.1 D.2解:设ab-ca+c5=k,则a=2k①,b-c=3k②,a+c=5k③.①+②+③得:2a+b=10k.∴a+c5k12.选A.专题02方程、不等式中的含参问题例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.同类题型1.2 方程组4x+3m=28x-3y=m)的解x,y满足x>y,则m的取值范围是()A.910 B.109 C.1910 D.1019例2.关于x的方程2+mx-9=0和2)-3x+m\S\UP6(2+6m=0有公共根,则m的值为________.同类题型2.1 已知a是一元二次方程2-2018x+1=0的一个根,则代数式2018a\S\UP6(2)+1的值是___.同类题型2.2 已知关于x的方程2)-1)x\S\UP6(2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.同类题型2.3 已知α、β是方程2-2x-4=0的两个实数根,则3+8β+6的值为()A.-1B.2C.22D.30例3.已知方程11a的两根分别为a,1a,则方程11a-1的根是()A.a,1a-1 B.1a-1,a-1C.1a,a-1D.a,aa-1同类题型3.1 若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.同类题型3.2 观察分析下列方程:①2x=3;②6x=5;③12x=7.请利用它们所蕴含的规律,求关于x的方程2)+nx-4=2n+5(n为正整数)的根,你的答案是_________________.同类题型3.3 已知关于x的方程2a+13a x-1)(x+2只有整数解,则整数a的值为_____________.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5D.1.5<x<2同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是52,那么关于x的不等式(b-a)x+a +2b≤0的解集是____________.同类题型4.4 若关于x的不等式组\F(x+4x2x-a<0解集为x<2,则a的取值范围是___________.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.参考答案例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.解:由题意可得3a+2b+c=52a+b-3c=1m=3a+b-7c,解得7﹒(m+2)3-3,11﹒(m+2)3,m+23,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴157.所以m_(最小值)=57.故本题答案为:-57.同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.解:由题意得:x+2y-3z=0①2x+3y+5z=0②),①×2-②得y=11z,代入①得x=-19z,原式x+y+z-19z+11z+z729.同类题型1.2 方程组4x+3m=28x-3y=m)的解x,y满足x>y,则m的取值范围是()A.910 B.109 C.1910 D.1019解:4x+3m=2①8x-3y=m②)由①得2-3m4,代入②得,2-3m4-3y=m,4-7m3.∵x>y,即2-3m4-7m3,解得1019.选D.例2.关于x的方程2+mx-9=0和2)-3x+m\S\UP6(2+6m=0有公共根,则m的值为________.解:设这个公共根为α.则方程2+mx-9=0的两根为α、-m-α;方程2)-3x+m\S\UP6(2+6m=0的两根为α、3-α,由根与系数的关系有:α(-m-α)=-9,2+6m,整理得,2+mα=9①,2)-3α+m\S\UP6(2+6m=0②,②-①得,2+6m-3α-mα=-9,即2-α(m+3)=0,(m+3)(m+3-α)=0,所以m+3=0或m+3-α=0,解得m=-3或α=m+3,把α=m+3代入①得,2+m(m+3)=9,2)+6m+9+m\S\UP6(2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=-4.5,综上所述,m的值为-3,0,-4.5.同类题型2.1 已知a是一元二次方程2-2018x+1=0的一个根,则代数式2018a\S\UP6(2)+1的值是___.解:由题意,把根a代入2-2018x+1=0,可得:2-2018a+1=0,∴2-2017a-a+1=0,2+1=2018a;∴2-2017a=a-1,∴20182)+11a-122018a a-1=2018-1,=2017.同类题型2.2 已知关于x的方程2)-1)x\S\UP6(2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.解:由题意知,k≠±1,2)-4(k\S\UP6(2-1)=5-4k>0∴54且k≠±1.同类题型2.3 已知α、β是方程2-2x-4=0的两个实数根,则3+8β+6的值为()A.-1 B.2 C.22 D.30解:∵α、β是方程2-2x-4=0的两个实数根,∴α+β=2,2-2α-4=0,∴2=2α+4∴3)+8β+6=α﹒α\S\UP6(2+8β+6=α﹒(2α+4)+8β+62+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.例3.已知方程11a的两根分别为a,1a,则方程11a-1的根是()A.a,1a-1 B.1a-1,a-1 C.1a,a-1 D.a,aa-1解:方程11a-1可以写成11a-1的形式,∵方程11a的两根分别为a,1a,∴方程11a-1的两根的关系式为x-1=a-1,1a-1,即方程的根为x=a或aa-1,∴方程11a-1的根是a,aa-1.选D.同类题型3.1 若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.解:去分母得,2x-b=3x-3∴x=3-b∵x≥0∴3-b≥0解得,b≤3又∵x-1≠0∴x≠1即3-b≠1,b≠2则b的取值范围是b≤3且b≠2.同类题型3.2 观察分析下列方程:①2x=3;②6x=5;③12x=7.请利用它们所蕴含的规律,求关于x的方程2)+nx-4=2n+5(n为正整数)的根,你的答案是_________________.解:1×2x=3,解得:x=2或x=1;2×3x=5,解得:x=2或x=3;3×4x=7,解得:x=3或x=4,得到规律mnx=m+n的解为:x=m或x=n,所求方程整理得:n(n+1)x-4=2n+1,根据规律得:x-4=n或x-4=n+1,解得:x=n+4或x=n+5.同类题型3.3 已知关于x的方程2a+13a x-1)(x+2只有整数解,则整数a的值为_____________.解:方程两边同乘以(x-1)(x+2),得:2(x+2)-(a+1)(x-1)=3a,解得:2a-531-a,∵方程只有整数解,∴1-a=3或1或-3或-1,当1-a=3,即a=-2时,x=-2-1=-3,检验,将x=-3代入(x-1)(x+2)=4≠0,故x=-3是原分式方程的解;当1-a=1,即a=0时,x=-2-3=-5,检验,将x=-5代入(x-1)(x+2)=18≠0,故x=-7是原分式方程的解;当1-a=-3,即a=4时,x=-2+1=-1,检验,将x=-1代入(x-1)(x+2)=-2≠0,故x=-1是原分式方程的解;当1-a=-1,即a=2时,x=1,检验,将x=1代入(x-1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:-2,0或4.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).解:①当x=-3.5时,[-3.5]=-4,-[x]=-3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当-1<x<0时,[1+x]+[1-x]=0+1=1;当x=0时,[1+x]+[1-x]=1+1=2;当0<x<1时,[1+x]+[1-x]=1+0=1;故当-1<x<1时,[1+x]+[1-x]的值为1或2是正确的;④x-[x]的范围为0~1,4x-2[x]+5=0,-5≤2x<-7,即-2.5≤x<-3.5,x=-2.75或x=-3.25都是方程4x-2[x]+5=0,故原来的说法错误.故答案为:②③.同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5 D.1.5<x<2解:根据题意得:x>0,若x≥2,则2x≥4,[x]≥2,3{x}≥6,4(x)≥8,不等式不成立.故只需分析0<x<2时的情形即可,①0<x≤0.5时,不等式可化为:8≤2x+0+3+0≤14,解得:2.5≤x≤5.5,不符合不等式;②当0.5<x≤1时,不等式可化为:8≤2x+0+3+4≤14,解得:0.5≤x≤3,因此0.5<x≤1,符合不等式;③当1<x<1.5时,不等式可化为:8≤2x+1+6+4≤14,解得:-1.5≤x≤1.5,因此1<x<1.5,符合不等式;④当1.5<x<2时,不等式可化为:8≤2x+1+6+8≤14,解得:-3.5≤x≤-0.5,不符合不等式.故原不等式的解集为:0.5<x<1.5.故选C.同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=-2.1时,[x]+(x)+[x)=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确;③4[x]+3(x)+[x)=11,7[x]+3+[x)=11,7[x]+[x)=8,1<x<1.5,故③正确;④∵-1<x<1时,∴当-1<x<-0.5时,y=[x]+(x)+x=-1+0+x=x-1,当-0.5<x<0时,y=[x]+(x)+x=-1+0+x=x-1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x-1=4x时,得13;x+1=4x时,得13;当x=0时,y=4x=0,∴当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是52,那么关于x的不等式(b-a)x+a +2b≤0的解集是____________.解:∵关于x的不等式(a+b)x+2a-b>0的解集是52,∴b-2aa+b,∴b-2a52,且a+b<0,即b=-3a,a+b<0,∴a-3a<0,即a>0,∴b-a=-4a<0,∴关于x的不等式(b-a)x+a+2b≤0的解集是-a-2bb-a,∵-a-2b-a+6a54,∴关于x的不等式(b-a)x+a+2b≤0的解集是54.同类题型4.4 若关于x的不等式组\F(x+4x2x-a<0解集为x<2,则a的取值范围是___________.解:由x+4x2+1,得2x+8>3x+6,解得x<2,由x-a<0,得x<a,又因关于x的不等式组\F(x+4x2x-a<0解集为x<2,所以a≥2.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=-0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.专题03函数的几何综合问题例1.如图,在平面直角坐标系中,直线l:3\R(33与x轴交于点1,以1为边长作等边三角形1)OB\S\DO(1,过点1作1)B\S\DO(2平行于x轴,交直线l于点2,以1)B\S\DO(2为边长作等边三角形2)A\S\DO(1)B\S\DO(2,过点2作2)B\S\DO(3平行于x轴,交直线l于点3,以2)B\S\DO(3为边长作等边三角形3)A\S\DO(2)B\S\DO(3,…,则点2017的横坐标是____________.同类题型1.1 如图,直线l:y=x+1交y轴于点1,在x轴正方向上取点1,使1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,交l于点2,在x轴正方向上取点2,使1)B\S\DO(2)=B\S\DO(1)A\S\DO(2;过点2作3)B\S\DO(2⊥x轴,交l于点3,在x轴正方向上取点3,使2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…记1)B\S\DO(1面积为1,1)A\S\DO(2)B\S\DO(2面积为2,2)A\S\DO(3)B\S\DO(3面积为3,…则2017等于()A.4030 B.4031 C.4032 D.4033同类题型1.2 如图,已知直线l:33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1;过点1作y轴的垂线交直线l于点1,过点1作直线l的垂线交y轴于点2;…;按此作法继续下去,则点4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)同类题型1.3 如图,在平面直角坐标系中,直线l:33x+1交x轴于点B,交y轴于点A,过点A作1⊥AB 交x轴于点1,过点1作1)A\S\DO(1⊥x轴交直线l于点2…依次作下去,则点n的横坐标为____________.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离1、2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).同类题型2.1 甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个同类题型2.2 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟74h到达B地;(4)乙车行驶94小时或194小时,两车恰好相距50km.正确的个数是()A.1B.2C.3D.4同类题型2.3 甲、乙两人从科技馆出发,沿相同的路线分别以不同的速度匀速跑向极地馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极地馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.则下列四种说法:①甲的速度为1.5米/秒;②a=750;③乙在途中等候甲100秒;④乙出发后第一次与甲相遇时乙跑了375米.其中正确的个数是()A.1个B.2个C.3个D.4个例3.如图,已知动点P在函数12x(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF﹒BE的值为()A.4B.2C.1D.12同类题型3.1 如图,在反比例函数32x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kx的图象上运动,若tan∠CAB=2,则k的值为()A.-3B.-6C.-9D.-12同类题型3.2 如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数6x(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.2同类题型3.3 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1x和9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1x的图象于点C,连结A C.若△ABC是等腰三角形,则k的值是___________.例4.如图,一次函数y=x+b的图象与反比例函数kx的图象交于点A(3,6)与点B,且与y轴交于点C,若点P是反比例函数kx图象上的一个动点,作直线AP与x轴、y轴分别交于点M、N,连结BN、CM.若△ACM)=S\S\DO(△ABN,则APAN的值为__________.同类题型4.1 当12≤x≤2时,函数y=-2x+b的图象上至少有一点在函数1x的图象下方,则b的取值范围为()A.2 B.92 C.b<3D.92同类题型4.2 方程2+3x-1=0的根可视为函数y=x+3的图象与函数1x的图象交点的横坐标,那么用此方法可推断出方程2+2x-1=0的实数根0所在的范围是()A.0<0 B.0<1 C.0<2 D.0<3例5.在平面直角坐标系xOy中,抛物线2)+2mx-m\S\UP6(2-m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,则m=__________.同类题型5.1 已知抛物线14)x\S\UP6(2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为3,3),P是抛物线14)x\S\UP6(2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6同类题型5.2 抛物线2+bx+3(a≠0)经过点A(-1,0),32,0),且与y轴相交于点C.设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.同类题型5.3小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为__________cm.参考答案例1.如图,在平面直角坐标系中,直线l:3\R(33与x轴交于点1,以1为边长作等边三角形1)OB\S\DO(1,过点1作1)B\S\DO(2平行于x轴,交直线l于点2,以1)B\S\DO(2为边长作等边三角形2)A\S\DO(1)B\S\DO(2,过点2作2)B\S\DO(3平行于x轴,交直线l于点3,以2)B\S\DO(3为边长作等边三角形3)A\S\DO(2)B\S\DO(3,…,则点2017的横坐标是____________.解:由直线l:3\R(33与x轴交于点1,可得1(1,0),D(0,33),∴1=1,1D=30°,如图所示,过1作1)A⊥OB\S\DO(1于A,则112,即1的横坐标为12\S\UP6(12,由题可得1)B\S\DO(2)B\S\DO(1)=∠OB\S\DO(1D=30°,2)A\S\DO(1)B\S\DO(1)=∠A\S\DO(1)B\S\DO(1O =60°,∴1)B\S\DO(1)B\S\DO(2=90°,∴1)B\S\DO(2)=2A\S\DO(1)B\S\DO(1=2,过2作2)B⊥A\S\DO(1)B\S\DO(2于B,则12)A\S\DO(1)B\S\DO(2=1,即2的横坐标为132\S\UP6(22,过3作3)C⊥A\S\DO(2)B\S\DO(3于C,同理可得,2)B\S\DO(3)=2A\S\DO(2)B\S\DO(2=4,12)A\S\DO(2)B\S\DO(3=2,即3的横坐标为172\S\UP6(32,同理可得,4的横坐标为1152\S\UP6(42,由此可得,n的横坐标为n)-12,∴点2017的横坐标是2017)-12.同类题型1.1 如图,直线l:y=x+1交y轴于点1,在x轴正方向上取点1,使1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,交l于点2,在x轴正方向上取点2,使1)B\S\DO(2)=B\S\DO(1)A\S\DO(2;过点2作3)B\S\DO(2⊥x轴,交l于点3,在x轴正方向上取点3,使2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…记1)B\S\DO(1面积为1,1)A\S\DO(2)B\S\DO(2面积为2,2)A\S\DO(3)B\S\DO(3面积为3,…则2017等于()A.4030 B.4031 C.4032 D.4033解:∵1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,1)B\S\DO(2)=B\S\DO(1)A\S\DO(2);A\S\DO(3)B\S\DO(2⊥x轴,2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…∴1)B\S\DO(1,1)A\S\DO(2)B\S\DO(2,2)A\S\DO(3)B\S\DO(3是等腰直角三角形,∵y=x+1交y轴于点1,∴1(0,1),∴1(1,0),∴1)=OA\S\DO(1=1,∴112,同理112,112;…∴12)×2\S\UP6(2n-2)=2\S\UP6(2n-3,∴2017)=2\S\UP6(2×2017-3)=2\S\UP6(4031,选B.同类题型1.2 如图,已知直线l:33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1;过点1作y轴的垂线交直线l于点1,过点1作直线l的垂线交y轴于点2;…;按此作法继续下去,则点4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)解:∵直线l的解析式为33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴3,∵1B⊥l,∴1=60°,∴1O=4,∴1(0,4),同理可得2(0,16),…∴4纵坐标为4=256,∴4(0,256).选B.同类题型1.3 如图,在平面直角坐标系中,直线l:33x+1交x轴于点B,交y轴于点A,过点A作1⊥AB 交x轴于点1,过点1作1)A\S\DO(1⊥x轴交直线l于点2…依次作下去,则点n的横坐标为____________.解:由直线l:33x+1交x轴于点B,交y轴于点A,可得A(0,1),3,0),∴33,即∠ABO=30°,∴BA=2AO=2,又∵1⊥AB交x轴于点1,AO=1,∴23,∴1中,43;由题可得83,∴23,∴1)B\S\DO(2中,163;由题可得329,∴33,∴2)B\S\DO(3中,643,…以此类推,\F(4n3,又∵3,∴\F(4n3,∴点n的横坐标为4n3.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离1、2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).解:①450+240=690(千米).故A、C之间的路程为690千米是正确的;②450÷5-240÷4=90-60=30(千米/小时).故乙车比甲车每小时快30千米是正确的;③690÷(450÷5+240÷4)=690÷(90+60)=690÷150=4.6(小时).故4.6小时两车相遇,原来的说法是错误的;④(450-240)÷(450÷5-240÷4)=210÷(90-60)=210÷30=7(小时),450÷5×7-450=630-450=180(千米).故点E的坐标为(7,180)是正确的,故其中正确的有①②④.同类题型2.1 甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个解:①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5-3-120÷(40×2),=2.5-1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为1)=k\S\DO(1)t+b\S\DO(1,EF的解析式为2)=k\S\DO(2)t+b\S\DO(2,由图象,得120=4k\S\DO(1)+b\S\DO(1)240=5.5k\S\DO(1)+b\S\DO(,)),240=5k\S\DO(2)+b\S\DO(2)0=8k\S\DO(2)+b\S\DO(2))解得k\S\DO(1)=80b\S\DO(1)=-200),k\S\DO(2)=-80b\S\DO(2)=640),∴1=80t-200,2=-80t+640,当1)=y\S\DO(2时,80t-200=-80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3-2)=80km,∴两车相距的路程为:120-80=40千米,故④正确,选A.同类题型2.2 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟74h到达B地;(4)乙车行驶94小时或194小时,两车恰好相距50km.。
江苏省十三市2017年中考数学解答题压轴题(汇编)

江苏省十三市2017年中考数学解答题压轴题汇编1.(2017·南京)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值.该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时.求该函数的图象的顶点纵坐标的取值范围.2.(2017·南京)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步.对折矩形纸片ABCD(AB>BC)(图①).使AB与DC重合.得到折痕EF.把纸片展平(图②).第二步.如图③.再一次折叠纸片.使点C落在EF上的P处.并使折痕经过点B.得到折痕BG.折出PB、PC.得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD和等边三角形PBC.他发现.在矩形ABCD中把△PBC经过图形变化.可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm.另一边长为a cm.对于每一个确定的a的值.在矩形中都能画出最大的等边三角形.请画出不同情形的示意图.并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片.所需正方形铁片的边长的最小值为cm.3.(2017·无锡)如图.以原点O为圆心.3为半径的圆与x轴分别交于A.B两点(点B在点A的右边).P 是半径OB上一点.过P且垂直于AB的直线与⊙O分别交于C.D两点(点C在点D的上方).直线AC.DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E.且顶点在直线CD上的抛物线的函数表达式.4.(2017·无锡)如图.已知矩形ABCD中.AB=4.AD=m.动点P从点D出发.在边DA上以每秒1个单位的速度向点A运动.连接CP.作点D关于直线PC的对称点E.设点P的运动时间为t(s).(1)若m=6.求当P.E.B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中.有且只有一个时刻t.使点E到直线BC的距离等于3.求所有这样的m的取值范围.5.(2017·徐州)如图.将边长为6的正三角形纸片ABC按如下顺序进行两次折叠.展平后.得折痕AD、BE (如图①).点O为其交点.(1)探求AO与OD的数量关系.并说明理由;(2)如图②.若P.N分别为BE.BC上的动点.①当PN+PD的长度取得最小值时.求BP的长度;②如图③.若点Q在线段BO上.BQ=1.则QN+NP+PD的最小值= .6.(2017·徐州)如图.已知二次函数y=x2﹣4的图象与x轴交于A.B两点.与y轴交于点C.⊙C的半径为.P为⊙C上一动点.(1)点B.C的坐标分别为B().C();(2)是否存在点P.使得△PBC为直角三角形?若存在.求出点P的坐标;若不存在.请说明理由;(3)连接PB.若E为PB的中点.连接OE.则OE的最大值= .7.(2017·常州)如图.在平面直角坐标系xOy.已知二次函数y=﹣x2+bx的图象过点A(4.0).顶点为B.连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点.点Q在线段AB上.设点B关于直线CQ的对称点为B'.当△OCB'为等边三角形时.求BQ的长度;(3)若点D在线段BO上.OD=2DB.点E、F在△OAB的边上.且满足△DOF与△DEF全等.求点E的坐标.8.(2017·常州)如图.已知一次函数y=﹣x+4的图象是直线l.设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M在射线AB上.将点M绕点A按逆时针方向旋转90°到点N.以点N为圆心.NA的长为半径作⊙N.①当⊙N与x轴相切时.求点M的坐标;②在①的条件下.设直线AN与x轴交于点C.与⊙N的另一个交点为D.连接MD交x轴于点E.直线m过点N 分别与y轴、直线l交于点P、Q.当△APQ与△CDE相似时.求点P的坐标.9.(2017·苏州)如图.已知△ABC内接于⊙O.AB是直径.点D在⊙O上.OD∥BC.过点D作DE⊥AB.垂足为E.连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC.设△DOE的面积为S1.四边形BCOD的面积为S2.若=.求sinA的值.10.(2017·苏州)如图.二次函数y=x2+bx+c的图象与x轴交于 A、B两点.与y轴交于点C.OB=OC.点D 在函数图象上.CD∥x轴.且CD=2.直线l是抛物线的对称轴.E是抛物线的顶点.(1)求b、c的值;(2)如图①.连接BE.线段OC上的点F关于直线l的对称点F'恰好在线段BE上.求点F的坐标;(3)如图②.动点P在线段OB上.过点P作x轴的垂线分别与BC交于点M.与抛物线交于点N.试问:抛物线上是否存在点Q.使得△PQN与△APM的面积相等.且线段NQ的长度最小?如果存在.求出点Q的坐标;如果不存在.说明理由.11.(2017·南通)我们知道.三角形的内心是三条角平分线的交点.过三角形内心的一条直线与两边相交.两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似.则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图.△ABC中.AB=AC.点D在AC上.且BD=BC=AD.求证:BD是△ABC的“內似线”;(3)在Rt△ABC中.∠C=90°.AC=4.BC=3.E、F分别在边AC、BC上.且EF是△ABC的“內似线”.求EF的长.12.(2017·南通)已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧).与y轴正半轴相交于点C.过点A作AD⊥x轴.垂足为D.(1)若∠AOB=60°.AB∥x轴.AB=2.求a的值;(2)若∠AOB=90°.点A的横坐标为﹣4.AC=4BC.求点B的坐标;(3)延长AD、BO相交于点E.求证:DE=CO.13.(2017·连云港)如图.已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3.0).B(4.1).且与y轴交于点C.连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M.请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移.平移后点A、B、C的对应点分别记为点A1、B1、C1.△A1B1C1的外接圆记为⊙M1.是否存在某个位置.使⊙M1经过原点?若存在.求出此时抛物线的关系式;若不存在.请说明理由.14.(2017·连云港)问题呈现:如图1.点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上.AE=DG.求证:2S四边形EFGH=S矩形ABCD.(S表示面积)实验探究:某数学实验小组发现:若图1中AH≠BF.点G在CD上移动时.上述结论会发生变化.分别过点E、G作BC边的平行线.再分别过点F、H作AB边的平行线.四条平行线分别相交于点A1、B1、C1、D1.得到矩形A1B1C1D1.如图2.当AH>BF时.若将点G向点C靠近(DG>AE).经过探索.发现:2S 四边形EFGH=S矩形ABCD+S.如图3.当AH>BF时.若将点G向点D靠近(DG<AE).请探索S 四边形EFGH、S矩形ABCD与S之间的数量关系.并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图 4.点E、F、G、H分别是面积为25的正方形ABCD各边上的点.已知AH>BF.AE>DG.S四边形EFGH=11.HF=.求EG的长.(2)如图5.在矩形ABCD中.AB=3.AD=5.点E、H分别在边AB、AD上.BE=1.DH=2.点F、G分别是边BC、CD 上的动点.且FG=.连接EF、HG.请直接写出四边形EFGH面积的最大值.15.(2017·淮安)【操作发现】如图①.在边长为1个单位长度的小正方形组成的网格中.△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°.点B的对应点为B′.点C的对应点为C′.连接BB′;(2)在(1)所画图形中.∠AB′B=.【问题解决】如图②.在等边三角形ABC中.AC=7.点P在△ABC内.且∠APC=90°.∠BPC=120°.求△APC的面积.小明同学通过观察、分析、思考.对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°.得到△AP′B.连接PP′.寻找PA.PB.PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°.得到△AP′C′.连接PP′.寻找PA.PB.PC三条线段之间的数量关系.…请参考小明同学的想法.完成该问题的解答过程.(一种方法即可)【灵活运用】如图③.在四边形ABCD中.AE⊥BC.垂足为E.∠BAE=∠ADC.BE=CE=2.CD=5.AD=kAB(k为常数).求BD的长(用含k的式子表示).16.(2017·淮安)如图①.在平面直角坐标系中.二次函数y=﹣x2+bx+c的图象与坐标轴交于A.B.C三点.其中点A的坐标为(﹣3.0).点B的坐标为(4.0).连接AC.BC.动点P从点A出发.在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时.动点Q从点O出发.在线段OB上以每秒1个单位长度的速度向点B作匀速运动.当其中一点到达终点时.另一点随之停止运动.设运动时间为t秒.连接PQ.(1)填空:b= .c= ;(2)在点P.Q运动过程中.△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方.该二次函数的图象上是否存在点M.使△PQM是以点P为直角顶点的等腰直角三角形?若存在.请求出运动时间t;若不存在.请说明理由;(4)如图②.点N的坐标为(﹣.0).线段PQ的中点为H.连接NH.当点Q关于直线NH的对称点Q′恰好落在线段BC上时.请直接写出点Q′的坐标.17.(2017·盐城)【探索发现】如图①.是一张直角三角形纸片.∠B=90°.小明想从中剪出一个以∠B为内角且面积最大的矩形.经过多次操作发现.当沿着中位线DE、EF剪下时.所得的矩形的面积最大.随后.他通过证明验证了其正确性.并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②.在△ABC中.BC=a.BC边上的高AD=h.矩形PQMN的顶点P、N分别在边AB、AC上.顶点Q、M在边BC 上.则矩形PQMN面积的最大值为.(用含a.h的代数式表示)【灵活应用】如图③.有一块“缺角矩形”ABCDE.AB=32.BC=40.AE=20.CD=16.小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角).求该矩形的面积.【实际应用】如图④.现有一块四边形的木板余料ABCD.经测量AB=50cm.BC=108cm.CD=60cm.且tanB=tanC=.木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN.求该矩形的面积.18.(2017·盐城)如图.在平面直角坐标系中.直线y=x+2与x轴交于点A.与y轴交于点C.抛物线y=﹣x2+bx+c经过A、C两点.与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD.设直线BD交线段AC于点E.△CDE的面积为S1.△BCE的面积为S2.求的最大值;②过点D作DF⊥AC.垂足为点F.连接CD.是否存在点D.使得△CDF中的某个角恰好等于∠BAC的2倍?若存在.求点D的横坐标;若不存在.请说明理由.19.(2017·扬州)农经公司以30元/千克的价格收购一批农产品进行销售.为了得到日销售量p(千克)(1)请你根据表中的数据.用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格.才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用.当40≤x≤45时.农经公司的日获利的最大值为2430元.求a的值.(日获利=日销售利润﹣日支出费用)20.(2017·扬州)如图.已知正方形ABCD的边长为4.点P是AB边上的一个动点.连接CP.过点P作PC的垂线交AD于点E.以 PE为边作正方形PEFG.顶点G在线段PC上.对角线EG、PF相交于点O.(1)若AP=1.则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时.点O也随之运动.求点O经过的路径长;(3)在点P从点A到点B的运动过程中.△APE的外接圆的圆心也随之运动.求该圆心到AB边的距离的最大值.21.(2017·镇江)如图.在平面直角坐标系中.矩形OABC的边OA、OC分别在x轴、y轴上.点B坐标为(4.t)(t>0).二次函数y=x2+bx(b<0)的图象经过点B.顶点为点D.(1)当t=12时.顶点D到x轴的距离等于;(2)点E是二次函数y=x2+bx(b<0)的图象与x轴的一个公共点(点E与点O不重合).求OE•EA的最大值及取得最大值时的二次函数表达式;(3)矩形OABC的对角线OB、AC交于点F.直线l平行于x轴.交二次函数y=x2+bx(b<0)的图象于点M、N.连接DM、DN.当△DMN≌△FOC时.求t的值.22.(2017·镇江)【回顾】如图1.△ABC中.∠B=30°.AB=3.BC=4.则△ABC的面积等于.【探究】图2是同学们熟悉的一副三角尺.一个含有30°的角.较短的直角边长为a;另一个含有45°的角.直角边长为b.小明用两副这样的三角尺拼成一个平行四边形ABCD(如图3).用了两种不同的方法计算它的面积.从而推出sin75°=.小丽用两副这样的三角尺拼成了一个矩形EFGH(如图4).也推出sin75°=.请你写出小明或小丽推出sin75°=的具体说理过程.【应用】在四边形ABCD中.AD∥BC.∠D=75°.BC=6.CD=5.AD=10(如图5)(1)点E在AD上.设t=BE+CE.求t2的最小值;(2)点F在AB上.将△BCF沿CF翻折.点B落在AD上的点G处.点G是AD的中点吗?说明理由.23.(2017·泰州)阅读理解:如图①.图形l外一点P与图形l上各点连接的所有线段中.若线段PA1最短.则线段PA1的长度称为点P到图形l的距离.例如:图②中.线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③.平面直角坐标系xOy中.点A、B的坐标分别为(8.4).(12.7).点P从原点O出发.以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时.求点P到线段AB的距离;(2)t为何值时.点P到线段AB的距离为5?(3)t满足什么条件时.点P到线段AB的距离不超过6?(直接写出此小题的结果)24.(2017·泰州)平面直角坐标系xOy中.点A、B的横坐标分别为a、a+2.二次函数y=﹣x2+(m﹣2)x+2m 的图象经过点A、B.且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时.求k的值;②若y1随x的增大而减小.求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时.判断直线AB与x轴的位置关系.并说明理由;(3)点A、B的位置随着a的变化而变化.设点A、B运动的路线与y轴分别相交于点C、D.线段CD的长度会发生变化吗?如果不变.求出CD的长;如果变化.请说明理由.25.(2017·宿迁)如图.在平面直角坐标系xOy中.抛物线y=x2﹣2x﹣3交x轴于A.B两点(点A在点B的左侧).将该抛物线位于x轴上方曲线记作M.将该抛物线位于x轴下方部分沿x轴翻折.翻折后所得曲线记作N.曲线N交y轴于点C.连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点.点Q为x轴上的一个动点.若以点B.C.P.Q为顶点的四边形是平行四边形.求点Q的坐标.26.(2017·宿迁)如图.在矩形纸片ABCD中.已知AB=1.BC=.点E在边CD上移动.连接AE.将多边形ABCE 沿直线AE翻折.得到多边形AB′C′E.点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1).求线段CE的长;(2)若B′C′分别交边AD.CD于点F.G.且∠DAE=22.5°(如图2).求△DFG的面积;(3)在点E从点C移动到点D的过程中.求点C′运动的路径长.。
2017中考数学压轴题及答案40例(3)

2017中考数学压轴题及答案40例(3)28.如图,Rt △ABC 的顶点坐标分别为A (0,3),B (-21,23),C (1,0),∠ABC =90°,BC 与y 轴的交点为D ,D 点坐标为(0,33),以点D 为顶点、y 轴为对称轴的抛物线过点B .(1)求该抛物线的解析式;(2)将△ABC 沿AC 折叠后得到点B 的对应点B ′,求证:四边形AOCB ′是矩形,并判断点B ′是否在(1)的抛物线上;(3)延长BA 交抛物线于点E ,在线段BE 上取一点P ,过P 点作x 轴的垂线,交抛物线于点F ,是否存在这样的点P ,使四边形PADF 是平行四边形?若存在,求出点P 的坐标,若不存在,说明理由. 解:(1)∵抛物线的顶点为D (0,33) ∴可设抛物线的解析式为y =ax 2+33. ··········································· 1分 ∵B (-21,23)在抛物线上∴a (-21)2+33=23,∴a =332. ····················· 3分 ∴抛物线的解析式为y =332x 2+33. ···················· 5分(2)∵B (-21,23),C (1,0)∴BC =2223121)+()-(-=3 又B ′C =BC ,OA =3,∴B ′C =OA . ·················································· 6分∵AC =22OC OA +=2213+)(=2 ∴AB =22BC AC -=2232)-(=1又AB ′=AB ,OC =1,∴AB ′=OC . ····················································· 7分 ∴四边形AOCB ′是矩形. ···································································· 8分 ∵B ′C =3,OC =1∴点B ′ 的坐标为(1,3) ······························································ 9分 将x =1代入y =332x 2+33得y =3∴点B ′ 在抛物线上. ······································································· 10分(3)存在 ································································································· 11分理由如下:设直线AB 的解析式为y =kx +b ,则⎪⎩⎪⎨⎧32321 ==+-b b k 解得⎪⎩⎪⎨⎧33 ==b k ∴直线AB 的解析式为y =33+x ··················································· 12分 ∵P 、F 分别在直线AB 和抛物线上,且PF ∥AD∴设P (m ,33+m ),F (m ,332m 2+33)∴PF =(33+m )-(332m 2+33)=-332m 2+m 3+332AD =333-=332 若四边形PADF 是平行四边形,则有PF =AD . 即-332m 2+m 3+332=332 解得m 1=0(不合题意,舍去),m 2=23. ····································· 13分当m =23时,33+m =3×23+3=235.∴存在点P (23,235),使四边形PADF 是平行四边形. ·············· 14分29.如图1,平移抛物线F 1:y =x 2后得到抛物线F 2.已知抛物线F 2经过抛物线F 1的顶点M 和点A (2,0),且对称轴与抛物线F 1交于点B ,设抛物线F 2的顶点为N . (1)探究四边形ABMN 的形状及面积(直接写出结论);(2)若将已知条件中的“抛物线F 1:y =x 2”改为“抛物线F 1:y =ax 2”(如图2),“点A (2,0)”改为“点A (m ,0)”,其它条件不变,探究四边形ABMN 的形状及其面积,并说明理由;(3)若将已知条件中的“抛物线F 1:y =x 2”改为“抛物线F 1:y =ax 2+c ”(如图3),“点A (2,0)”改为“点A (m ,c )”其它条件不变,求直线AB 与y 轴的交点C 的坐标(直接写出结论).解:(1)四边形ABMN 是正方形,其面积为2. ···················································· 1分(2)四边形ABMN 是菱形.当m >0时,四边形ABMN 的面积为43am ;当m <0时,四边形ABMN 的面积为-43am . ·················································· 2分 (说明:如果没有说理过程,探究的结论正确的得2分)理由如下:∵平移抛物线F 1后得到抛物线F 2,且抛物线F 2经过原点O . ∴设抛物线F 2的解析式为y =ax 2+bx .∵抛物线F 2经过点A (m ,0),∴am 2+bm =0. 由题意可知m ≠0,∴b =-am .∴抛物线F 2的解析式为y =ax 2-amx . ·············································· 3分∴y =a (x -2m )2-42am∴抛物线F 2的对称轴为直线x =2m ,顶点N (2m,-42am ). ········· 4分∵抛物线F 2的对称轴与抛物线F 1的交点为B ,∴点B 的横坐标为2m. ∵点B 在抛物线F 1:y =ax 2上∴y B =a (2m )2=42am ·········································································· 5分设抛物线F 2的对称轴与x 轴交于点P ,如图1.∵a >0,∴BP =42am .∵顶点N (2m,-42am ),∴NP =|-42am |=42am .∴BP =NP . ···························································· 6分 ∵抛物线是轴对称图形,∴OP =AP .∴四边形ABMN 是平行四边形. ····························· 7分 ∵BN 是抛物线F 2的对称轴,∴BN ⊥OA .∴四边形ABMN 是菱形. ··································································· 8分∵BN =BP +NP ,∴BN =22am .∵四边形ABMN 的面积为21×OA ·BN =21×|m |×22am∴当m >0时,四边形ABMN 的面积为21×m ×22am =43am . ·········· 9分 当m <0时,四边形ABMN 的面积为21×(-m )×22am =-43am . · 10分 (3)点C 的坐标为(0,22am +c )(参考图2).30.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意,可设抛物线的解析式为y =a (x -2)2+1.∵抛物线经过原点,∴a (0-2)2+1=0,∴a =-41.∴抛物线的解析式为y =-41(x -2)2+1=-41x 2+x . ······················ 3分(2)△AOB 和所求△MOB 同底不等高,若S △MOB =3S △AOB ,则△MOB 的高是△AOB 高的3倍,即M 点的纵坐标是-3. ···································································· 5分∴-41x 2+x =-3,整理得x 2-4x -12=0,解得x 1=6,x 2=-2.∴满足条件的点有两个:M 1(6,-3),M 2(-2,-3) ·························· 7分 (3)不存在. ···························································································· 8分理由如下:由抛物线的对称性,知AO =AB ,∠AOB =∠ABO . 若△OBN ∽△OAB ,则∠BON =∠BOA =∠BNO . 设ON 交抛物线的对称轴于A ′ 点,则A ′ (2,-1).∴直线ON 的解析式为y =-21x .由21x =-41x 2+x ,得x 1=0,x 2=6. ∴N (6,-3).过点N 作NC ⊥x 轴于C .在Rt △BCN 中,BC =6-4=2,NC =3 ∴NB =2232+=13.∵OB =4,∴NB ≠OB ,∴∠BON ≠∠BNO ,∴△OBN 与△OAB 不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.∴在x 轴下方的抛物线上不存在点N ,使△OBN 与△OAB 相似. ······ 10分31.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(1)如图1,过点B 作BM ⊥x 轴于M .由旋转性质知OB =OA =2.∵∠AOB =120°,∴∠BOM =60°.∴OM =OB ·cos60°=2×21=1,BM =OB ·sin60°=2×23=3.∴点B 的坐标为(1,3). ······································ 1分 (2)设经过A 、O 、B 三点的抛物线的解析式为y =ax 2+bx +c ∵抛物线过原点,∴c =0.∴⎪⎩⎪⎨⎧=+=-3024b a b a 解得⎪⎪⎩⎪⎪⎨⎧==33233b a ∴所求抛物线的解析式为y =33x 2+332x . ·································· 3分 (3)存在. ······························································································ 4分如图2,连接AB ,交抛物线的对称轴于点C ,连接OC .∵OB 的长为定值,∴要使△BOC 的周长最小,必须BC +OC 的长最小. ∵点A 与点O 关于抛物线的对称轴对称,∴OC =AC . ∴BC +OC =BC +AC =AB .由“两点之间,线段最短”的原理可知:此时BC +OC 最小,点C 的位置即为所求.设直线AB 的解析式为y =kx +m ,将A (-2,0),B (1,3)代入,得⎪⎩⎪⎨⎧=+=+-302m k m k 解得⎪⎪⎩⎪⎪⎨⎧==33233m k∴直线AB 的解析式为y =33x +332. 抛物线的对称轴为直线x =332332⨯-=-1,即x =-1.将x =-1代入直线AB 的解析式,得y =33×(-1)+332=33. ∴点C 的坐标为(-1,33). ·························································· 6分 (4)△PAB 有最大面积. ········································································· 7分如图3,过点P 作y 轴的平行线交AB 于点D . ∵S △PAB =S △PAD +S △PBD=21(y D -y P )(x B -x A ) =21[(33x +332)-(33x 2+332x )](1+2) =-23x 2-23x +3 =-23(x +21)2+839 ∴当x =-21时,△PAB 的面积有最大值,最大值为839.·············· 8分此时y P =33×(-21)2+332×(-21)=-43. ∴此时P 点的坐标为(-21,-43). ··············································· 9分。
2017年中考数学分类汇编二次函数压轴题14道

中考数学分类汇编二次函数压轴题1.(2016•成都第28题)如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,﹣),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2.(2016•扬州第28题)如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y轴交OC 于点N 。
若在点T 运动的过程中,2ON OM为常数,试确定k 的值。
xy图3NM OC Tx y图2(备用图)BAOxy13-1图1B AO二、与轴对称和等腰三角形性质有关的综合题3.(2016•益阳第21题)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.4.(2016•哈尔滨第27题)如图,二次函数y =ax 2+bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =-32,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式;(2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF 与△DPF 重叠部分的面积是△BDP 的面积的 14 ,若点B ′在OD 上方,求线段PD 的长度;(3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段AM 上,使∠HPN +∠DAQ =135°,延长PG 交AD 于N .若AN + B ′M =52,求点Q 的坐标.xyA D CBOxyA DCBO xyA DCBOKOyxC BA图2三、与图形的平移与旋转变换性质有关的综合题5.(2016•重庆第26题)如图1,二次函数1x 2-x 21y 2+=的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO ︰S 四边形AONB =1︰48。
2017年江西中考数学压轴题大集合

2017年江西中考数学压轴题⼤集合⼀、函数与⼏何综合的压轴题1.如图①,在平⾯直⾓坐标系中,AB 、CD 都垂直于x 轴,垂⾜分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3)(1) 求证:E 点在y 轴上;(2) 如果有⼀抛物线经过A ,E ,C 三点,求此抛物线⽅程.(3) 如果AB 位置不变,再将DC ⽔平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的⾯积S 关于k 的函数解析式.[解] (1)(本⼩题介绍⼆种⽅法,供参考)⽅法⼀:过E 作EO ′⊥x 轴,垂⾜O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ''''== ⼜∵DO ′+BO ′=DB ∴1EO EO AB DC''+= ∵AB =6,DC =3,∴EO ′=2 ⼜∵DO EO DB AB ''=,∴2316EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上图①图②⽅法⼆:由D (1,0),A (-2,-6),得DA 直线⽅程:y =2x -2①再由B (-2,0),C (1,-3),得BC 直线⽅程:y =-x -2 ②联⽴①②得02x y =??=-?∴E 点坐标(0,-2),即E 点在y 轴上(2)设抛物线的⽅程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)E (0,-2)三点,得⽅程组42632a b c a b c c -+=-??++=-??=-?●解得a =-1,b =0,c =-2 ∴抛物线⽅程y =-x 2-2(3)(本⼩题给出三种⽅法,供参考)由(1)当DC ⽔平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂⾜为F 。
2017年全国各地中考数学压轴题集锦附答案

2017年全国各地中考数学压轴题集锦答案1.(北京模拟)已知抛物线y =-x2+2x +m -2与y 轴交于点A (0,2m -7),与直线y =2x 交于点B 、C (B 在C 的右侧). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得∠BFE =∠CFE ,若存在,求出点F 的坐标,若不存在,说明理由;(3)动点P 、Q 同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒.若△PMQ 与抛物线y =-x2+2x +m -2有公共点,求t 的取值范围.解:(1)把点A (0,2m -7)代入y =-x2+2x +m -2,得m =5∴抛物线的解析式为y =-x2+2x +3(2)由⎩⎪⎨⎪⎧y =-x2+2x +3y =2x 解得⎩⎨⎧x 1=3y 1=23 ⎩⎨⎧x 2=-3y 2=-23 ∴B (3,23),C (-3,-23)∵y =-x2+2x +3=-(x -1)2+4 ∴抛物线的对称轴为x =1 设F (1,y )∵∠BFE =∠CFE ,∴tan ∠BFE =tan ∠CFE 当点F 在点B 上方时,3-1 y -23 =3+1y +23解得y =6,∴F (1,6)当点F 在点B 下方时,3-1 23-y =3+1-y -23解得y =6(舍去)∴满足条件的点F 的坐标是F (1,6)(3)由题意,OP =5t ,OQ =25t ,∴PQ =5t ∵P 、Q 在直线直线y =2x 上 ∴设P (x ,2x ),则Q (2x ,4x )(x<0)∴x 2+4x 2=5t ,∴x =-t∴P (-t ,-2t ),Q (-2t ,-4t ) ∴M (-2t ,-2t )当M (-2t ,-2t )在抛物线上时,有-2t =-4t2-4t +3解得t =13-14(舍去负值) 当P (-t ,-2t )在抛物线上时,有-2t =-t2-2t +3 解得t =3(舍去负值) ∴t 的取值范围是:13-14≤t≤ 32.(北京模拟)在平面直角坐标系中,抛物线y 1=ax2+3x +c 经过原点及点A (1,2),与x 轴相交于另一点B .(1)求抛物线y 1的解析式及B 点坐标;(2)若将抛物线y 1以x =3为对称轴向右翻折后,得到一条新的抛物线y 2,已知抛物线y 2与x 轴交于两点,其中右边的交点为C 点.动点P 从O 点出发,沿线段OC 向C 点运动,过P 点作x 轴的垂线,交直线OA 于D 点,以PD 为边在PD 的右侧作正方形PDEF . ①当点E 落在抛物线y 1上时,求OP 的长;②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 从C 点出发向O 点运动,速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,以QG 为边在QG 的左侧作正方形QGMN .当这两个正方形解:(1)∵抛物线y 1=ax2+3x +c 经过原点及点A(1,2)∴⎩⎪⎨⎪⎧c =2a +3+c =2 解得⎩⎪⎨⎪⎧a =-1c =0 ∴抛物线y 1的解析式为y 1=-x2+3x令y 1=0,得-x2+3x =0,解得x 1=0,x 2=3 ∴B (3,0)(2)①由题意,可得C (6,0) 过A 作AH ⊥x 轴于H ,设OP =a可得△ODP ∽△OAH ,∴DPOP=AHOH=2 ∴DP =2OP =2a∵正方形PDEF ,∴E (3a ,2a ) ∵E (3a ,2a )在抛物线y 1=-x2+3x 上∴2a =-9a2+9a ,解得a 1=0(舍去),a 2=7 9∴OP 的长为79②设直线AC 的解析式为y =kx +b∴⎩⎪⎨⎪⎧2=k +b 0=6k +b 解得k =-2 5 ,b =12 5∴直线AC 的解析式为y =-2 5 x +125由题意,OP =t ,PF =2t ,QC =2t ,GQ =45t 当EF 与MN 重合时,则OF +CN =6 ∴3t +2t +45t =6,∴t =3029当EF 与GQ 重合时,则OF +QC =6 ∴3t +2t =6,∴t =65当DP 与MN 重合时,则OP +CN =6 ∴t +2t +4 5 t =6,∴t =3019当DP 与GQ 重合时,则OP +CQ =6∴t +2t =6,∴t =23.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B(4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎪⎨⎪⎧9a -3b +4=016a +4b +4=0解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-1 3x2+ 13x +4(2)连接DQ ,依题意知AP =t∵抛物线y=-13x2+13x+4与y轴交于点C∴C(0,4)又A(-3,0,B(4,0)可得AC=5,BC=42,AB=7∵BD=BC,∴AD=AB-BD=7-42∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP ∵BD=BC,∴∠DCB=∠CDB∴∠CDQ=∠DCB,∴DQ∥BC∴△ADQ∽△ABC,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP=42-327,∴AP=AD+DP=177∴线段PQ被CD垂直平分时,t的值为17 7(3)设抛物线y=-13x2+13x+4的对称轴x=12与x轴交于点E由于点A、B关于对称轴x=12对称,连接BQ交对称轴于点M则MQ+MA=MQ+MB,即MQ+MA=BQ当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小4.(北京模拟)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A出发,沿AC→CB→BA边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB、AB边交于点E、F.点P与直线l同时出发,设运动的时间为t秒,当点P 第一次回到点A时,点P和直线l同时停止运动.(1)当t=_________秒时,点P与点E重合;当t=_________秒时,点P与点F重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点P′落在EF上,点F的对应点为F′,当EF′⊥AB时,求t的值;(3)作点P关于直线EF的对称点Q,在运动过程中,若形成的四边形PEQF为菱形,求t的值;(4)在整个运动过程中,设△PEF的面积为S,直接写出S关于t的函数关系式及S的最大值.解:(1)3;4.5提示:在Rt△ABC中,∠C=90°,AC=6,BC=8∴AB=62+82=10,∴sin B=ACAB=35,cos B=BCAB=45,tan B=ACBC=34当点P与点E重合时,点P在CB边上,CP=CE∵AC=6,点P在AC、CB边上运动的速度分别为每秒3、4个单位∴点P在AC边上运动的时间为2秒,CP=4(t-2)∵CE=43t,∴4(t-2)=43t,解得t=3当点P与点F重合时,点P在BA边上,BP=BF∵AC=6,BC=8,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位∴点P在AC、CB边上运动的时间共为4秒,BF=BP=5(t-4)∵CE=43t,∴BE=8-43t在Rt△BEF中,BEBF=cos B∴8-43t5(t-4)=45,解得t=4.5(2)由题意,∠PEF=∠MEN∵EF∥AC,∠C=90°,∴∠BEF=90°,∠CPE=∠PEF ∵EN⊥AB,∴∠B=∠MEN∴∠CPE=∠B,∴tan∠CPE=tan B∵tan∠CPE=CECP,tan B=ACBC=34∴CECP=34,∴CP=43CE∵AP=3t(0<t<2),CE=43t,∴CP=6-3t∴6-3t=43×43t,解得t=5443(3)连接PQ交EF于O∵P、Q关于直线EF对称,∴EF垂直平分PQ若四边形PEQF为菱形,则OE=OF=12EFBCA PlFEBCA备用图EBMCAPlFNBCAlFE(P)BCAlFE(P)①当点P 在AC 边上运动时易知四边形POEC 为矩形,∴OE =PC ∴PC =12EF ∵CE =4 3t ,∴BE =8-4 3 t ,EF =BE ·tan B = 3 4 ( 8- 43t)=6-t∴6-3t =1 2 (6-t),解得t =65②当点P 在CB 边上运动时,P 、E 、Q 三点共线,不存在四边形PEQF③当点P 在BA 边上运动时,则点P 在点B 、F 之间 ∵BE =8-43t ,∴BF = BE cos B=5 4 (8-4 3 t )=10-5 3t ∵BP =5(t -4),∴PF =BF -BP =10-53t -5(t -4)=30-203t ∵∠POF =∠BEF =90°,∴PO ∥BE ,∴∠OPF =∠B 在Rt △POF 中,OFPF=sin B ∴12(6-t)30- 20 3t= 3 5 ,解得t =30 7∴当t =65或t =307时,四边形PEQF 为菱形 (4)S =⎩⎪⎪⎨⎪⎪⎧-23t2+4t (0≤t≤2)4 3t2-12t +24(2<t≤3)-43t2+12t -24(3<t≤4)8 3t2-28t +72(4<t≤4.5)-8 3t2+28t -72(4.5<t≤6)S 的最大值为1635.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒). (1)∠A =___________°; (2)将△PBE 沿直线PE 翻折,得到△PB ′E ,记△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值;(3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.EBOC APl FQEB CAPlF QO解:(1)60°(2)∵∠A =∠B =60°,PB =PB ′ ∴△PB ′B 是等边三角形∴PB =PB ′=BB ′=2t ,BE =B ′E =t ,PE =3t 当0<t≤2时S =S △PB ′E =12B ′E ·PE =1 2 t ·3t = 3 2t2 当2<t≤4时S =S △PB ′E-S △FB ′C=3 2t2- 3 4 ( 2t -4 )2=- 3 2t2+43t -4 3当4<t≤5时设PB ′、PE 分别交DC 于点G 、H ,作GK ⊥PH 于K ∵△PB ′B 是等边三角形,∴∠B ′PB =60°=∠A ∴PG ∥AD ,又DG ∥AP∴四边形APGD 是平行四边形 ∴PG =AD =4∵AB ∥CD ,∴∠GHP =∠BPH∵∠GPH =∠BPH =12∠B ′PB =30°∴∠GHP =∠GPH =30°,∴PG =GH =4 ∴GK =12PG =2,PK =KH =PG ·cos30°=2 3 ∴PH =2PK =4 3 ∴S =S △PGH=12PH ·GK =12×43×2=4 3 综上得,S 与t 之间的函数关系式为: S =⎩⎨⎧32t2(0<t≤2)-3 2t2+43t -43(2<t≤4)43(4<t≤5)(3)①若∠DPB ′=90° ∵∠B ′PB =60°,∴∠DP A =30° 又∠A =60°,∴∠ADP =90°∴AP =2AD ,∴10-2t =8,∴t =1 若∠PDB ′=90°A CB D P EB ′ACBD备用图C DE B ′作DM⊥AB于M,DN⊥B′B于N则AM=2,DM=23,NC=3,DN=3 3PM=|10-2-2t|=|8-2t|NB′=|3+4-2t|=|7-2t|DP2=DM2+PM2=(23)2+(8-2t)2=(8-2t)2+12 DB′2=DN2+NB′=(33)2+(7-2t)2=(7-2t)2+27 ∵DP2+DB′2=B′P2∴(8-2t)2+12+(7-2t)2+27=(2t)2解得t1=15+732>5(舍去),t2=15-732若∠DB′P=90°,则DB′2+B′P2=DP2∴(7-2t)2+27+(2t)2=(8-2t)2+12 解得t1=-1(舍去),t2=0(舍去)∴存在以点D、P、B′为顶点的三角形为直角三角形,此时t=1或t=15-732②若DP=B′P,则(8-2t)2+12=(2t)2解得t=19 8若B′D=B′P,则(7-2t)2+27=(2t)2解得t=19 7若DP=DB′,则(8-2t)2+12=(7-2t)2+27 解得t=0(舍去)∴存在以点D、P、B′为顶点的三角形为等腰三角形,此时t=198或t=1976.(北京模拟)已知二次函数y=-33mx2+3mx-2的图象与x轴交于点A(23,0)、点B,与y轴交于点C.(1)求点B坐标;(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.①当t为何值时,点A′恰好落在二次函数y=-33mx2+3mx-2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S 的最大值.解:(1)将A(23,0)代入y=-33mx2+3mx-2得0=-33m×(23)2+3m×23-2,解得m=33∴y=-13x2+3x-2ACBDPEB′MNACBDPEB′ACBDPB′E令y =0,得-13x 2+3x -2=0,解得:x 1=3,x 2=2 3 ∴B(3,0) (2)①由y =-13x 2+3x -2,令x =0,得y =-2 ∴C (0,-2) ∵y =-13x2+3x -2=-1 3 (x -323)2+1 4∴二次函数图象的对称轴为直线x =323过A ′作A ′H ⊥OA 于H在Rt △AOC 中,∵OC =2,OA =2 3 ∴∠OAC =30°,∠OCA =60° ∴∠PQA =150°,∠A ′QH =60°,AQ =A ′Q =2QH ∵点A ′在二次函数图象的对称轴上∴⎩⎪⎨⎪⎧OQ +QH =3 23OQ +2QH =23解得QH =32∴AQ =3,CP =1 ∴t =1②分两种情况:ⅰ)当0<t≤1时,四边形PQA ′C ′ 落在第一象限内的图形为等腰三角形QA ′DDQ =A ′Q =3tA ′H =AQ ·sin60°=3t ·32=32t S =S △A ′DQ=12 ·3t ·3 2t =33 4t2 ∵当0<t≤1时,S 随t 的增大而增大 ∴当t =1时,S 有最大值334ⅱ)当1<t<2时,四边形PQA ′C ′ 落在第一象限内的图形为四边形EOQA ′ S 四边形EOQA ′=S 梯形PQA ′C ′-S △OPQ-S △PC ′E=[23-3 2 (2-t )2]- 3 2 ( 2-t )2- 3 4t2 =-534t2+43t -2 3 ∵-53 4 t2+43t -23=-53 4 (t -8 5)2+635且1<85<2,∴当t =8 5 时,S 有最大值63 5∵63 5>33 4 ,∴S 的最大值是63 57.(北京模拟)已知梯形ABCD 中,AD ∥BC ,∠A =120°,E 是DAB的中点,过E点作射线EF∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)当t>1时,求△DPQ的面积S与时间t之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.解:(1)由题意,△=42-4(a2+2a+5)=-4(a+1)2=0∴a=-1原方程可化为x2-4+4=0,解得∴x1=x2=2∴AB=AD=2(2)作AH⊥BC于H,交EG于O,DK⊥EF于K,PM⊥DA交DA的延长线于M∵AD∥BC,∠A=120°,AB=AD=2∴∠B=60°,AH= 3∵E是AB中点,且EF∥BC,∴AO=DK=3 2∵AP=t,∴PM=3 2t∵t>1,∴点P在点E下方延长FE交PM于S,设DP与EF交于点N则PS=32t-32∵AD∥BC,EF∥BC,∴EF∥AD∴ENAD=PEP A,∴EN2=t-1t∴EN=2(t-1)t,∴QN=2t-2(t-1)t∴S=12(2t-2(t-1)t)(32t-32+32)=32t2-32t+32即S=32t2-32t+32(t>1)(3)由题意,AM=12t,∴DM=2+12t∴DP2=DM2+PM2=(2+12t)2+(32t)2=t2+2t+4又DQ2=DK2+KQ2=(32)2+(2t-12-2)2=4t2-10t+7PQ2=PS2+SQ2=(32t-32)2+(2t+t-12)2=7t2-4t+1ABDQCPE FN GS O KHM①若∠PDQ=90°,则DP2+DQ2=PQ2∴t2+2t+4+4t2-10t+7=7t2-4t+1解得t=6-1(舍去负值)②若∠DPQ=90°,则PD2+PQ2=DQ2∴t2+2t+4+7t2-4t+1=4t2-10t+7解得t=62-1(舍去负值)③若∠DQP=90°,则DQ2+PQ2=PD2∴4t2-10t+7+7t2-4t+1=t2+2t+4解得t=4±6 5综上所述,存在△DPQ是直角三角形的情况,此时t=6-1,t=62-1,t=4±658.(天津模拟)如图,在平面直角坐标系中,直y=-x+42交x轴于点A,交y轴于点B.在线段OA上有一动点P,以每秒2个单位长度的速度由点O向点A匀速运动,以OP为边作正方形OPQM交y轴于点M,连接QA和QB,并从QA和QB的中点C和D向AB作垂线,垂足分别为点F和点E.设P点运动的时间为t秒,四边形CDEF的面积为S1,正方形OPQM与四边形CDEF重叠部分的面积为S2.(1)直接写出A点和B点坐标及t的取值范围;(2)当t=1时,求S1的值;(3)试求S2与t的函数关系式(4)直接写出在整个运动过程中,点C和点D所走过的路程之和.解:(1)A(42,0)、B(0,42),0≤t≤4(2)过Q作QH⊥AB于H∵C、D分别是QA和QB的中点∴CD∥AB,CD=12AB=12×42×2=4∵CF⊥AB,DE⊥AB,∴CF∥DE∴四边形CDEF是平行四边形又∵CF⊥AB,∴四边形CDEF是矩形∵CF⊥AB,QH⊥AB,∴CF∥QH又∵C是QA中点,∴CF=12QH连接OQ∵正方形OPQM,∴∠1=∠2,OP=PQ=QM=MO ∵OA=OB,∴P A=MB∴Rt△QP A≌Rt△QMB,∴QA=QB,∠PQA=∠MQB∵QH ⊥AB ,∴∠3=∠4 ∴∠1+∠MQB +∠3=180°,∴O 、Q 、H 三点共线 ∴QH =OH -OQ∵t =1,点P 的运动速度为每秒2个单位长度 ∴OP =2,∴OQ =2 又∵OA =42,∴OH =4∴QH =OH -OQ =4-2=2,∴CF =1 ∴S 1=CD ·CF =4×1=4(3)当点Q 落在AB 上时,OQ ⊥AB ,△QOA 是等腰直角三角形∴t =22÷2=2 当0≤t≤2时,S 2=0当点E 落在QM 上,点F 落在PQ 上时, △CFK 和△DEG 都是等腰直角三角形 过C 作CT ⊥PQ 于T则CT =12AP =1 2 (42-2t)=22(4-t) ∴CF =2CT =4-t连接OQ ,分别交AB 、CD 于N 、R 则ON =22OA =22×42=4 ∵OP =2t ,∴OQ =2t ,∴QN =2t -4 ∴CF =12QN =t -2 ∴4-t =t -2,∴t =3当2<t≤3时,重叠部分为等腰梯形GHIK △QGK 和△QHI 都是等腰直角三角形∵QN =2t -4,RN =CF =t -2,∴QR =t -2 ∴GK =2QR =2t -4,HI =2QN =4t -8∴S 2=1 2 (GK +HI)·RN =1 2(2t -4+4t -8)(t -2)=3(t -2)2当3<t≤4时,重叠部分为六边形GHEFIK易知Rt △CIK ≌Rt △DHG ,∴GH =KI =2CT =2(4-t)∴S 2=S 矩形CDEF-2S △CIK=CD ·CF -KI ·CT=4(t -2)-2(4-t)·22(4-t)=-t 2+12t -24 综上得S 2关于t 的函数关系式为:S 2= ⎩⎨⎧0(0≤t≤2)3( t -2 )2(2<t≤3)-t2+12t -24(3<t≤4)(4)8提示:点C 和点D 走过的路程分别为以OP 为边的正方形的对角线的一半9.(上海模拟)如图,正方形ABCD中,AB=5,点E是BC延长线上一点,CE=BC,连接BD.动点M从B出发,以每秒2个单位长度的速度沿BD向D运动;动点N从E出发,以每秒2个单位长度的速度沿EB向B运动,两点同时出发,当其中一点到达终点后另一点也停止运动.设运动时间为t秒,过M作BD的垂线MP交BE于P.(1)当PN=2时,求运动时间t;(2)是否存在这样的t,使△MPN为等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)设△MPN与△BCD重叠部分的面积为S,直接写出S与t的函数关系式和函数的定义域.解:(1)∵正方形ABCD,∴∠DBC=45°∵MP⊥DB,∴△BMP是等腰直角三角形∵BM=2t,∴BP=2BM=2t又PN=2,NE=2t当0<t<2.5时,BP+PN+NE=BE∴2t+2+2t=10,∴t=2当2.5<t<5时,BP-PN+NE=BE∴2t-2+2t=10,∴t=3(2)过M作MH⊥BC于H则△NQC∽△NMH,∴QCCN=MHHN∴QC5-2t=t10-t-2t,∴QC=5t-2t210-3t令QC=y,则y=5t-2t2 10-3t整理得2t2-(3y+5)t+10y=0∵t为实数,∴[-(3y+5)]2-4×2×10y≥0即9y2-50y+25≥0,解得y≥5(舍去)或y≤5 9∴线段QC长度的最大值为5 9(3)当0<t<2.5时∵∠MPN=∠DBC+∠BMP=45°+90°=135°∴∠MPN为钝角,∴MN>MP,MN>PN若PM=PN,则2t=10-4t解得t=57(4-2)ABDNCPMEABDNCPMEQHABDPCN EMABDNCP EMA DM当2.5<t<5时∵∠MNP>∠MBP=∠MPB,∴MP>MN若MN=PN,则∠PMN=∠MPN=45°∴∠MNP=90°,即MN⊥BP∴BN=NP,BP=2BN∴2t=2(10-2t),解得t=103若PM=PN∵PN=BP-BN=BP-(BE-NE)=BP+NE-BE∴2t=2t+2t-10,解得t=57(4+2)∴当t=57(4-2),t=103,t=57(4+2)时,△MPN为等腰三角形(4)S=⎩⎨⎧8t3-50t2+75t20-6t(0<t<2.5)5t-252(2.5<t<5)10.(重庆模拟)如图,已知△ABC是等边三角形,点O是AC的中点,OB=12,动点P在线段AB上从点A向点B以每秒3个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在直线OB上,取OB的中点D,以OD为边在△AOB内部作如图所示的矩形ODEF,点E在线段AB上.(1)求当等边△PMN的顶点M运动到与点O重合时t的值;(2)求等边△PMN的边长(用含t的代数式表示);(3)设等边△PMN和矩形ODEF重叠部分的面积为S,请直接写出S与t的函数关系式及自变量t的取值范围;(4)点P在运动过程中,是否存在点M,使得△EFM是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.解:(1)当点M与点O重合时∵△ABC、△PMN是等边三角形,O为AC中点∴∠AOP=30°,∠APO=90°∵OB=12,∴AO=43=2AP=23t解得t=2AO DCBF E备用图AO DCBF E备用图A DB PCNMEAO D BPF E(N)(M)∴当t =2时,点M 与点O 重合(2)由题设知∠ABM =30°,AB =83,AP =3t ∴PB =83-3t ,PM =PB ·tan30°=8-t 即等边△PMN 的边长为8-t(3)S =⎩⎪⎨⎪⎧23t +63(0≤t≤1)-23t2+63t +43(1<t≤2)-32t2+103(2<t≤4)23t2-203t +503(4<t≤5)0(5<t≤8)提示:①当0≤t≤1时,PM 经过线段AF设PM 交AF 于点J ,PN 交EF 于点G ,则重叠部分为直角梯形FONG∵AP =3t ,∴AJ =23t ,JO =43-23t MO =4-2t ,ON =8-t -(4-2t)=4+t 作GH ⊥ON 于H则GH =FO =23,HN =2,FG =OH =4+t -2=2+t ∴S =S 梯形FONG=12(FG +ON)·FO=12(2+t +4+t)·23=23t +6 3 ②当1<t≤2时,PM 经过线段FO设PM 交EF 于点I ,则重叠部分为五边形IJONGFJ =AJ -AF =23t -23,FI =2t -2∴S =S 梯形FONG-S △FIJ=23t +63-12(23t -23)(2t -2)=-23t 2+63t +4 3③当2<t≤4时,PN 经过线段ED设PN 交ED 于点K ,则重叠部分为五边形IMDKG∵AP =3t ,∴PE =43-3t ∴IG =GE =4-t ,EK =43-3t∴KD =23-(43-3t)=3t -23,DN =t -2 ∴S =S 梯形IMNG -S △KDN=1 2 (4-t +8-t)·23-12(3t -23)(t -2) =-32t 2+10 3 ④当4<t≤5时,PM 经过线段ED设PM 交ED 于点R ,则重叠部分为△RMD ∵AP =3t ,∴EP =3t -4 3 ∴ER =2EP =23t -8 3∴RD =23-(23t -83)=103-23t MD =10-2tA ODCBP N F ME∴S =S △RMD=12(10-2t)(103-23t)=23t 2-203t +50 3 ⑤当5<t≤8时,S =0(4)∵MN =BN =PN =8-t ,∴MB =16-2t ①若FM =EM ,则M 为OD 中点 ∴OM =3∵OM +MB =OB ,∴3+16-2t =12 ∴t =3.5②若FM =FE =6,则OM =6 2-( 23)2=2 6∵OM +MB =OB ,∴26+16-2t =12 ∴t =2+ 6③若EF =EM =6,点M 在OD 或DB 上则DM =6 2-( 23)2=2 6∴DB +DM =MB 或者DB -DM =MB∴6+26=16-2t 或6-26=16-2t ∴t =5-6或t =5+ 6综上所述,当t =3.5、2+6、5-6、5+6时,△MEF 是等腰三角形11.(浙江某校自主招生)如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在直线的解析式分别为y =34x 和y =-4 3 x + 253. (1)求正方形OABC 的边长;(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒1个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位,设运动时间为2秒.当k 为何值时,将△CPQ 沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形? (3)若正方形以每秒53个单位的速度沿射线AO 下滑,直至顶点B 落在x 轴上时停止下滑.设正方形在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围.A OD CBP NF ME AOD C BP NF M E A O D C B PN F M E AO D C BPN F M E解:(1)联立 ⎩⎨⎧y =34x y =- 4 3 x +25 3解得⎩⎪⎨⎪⎧x =4y =3∴A (4,3),∴OA =4 2+32=5 ∴正方形OABC 的边长为5(2)要使△CPQ 沿它的一边翻折,翻折前后的两个三角形组成的 四边形为菱形,根据轴对称的性质,只需△CPQ 为等腰三角形即可 当t =2秒时∵点P 的速度为每秒1个单位,∴CP =2 分两种情况:①当点Q 在OA 上时,∵PQ ≥BA >PC ,∴只存在一点Q ,使QC =QP作QN ⊥CP 于N ,则CN =12CP =OQ =1 ∴QA =5-1=4,∴k =42=2 ②当点Q 在OC 上时,同理只存在一点Q ,使CP =CQ =2 ∴OQ +OA =10-2=8,∴k =82=4 综上所述,当t =2秒时,以所得的等腰三角形CPQ 沿底边翻折, 翻折后得到菱形的k 值为2或4 (3)①当点A 运动到点O 时,t =3 当0<t≤3时,设O ′C ′ 交x 轴于点D则tan ∠DOO ′=3 4 ,即DO ′OO ′=DO ′5 3t= 3 4 ,∴DO ′= 54t∴S =1 2 DO ′·OO ′= 1 2 ·5 4 t ·5 3 t = 25 24t 2②当点C 运动到x 轴上时,t =(5×4 3)÷5 3=4当3<t≤4时,设A ′B ′ 交x 轴于点E∵A ′O =5 3 t -5,∴A ′E = 34 A ′O =5t -15 4∴S =1 2 (A ′E +O ′D )·A ′O ′=1 2 (5t -15 4+54 t )·5=50t -75 8③当点B 运动到x 轴上时,t =(5+5×4 3)÷5 3=7当4<t≤7时,设B ′C ′ 交x 轴于点F∵A ′E =5t -15 4,∴B ′E =5-5t -15 4=35-5t4∴B ′F =43 B ′E =35-5t 3∴S =52-12 ·35-5t 4·35-5t 3=-25 24 t 2+ 175 12 t -625 24综上所述,S 关于滑行时间t 的函数关系式为:S = ⎩⎪⎨⎪⎧2524t 2(0<t≤3)50t -758(3<t≤4)-25 24t2+175 12t -625 24(4<t≤7)12.(浙江某校自主招生)如图,正方形ABCD 的边长为8cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC -CD 以2cm /秒的速度匀速移动.点P 、Q 同时出发,当点P 停止时,点Q 也随之停止.连接AQ 交BD 于点E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP =∠BEQ ? (2)设△APE 的面积为S (cm 2),求S 关于t 的函数关系式,并写出t 的取值范围; (3)当4<t <8时,求△APE 的面积为S 的变化范围.解(1)AP =x cm ,BQ =2x cm∵∠BEP =∠BEQ ,BE =BE ,∠PBE =∠QBE =45° ∴△PBE ≌△QBE ,∴PB =BQ 即8-x =2x ,∴x =83∴点P 出发83秒后,∠BEP =∠BEQ (2)①当0<x≤4时,点Q 在BC 上,作EN ⊥AB 于N ,EM ⊥BC 于M ∵AD ∥BC ,∴ AEEQ=ADBQ=8 2x=4x即AEEQ=4 x,∴AEAQ =4x +4∴NEBQ=AEAQ,∴NE =AE ·BQAQ =8x x +4∴S =1 2 AP ·NE = 1 2 x · 8x x +4 =4x2x +4A B DEC PQ A BDE CPQN M即S =4x2x +4(0<x≤4)②当4<x<8时,点Q 在CD 上,作QF ⊥AB 于F ,交BD 于H则AEEQ=ADHQ=8 16-2x=48-x即AEEQ=4 8-x,∴AEAQ = 4 8-x +4 =412-x作EN ⊥AB 于N ,则 NEFQ=AEAQ∴NE =AE ·FQFQ=32 12-x∴S =1 2 AP ·NE = 1 2 x ·32 12-x =16x12-x即S =16x12-x(4<x<8) (3)当4<x<8时,由S =16x12-x,得x =12S16+S∵4<x<8,∴4<12S16+S<8 ∵S>0,∴16+S>0,∴4(16+S)<12S<8(16+S) 解得8<S<32 13.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E . (1)求出经过A 、D 、C 三点的抛物线解析式;(2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由; (3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.解:(1)由题意得:D (3,33)、C (9,33)设经过A 、D 、C 三点的抛物线解析式为y =ax2+bx 把D 、C 两点坐标代入上式,得:A BDE CP QNF H⎩⎨⎧9a +3b =3381a +9b =33 解得:a =-3 9 ,b =433∴抛物线的解析式为:y =-39 x2+433x (2)连接AC∵四边形ABCD 是菱形,∴AC ⊥BD 若PQ ⊥BD ,则PQ ∥AC 当点P 在DC 上时∵PC ∥AQ ,PQ ∥AC ,∴四边形PQAC 是平行四边形 ∴PC =AQ ,即6-2t =t, ∴t =2当点P 在CB 上时,PQ 与AC 相交,此时不存在符合要求的t 值 (3)①当点P 在DC 上,即0≤t≤3时 ∵DP ∥AQ ,∴△DEP ∽△AEQ∴ DE y= DP AQ = 2tt =2,∴y = 13AD =2②当点P 在CB 上,即3<t≤6时∵AE ∥BP ,∴△QEA ∽△QPB∴AEBP=QAQB,即y12-2t=t6+t∴y =12-2t6+t综上所述,y 与t 之间的函数关系式为: y =⎩⎪⎨⎪⎧2 (0≤t≤3) 12-2t6+t(3<t≤6)(4)作点F 关于直线BD 的对称点F ′,由菱形对称性知F ′ 在DA 上,且DF ′=DF =1作点G 关于抛物线对称轴的对称点G ′,易求DG ′=4连接F ′G ′ 交DB 于点M 、交对称轴于点N ,则点M 、N过F ′ 作F ′H ⊥DG ′ 于H ,可得HD =1 2,F ′H = 3 2 ,HG ′=92∴F ′G ′=F ′H 2+HG ′ 2=21∴四边形FMNG 周长最小值为F ′G ′+FG =21+1 14.(浙江模拟)如图,直线y =-x +5和直线y =kx -4交于点C (3,m ),两直线分别交y 轴于点A 和点B ,一平行于y 轴的直线l 从点C 出发水平向左平移,速度为每秒1个单位,运动时间为t ,且分别交AC 、BC 于点P 、Q ,以PQ 为一边向左侧作正方形PQDE . (1)求m 和k 的值;(2)当t 为何值时,正方形的边DE 刚好在y 轴上?(3)当直线l 从点C 出发开始运动的同时,点M 也同时在线段AB 上由点A 向点B 以每秒4个单位的速度运动,问点M 从进入正方形PQDE 到离开正方形持续的时间有多长?解:(1)把C (3,m )代入y =-x +5得m =2 ∴C (3,2),代入y =kx -4得k =2 (2)由题意,点P 横坐标为3-t当x =3-t 时,y =-x +5=t +2,∴P (3-t ,t +2) ∵PQ ∥y 轴,∴点Q 横坐标为3-t当x =3-t 时,y =2x -4=2-2t ,∴Q (3-t ,2-2t ) ∴PQ =t +2-(2-2t)=3t ∵正方形PQDE ,∴PQ =PE当正方形的边DE 刚好在y 轴上时,3t =3-t ,∴t =34(3)∵直线y =-x +5交y 轴于点A ,∴A (0,5) ∴点M 坐标为(0,5-4t )当点M 和点P 的纵坐标相等时,5-4t =t +2,∴t =35∵3 5<3 4,∴点M 进入正方形PQDE 时,t =3 4当点M 和点Q 的纵坐标相等时,5-4t =2-2t ,∴t =3 2∴点M 从进入正方形PQDE 到离开正方形持续的时间为:t =32-3 4=3 415.(浙江模拟)如图,在平面直角坐标系中,O 为坐标原点,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 坐标为(3,1),以OB 所在直线为对称轴将△OAB 作轴对称变换得△OCB .动点P 从点O 出发,沿线段OA 向点A 运动,动点Q 从点C 出发,沿线段CO 向点O 运动.P 、Q 两点同时出发,速度都为每秒1个单位长度.设点P (1)求∠AOC 的度数;(2)记四边形BCQP 的面积为S (平方单位),求S 与t (3)设PQ 与OB 交于点M . ①当△OMQ 为等腰三角形时,求t 的值. ②探究线段OM 长度的最大值,说明理由.解:(1)∵点B坐标为(3,1),∴OA=3,AB=1∴在Rt△OAB中,tan∠AOB=ABOA=13=33∴∠AOB=30°∵将△OAB作轴对称变换得△OCB∴△OCB≌△OAB,∴∠COB=∠AOB=30°∴∠AOC=60°(2)∵OP=CQ=t,AB=1,OC=OA= 3 ∴AP=OQ=3-t∴S=2S△OAB-S△OPQ-S△P AB=OA·AB-12OP·OQ·sin∠AOC-12P A·AB=3×1-12×t×(3-t)×32-12×(3-t)×1=34t2-14t+32(3)①若△OMQ为等腰三角形,则可能有三种情况:(i)若OM=MQ,则∠MQO=∠MOQ=30°∵∠AOC=60°,∴∠OPQ=90°∴OP=12OQ,即t=12(3-t)解得:t=3 3(ii)若OM=OQ,则∠OMQ=∠OQM=75°∵∠AOC=60°,∴∠OPQ=45°过点Q作QD⊥OA于D,则QD=DP即32(3-t)=t-12(3-t)解得:t=1(iii)若MQ=OQ,则∠OMQ=∠MOQ=∠MOP 得PQ∥OA,显然不符合题意②分别过点P、Q作OB的垂线,垂足分别为E、F ∵OP=t,OQ=3-t,∠MOP=∠MOQ=30°∴S△OPQ=S△OPM+S△OOM=12OM·PE+12OM·QF=14OM·OP+14OM·OQ=14OM(OP+OQ)=14OM(t+3-t)=34OM过点Q作QG⊥OA于G则S△OPQ=12OP·QG=12OP·OQ·sin60°=34t(3-t)=-34(t2-3t)∴34OM=-34(t2-3t)∴OM =-(t 2- 3t )=-(t -32)2+3 4∴当t =32时,线段OM 的长度取得最大值 3416.(浙江模拟)已知直线y =43x +4与x 轴、y 轴分别相交于点A 、B ,点C 从O 点出发沿射线OA 以每秒1个单位长度的速度匀速运动,同时点D 从A 点出发沿AB 以每秒1个单位长度的速度向B 点匀速运动,当点D 到达B 点时C 、D 都停止运动.点E 是CD 的中点,直线EF ⊥CD 交y 轴于点F ,点E ′与E 点关于y t (秒).(1)当t =________秒时,点F 经过原点O ; (2)设四边形BDCO 的面积为S ,求S 与t 的函数关系式;(3)当直线EF 与△AOB 的一边垂直时,求t 的值;(4)以CD 为一边,在CD 的右侧作菱形CDMN ,其中DM ∥x 轴.当点N 在直线E ′F 左侧时,直接写出菱形CDMN 与△EFE ′重叠部分为轴对称图形时t 的取值范围.解:(1)52提示: ∵直线y =43x +4与x 轴、y 轴分别相交于点A 、B ∴A (-3,0),B (0,4),∴AO =3,BO =4 ∴AB =AO 2+BO 2=3 2+42=5 当点F 经过原点时,连接OD 由题意,EF 是CD 的垂直平分线 ∴OD =OC =t∵AD =t ,∴AD =OD ,∴∠DAO =∠DOA ∵∠DBO +∠DAO =90°,∠DOB +∠DOA =90° ∴∠DBO =∠DOB ,∴OD =BD∴AD =BD ,∴AD =12AB =5 2(2)∵AO =3,BO =4,AB =5 ∴sin ∠BAO =BOAB=4 5 ,cos ∠BAO =AOAB =3 5过D 作DH ⊥AC 于H当0≤t≤3时∵CO =t ,AD =t ,∴AC =3-t ,DH =AD ·sin ∠BAO =45t ∴S =S △ABO-S △ADC=1 2 ×3×4-1 2 ·(3-t)·4 5 t = 2 5 t 2-65t +6当3<t≤5时,AC =t -3∴S =S △ABO+S △ADC=1 2 ×3×4+1 2 ·(t -3)·4 5 t = 2 5 t 2- 65t +6综合得S 与t 的函数关系式为: S =25t 2-65t +6(0≤t≤5) (3)当EF ⊥BO 时∵EF ⊥CD ,∴CD ∥BO ,∴∠ACD =90° 在Rt △ADC 中,ACAD=cos ∠BAO∴3-t t=3 5 ,∴t =158当EF ⊥AB 时∵EF ⊥CD ,∴直线CD 与直线AB 重合 ∴点C 与点A 重合,∴t =3 (4)t =5 4 或t =154提示:①当0<t<158则∠PEQ =∠MQE∵菱形CDMN ,∴CD ∥MN∴∠MQE =∠CEQ ,∴∠PEQ =∠CEQ ∵EF ⊥CD ,即∠CEF =90°,∴∠CEQ =∴∠ACD =∠CEQ =45°过D 作DH ⊥AC 于H ,则△DHC 是等腰直角三角形∴DH =HC ,∴4 5t =3-t -3 5 t ,∴t =54②当158<t<5,且重叠部分为等腰梯形EHNK 时 同理可得∠CHE =45° 连接DH∵EF 垂直平分CD ,∴CH =DH ,∠DHE =∠CHE =45° ∴∠DHC =90°,∴DH =45t 而CH =CO -HO =CO -(AO -AH)=t -(3-35t) ∴t -(3-3 5 t )=45 t ,∴t =15417.(浙江模拟)如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,DE=16,M是BC边的中点,动点P从点A出发,沿边AB以每秒1个单位长度的速度向终点B 运动.设动点P的运动时间是t秒.(1)求线段AE的长;(2)当△ADE与△PBM相似时,求t的值;(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).解:(1)∵ABCD是矩形,∴∠D=90°∴AE=AD2+DE2=122+162=20(2)∵∠D=∠B=90°∴△ADE与△PBM相似时,有两种情况:当∠DAE=∠PMB时,有DEPB=ADBM即1621-t=126,解得t=13当∠DAE=∠BPM时,有DEBM=ADPB即166=1221-t,解得t=332(3)①由题意得:S△EHP=S△EMP∵DC∥AB,∴∠DEA=∠HAP又∵∠D=∠AHP=90°,∴△ADE∽△PHA∴AHDE=PHAD=APAE,即AH16=PH12=t20∴AH=45t,PH=35t,EH=20-45t∴S△EHP=12×35t×(20-45t)∵DC=21,DE=16,∴EC=5∴S△EMP=S梯形EPBC-S△ECM-S△PBM=12(5+21-t)×12-12×5×6-12×(21-t)×6DACEBMP图1DACEBMPH图2DACEBM备用图D CEBMPHD CEBMPH∴12×35t×(20-45t)=12(5+21-t)×12-12×5×6-12×(21-t)×6解得t=75±5174∵0<t<21,∴t=75-5174②14011≤t≤20提示:当点B′落在线段AE上时连接B′P、EB,∵B′C′和BC关于PE对称∴B′P=BP=21-t,B′E=BE=BC2+EC2=122+52=13∴AB′=AE-B′E=20-13=7,B′H=AH-AB′=45t-7在Rt△B′HP中,B′H2+PH2=B′P2∴(45t-7)2+(35t)2=(21-t)2,解得t=14011当点C′落在线段AE上时连接C′P、CP,∵B′C′和BC关于PE对称C′P2=CP2=122+(21-t)2,C′E=CE=5∴AC′=AE-C′E=20-5=15,C′H=AH-AC′=45t-15在Rt△C′HP中,C′H2+PH2=C′P2∴(45t-15)2+(35t)2=122+(21-t)2,解得t=2018.(浙江模拟)如图,抛物线与x轴交于A(6,0)、B(19,0)两点,与y轴交于点C (0,8),直线CD∥x轴交抛物线于另一点D.动点P、Q分别从C、D两点同时出发,速度均为每秒1个单位,点P向射线DC方向运动,点Q向射线BD方向运动,设P、Q运动的时间为t(秒),AQ交CD于E.(1)求抛物线的解析式;(2)求△APQ的面积S与t的函数关系式;(3)连接BE.是否存在某一时刻t,使得∠AEB=∠BDC?若存在,求出t的值;若不存在,请说明理由.解:(1)∵抛物线与x轴交于A(6,0)、B(19,0)两点∴设抛物线的解析式为y=a(x-6)(x-19)∵抛物线与y轴交于点C(0,8)∴8=a(0-6)(0-19),∴a=457DACEBMPHC′B′NDACEBMPHB'C'∴y=457(x-6)(x-19)(2)作PF⊥x轴于F,QG⊥x轴于G,DH⊥x轴于H,∵CD∥x轴,∴PF=DH=OC=8当y=8时,457(x-6)(x-19)=8解得x1=0,x2=25∴D(25,8),OH=CD=25∵B(19,0),∴BH=25-19=6∴BD=BH2+DH2=62+82=10∵△BDH∽△BQG,∴BDBQ=DHQG=BHBG∴1010+t=8QG=6BG∴QG=45t+8,BG=35t+6∴FG=t+19+35t+6=85t+25,AG=35t+19∴S=S梯形PFGQ-S△P AF-S△QAG=12(PF+QG)·FG-12AF·PF-12AG·QG=12(8+45t+8)(85t+25)-12(t+6)·8-12(35t+19)(45t+8)=25t2+445t+100(3)∵AC=BD=10,∴四边形ABDC是等腰梯形∴∠ACD=∠BDC若∠AEB=∠BDC,则∠AEC+∠BED=∠BED+∠EBD ∴∠AEC=∠EBD,∴△AEC∽△EBD∴ACED=CEDB,即10ED=25-ED10解得ED=5或ED=20(>AB,舍去)∵△QED∽△QAB,∴EDAB=QDQB即513=tt+10,∴t=254∴存在某一时刻t,使得∠AEB=∠BDC,t=25 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择题压轴题汇编(1)1.若数a 使关于x 的分式方程2411a x x+=--的解为正数,且使关于y 的不等式组()213220y yy a +⎧->⎪⎨⎪-≤⎩的解集为y 2<-,则符合条件的所有整数a 的和为( ) A .10 B .12 C . 14 D .162.正整数x 、y 满足(2x -5)(2y -5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .263.关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D .234.已知14m 2+14n 2=n -m -2,则1m -1n 的值等于( )A .1B .0C .-1D .-145. 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程()y m 与时间(min)x 之前的函数关系式如图所示,下列说法错误的是( )A .乙队比甲队提前0.25min 到达终点B .当乙队划行110m 时,此时落后甲队15mC .0.5min 后,乙队比甲队每分钟快40mD .自1.5min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255m/min 6.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 7.如图,△ABC 的三个顶点分别为A (1,2)、B (4,2)、C (4,4).若反比例函数y=kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是( ) A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤168.如图,在平面直角坐标系中,□OABC 的顶点A 的坐标为(-4,0),顶点B 在第二象限.∠BAO =60°,BC 交y 轴于点D ,BD ︰DC =3︰1.若函数ky x=(k >0,x >0)的图象经过点C ,则k 的值为( )A .3B .3C .23D .39.已知:如图,在平面直角坐标系xoy 中,等边△AOB 的边长为6,点C 在边OA 上,点D 在边AB 上,且OC =3BD .反比例函数y =kx(k ≠0)的图象恰好经过点C 和点D .则k 的值为( ) A 813B 813C 813D 81310.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =- 4x (x >0)的图象上,且OA⊥OB ,则OBOA 的值为( )A . 2B .2C . 3D .411.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1﹣k 2的值是( ) A .6B .4C .3D .212.如图,在平面直角坐标系中,反比例函数ky x=(0x >)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( )x OyB D CAxyO D CB AA.62B .10C .226D .22913.如图正方形ABCD 的边长为5,点A 的坐标为(-4,0)点B 在y 轴上,若反比例函数y =k x(k ≠0)的图像经过点C ,则该反比例函数的表达式为( ) A . y =3xB . y =4xC . y =5xD . y =6x14.已知函数()()12030x xy x x⎧->⎪⎪=⎨⎪<⎪⎩的图像如图所示,点P 是y 轴负半轴上一动点,过点P 作y 轴的垂线交图象于A ,B 两点,连接OA 、OB .下列结论:①若点()()111222M x y M x y ,,,在图象上,且120x x <<,则12y y <;②当点P 坐标为(0,-3)时,AOB ∆是等腰三角形;③无论点P 在什么位置,始终有7.54AOB S AP BP ∆==,;④当点P 移动到使90AOB ∠=︒时,点A的坐标为(66).其中正确的结论个数为( ) A .1B .2C. 3D .415.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B’DE 处,点B’恰好落在正比例函数y=kx 图象上,则k 的值是( ) A .52-B .211-C .51-D .241- 16.已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上.则平移后的抛物线解析式为( ) A .y =x 2+2x +1B .y =x 2+2x -1C .y =x 2-2x +1D .y =x 2-2x -117.已知抛物线y=x2-2mx-4(m>0)的顶点M关于原点O的对称点为M’,过点M’在这条抛物线上,则点M的坐标为A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)18.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②3b +2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是()A.1 B.2 C.3 D.419.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a ﹣2b>at2+bt(t为实数);⑤点(﹣92,y1),(﹣52,y2),(﹣12,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有( )A.4个B.3个C.2个D.1个20.如图,垂直于x轴的直线AB分别与抛物线1C:2y x=(0≥x)和抛物线2C:24xy=.(0≥x)交于BA,两点,过点A作xCD//轴分别与y轴和抛物线1C交于点C、D,过点B作EF∥x轴分别与y轴和抛物线1C交于点FE,,则OFBEADSS∆∆的值为()A2B2C.41D.6121.如图,在平面直角坐标系中2条直线为1l:y=-3x+3,2l:y=-3x+9,直线1l交x轴于点A,交y轴于点B,直线2l交x轴于点D,过点B作x轴的平行线交2l于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过点E,B,C三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5.其中正确的个数有()A.5 B.4 C.3 D.222.若函数22y x x b =-+的图象与坐标轴有三个交点,则b 的取值范围是( ) A .1b <且0b ≠ B .1b > C .01b << D .1b <23如图,将函数y =21(2)12x -+的图像沿y 轴向上平移得到一条新函数的图像,其中点A (1,m )、B (4,n )平移后的对应点分别为点A ′、B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图像的函数表达式是( )A .y =21(2)22x --B .y =21(2)72x -+C .y =21(2)52x --D .y =21(2)42x -+24.如图,已知△ABC 的顶点坐标分别为A (0,2)、B (1,0)、C (2,1),若二次函数y =x 2+bx +1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .b ≤﹣2B .b <﹣2C .b ≥﹣2D .b >﹣225.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a +b +c =0;③a -b +c <0;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的是( ) A .①②③B .③④⑤C .①②④D .①④⑤26.已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是( ) A .当a =1时,函数图象经过点(-1,0)B .当a =-2时,函数图象与x 轴没有交点 C .若a <0,函数图象的顶点始终在x 轴的下方D .若a >0,则当1x ≥时,y 随x 的增大而增大B 'A 'ABO yx。