2013年湖北省恩施州中考数学试题及答案(word版)

合集下载

届湖北省恩施州中考数学试卷(有答案)(Word版)

届湖北省恩施州中考数学试卷(有答案)(Word版)

届湖北省恩施州中考数学试卷(有答案)(Word版)湖北省恩施州中考数学试卷(解析版)一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.2.恩施州2013年建筑业生产总值为__万元,将数__用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105 3.下列图标中是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣45.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠27.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<010.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.1811.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a﹣c=0;④当x <或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.16.观察下列等式:1+2+3+4+。

恩施数学中考试题及答案

恩施数学中考试题及答案

恩施数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 3.14D. 2/3答案:B2. 一个正数的平方根是它本身的数是?A. 0B. 1C. -1D. 以上都是答案:A3. 以下哪个函数是一次函数?A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3答案:B4. 一个圆的半径是5厘米,它的周长是多少?A. 31.4厘米B. 62.8厘米C. 314厘米D. 628厘米答案:B5. 一个三角形的两边长分别为3和4,第三边的长可能是?A. 1B. 7C. 5D. 以上都有可能答案:C6. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 圆D. 不规则多边形答案:C7. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 无法确定答案:A8. 以下哪个选项是不等式?A. 3x + 2 = 7B. 5y - 3 > 2C. 4z = 12D. 2a + 3b答案:B9. 一个等腰三角形的底角是45°,顶角是多少?A. 45°B. 90°C. 135°D. 无法确定答案:B10. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 - 4x + 4C. y = 1/x^2D. y = x^3 - 2x答案:B二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可能是________或________。

答案:5或-52. 如果一个角的补角是120°,那么这个角是________。

答案:60°3. 一个长方体的长、宽、高分别是4cm、3cm、2cm,它的体积是________。

答案:24立方厘米4. 一个二次函数的顶点坐标是(1, -2),对称轴是x=1,开口向上,它的解析式可能是________。

答案:y = (x-1)^2 - 25. 一个直角三角形的两直角边长分别是6和8,斜边长是________。

中考真题电子版-数学湖北-2013

中考真题电子版-数学湖北-2013

2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。

2013年湖北中考数学真题卷含答案解析

2013年湖北中考数学真题卷含答案解析

2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。

湖北省恩施州中考数学试题及答案(word版).doc

湖北省恩施州中考数学试题及答案(word版).doc

湖北省恩施州2013年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。

)1.(3分)的相反数是().2.(3分)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记2=180°,∠3=100°,则∠4等于()3.(3分)如图所示,∠1+∠223.B C D8.(3分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()..9.(3分)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线..D10.(3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()11.(3分)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:12.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()..二、填空题(本大题共有4小题,每小题3分,共12分。

不要求写出解答过程,请把答案直接填写在相应的位置上)13.(3分)25的平方根是±5.14.(3分)函数y=的自变量x的取值范围是x≤3且x≠﹣2.15.(3分)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为6+π.16.(3分)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.三、解答题(本大题共有8个小题,共72分。

解答时应写出文字说明、证明过程或演算步骤)17.(8分)先简化,再求值:,其中x=.18.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.19.(8分)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.20.(8分)如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.21.(8分)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,).22.(10分)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?23.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB 于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.24.(12分)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y 轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.答案一、选择题1-6 A B D C CC 7-12 D BBD DC二、填空题13、±514、x≤3且x≠﹣215、6+π16、171三、解答题17、解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣.18、解答:证明:如图,连接AC、BD,∵AD∥BC,AB=CD,∴AC=BD,∵E、F、G、H分别为边AB、BC、CD、DA的中点,∴在△ABC中,EF=AC,在△ADC中,GH=AC,∴EF=GH=AC,同理可得,HE=FG=BD,∴EF=FG=GH=HE,∴四边形EFGH为菱形.19、解答:解:(1)设袋子里2号球的个数为x个.根据题意得:=,解得:x=2,经检验:x=2是原分式方程的解,∴袋子里2号球的个数为2个.∴点A(x,y)在直线y=x下方的概率为:.20、解答:解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.21、解答:解:过点B作BF⊥DN于点F,过点B作BE⊥AD于点E,∵∠D=90°,∴四边形BEDF是矩形,∴BE=DF,BF=DE,在Rt△ABE中,AE=AB•cos30°=110×=55(米),BE=AB•sin30°=×110=55(米);设BF=x米,则AD=AE+ED=55+x(米),在Rt△BFN中,NF=BF•tan60°=x(米),∴DN=DF+NF=55+x(米),∵∠NAD=45°,∴AD=DN,即55+x=x+55,解得:x=55,∴DN=55+x≈150(米).答:“一炷香”的高度为150米.22、解答:解:设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.答:商品的进价为40元,乙商品的进价为80元;(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得,解得:29≤m≤32∵m为整数,∴m=30,31,32,故有三种进货方案:方案1,甲种商品30件,乙商品70件,方案2,甲种商品31件,乙商品69件,方案3,甲种商品32件,乙商品68件,设利润为W元,由题意,得W=40m+50(100﹣m),=﹣10m+5000∵k=﹣10<0,∴W随m的增大而减小,∴m=30时,W最大=4700.的直径,AF=1AD=,:AG=2,∵以点为直角顶点,(﹣(×﹣。

湖北省恩施州2013年中考数学模拟试题

湖北省恩施州2013年中考数学模拟试题

2013年恩施州中考数学模拟试题姓名______________ 分数__________________一、选择题(每小题3分,共36分) 1.-5的倒数是( )A .-5B .5C .- 15D .152.人民网北京1月18日电:今天,国家统计局局长马建堂介绍2012年国民经济运行情况,初步核算,全年国内生产总值519322亿元,按可比价格计算,比上年增长7.8%。

这个数据用科学记数法表示(保留3位有效数字)正确的是( )A .51019.5⨯B .61019.5⨯C .5102.5⨯D .6102.5⨯3.已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为6cm ,则⊙O 1与⊙O 2的位置关系为( )A .外离B .相交C .相切D .内含4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( )A.①②B.②③C. ②④D. ③④5.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或806. 如图,图中的小正方形的边长均为1,则图中的阴影三角形与△ABC 相似的是( ):7. 已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根 C .该方程无实数根 D .该方程根的情况不确定 8.2011年5月份,我市市区一周空气质量报告中某项污染指数的数据是: 31 35 31 34 30 32 31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,359.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角α(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为( )A . 7 2°B .108°或14 4°C .144°D . 7 2°或144°10. 如图是一个圆锥形冰淇淋,已知它的母线长是5cm ,高是4cm ,则这个圆锥形冰淇淋的底面面积是( )A .210cm πB .29cm πC .220cm πD .2cm π①正方体②圆柱③圆锥④球第11题图FEDBAC第12题图第10题图11.如图是一张矩形纸片ABCD ,cm AD 10=,若将纸片沿DE 折叠,使DC落在DA上,点C 的对应点为点F ,若cm BE 6=,则DC 的长是( )A .cm 4B .cm 6C .cm 8D .cm 1012.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE ∶S 正方形ABCD 的值为( )二、填空题(每小题3分,共18分) 13. 方程2132=-xx 的解是 ;14.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _;15.如图等边三角形ABC 中,AB =3,D 、E 是BC 上的两点,AD 、AE 把△ABC 分割成周长相等的三个三角形,则CD = ;16.如图,已知Rt △ABC ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E n ,分别记△BCE 1、△BCE 2、△BCE 3···△BCE n 的面积为S 1、S 2、S 3、…S n . 则S n = S △ABC (用含n 的代数式表示).三、解答题(共8个小题,第17、19、20、21题各8分,第18题6分,第22题10分,第23、24题各12分,共72分)17.已知a 是一元二次方程2320x x +-=的实数根,求代数式2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭的值.18.如图:把一张给定大小的矩形卡片ABCD 放在宽度为10mm 的横格纸中,恰好四个顶 点都在横格线上,已知α=25°,求长方形 卡片的周长。

湖北省恩施州2014年中考数学试题(解析)

湖北省恩施州2014年中考数学试题(解析)

湖北省恩施州2014年中考数学试题(解析)
一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。


1.(3分)(2013•恩施州)的相反数是()
C.3D.﹣3
A.B.

考点:相反数.
分析:根据只有符号不同的两个数互为相反数求解后选择即可.
解答:
解:﹣的相反数是.
故选A.
点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.
2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()
A.3.93×104B.3.94×104C.0.39×105D.394×102
考点:科学记数法与有效数字.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4.
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.
解答:解:39360=3.936×104≈3.94×104.
故选:B.
点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.
3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()
A.70°B.80°C.90°D.100°
考点:平行线的判定与性质.。

恩施州2011年中考数学试题及答案(word版)

恩施州2011年中考数学试题及答案(word版)

2011年湖北省恩施州中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是满足题目要求的,请将正确选项填涂在答题卷的相应位置).1、(湖北恩施3分)-2的倒数是A 、2B 、12C 、-12D 、不存在【答案】C 。

2、(湖北恩施3分)下列运算正确的是A 、a 6÷a 2=a 3B 、a 5﹣a 3=a 2C 、(3a 3)2=6a 9D 、2(a 3b )2﹣3(a 3b )2=﹣a 6b 2【答案】D 。

3、(湖北恩施3分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是A 、43°B 、47°C 、30°D 、60°【答案】B 。

4、(湖北恩施3分)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为:x 1=2,x 2=5.则利用这种方法求得方程 (2x+5)2﹣4(2x+5)+3=0的解为A 、x 1=1,x 2=3B 、x 1=﹣2,x 2=3C 、x 1=﹣3,x 2=﹣1D 、x 1=﹣1,x 2=﹣2【答案】D 。

5、(湖北恩施3分)一次函数y 1=k 1x+b 和反比例函数22k y x(k 1∙k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是A 、﹣2<x <0或x >1B 、﹣2<x <1C 、x <﹣2或x >1D 、x <﹣2或0<x <1 【答案】A 。

6、(湖北恩施3分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是A 、200﹣60xB 、140﹣15xC 、200﹣15xD 、140﹣60x【答案】C 。

湖北省恩施州中考数学试卷

湖北省恩施州中考数学试卷

湖北省恩施州中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)7的绝对值是()A.﹣7 B.7 C.D.2.(3分)大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×1063.(3分)下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7 D.2a5÷a3=a24.(3分)下列图标是轴对称图形的是()A.B.C.D.5.(3分)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.6.(3分)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠47.(3分)函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤38.(3分)关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<09.(3分)中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗10.(3分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.811.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.1212.(3分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S=5,四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)16的平方根是.14.(3分)分解因式:3ax2﹣6axy+3ay2=.15.(3分)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC 于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为.(结果不取近似值)16.(3分)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:÷﹣,其中x=.18.(8分)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC 与AE交于点P.求证:∠AOB=60°.19.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=,b=;(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;(3)全校有多少名学生选择参加乒乓球运动?20.(8分)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)21.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.22.(10分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?23.(10分)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C 的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.24.(12分)如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.湖北省恩施州中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•恩施州)7的绝对值是()A.﹣7 B.7 C.D.【分析】根据绝对值的定义即可解题.【解答】解:∵正数的绝对值是其本身,∴|7|=7,故选B.【点评】本题考查了绝对值的定义,熟练掌握是解题的关键.2.(3分)(2017•恩施州)大美山水“硒都•恩施”是一张亮丽的名片,八方游客慕名而来,今年“五•一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A.0.145×106B.14.5×105C.1.45×105D.1.45×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1450000用科学记数法表示为1.45×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•恩施州)下列计算正确的是()A.a(a﹣1)=a2﹣a B.(a4)3=a7C.a4+a3=a7 D.2a5÷a3=a2【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣a,符合题意;B、原式=a12,不符合题意;C、原式不能合并,不符合题意;D、原式=2a2,不符合题意,故选A【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.4.(3分)(2017•恩施州)下列图标是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)(2017•恩施州)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.B.C.D.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性.6.(3分)(2017•恩施州)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠2=∠4【分析】先根据题意得出AD∥BC,再由平行线的性质即可得出结论.【解答】解:∵∠A+∠ABC=180°,∴AD∥BC,∴∠2=∠4.故选D.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.7.(3分)(2017•恩施州)函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣3≠0,解得x≥1且x≠3,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零是解题关键.8.(3分)(2017•恩施州)关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.﹣1<m≤0 D.﹣1≤m<0【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【解答】解:解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组无解,∴m≤﹣1,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(3分)(2017•恩施州)中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:C.【点评】本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.10.(3分)(2017•恩施州)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.8【分析】根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:200×﹣80=80×50%,解得:x=6.故选B.【点评】本题考查了一元一次方程的应用,根据利润=售价﹣进价,列出关于x 的一元一次方程是解题的关键.11.(3分)(2017•恩施州)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.12【分析】由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.【解答】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故选C.【点评】本题考查了相似三角形的判定与性质、平行线的性质以及平行四边形的判定与性质,根据相似三角形的性质找出BC=DE是解题的关键.12.(3分)(2017•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S=5,四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2【分析】根据直线l1的解析式求出A(1,0),B(0,3),根据关于y轴对称的两点坐标特征求出E(﹣1,0).根据平行于x轴的直线上任意两点纵坐标相同得出C点纵坐标与B点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=﹣x2+2x+3,进而判断各选项即可.【解答】解:∵直线l1:y=﹣3x+3交x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵点A、E关于y轴对称,∴E(﹣1,0).∵直线l2:y=﹣3x+9交x轴于点D,过点B作x轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=﹣3x+9,得3=﹣3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c过E、B、C三点,∴,解得,∴y=﹣x2+2x+3.①∵抛物线y=ax2+bx+c过E(﹣1,0),∴a﹣b+c=0,故①正确;②∵a=﹣1,b=2,c=3,∴2a+b+c=﹣2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD是平行四边形,=BC•OB=2×3=6≠5,故⑤错误.∴S四边形ABCD综上可知,正确的结论有3个.故选C.【点评】本题考查了抛物线与x轴的交点,一次函数、二次函数图象上点的坐标特征,关于y轴对称的两点坐标特征,平行于x轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)(2017•恩施州)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.(3分)(2017•恩施州)分解因式:3ax2﹣6axy+3ay2=3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2017•恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为3﹣π.(结果不取近似值)【分析】根据题意结合等边三角形的性质分别得出AB,AC,AD,DC的长,进而利用S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF求出答案.【解答】解:如图所示:设半圆的圆心为O,连接DO,过D作DG⊥AB于点G,过D作DN⊥CB于点N,∵在Rt△ABC中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF是等边三角形,∵在Rt△ABC中,∠BAC=30°,BC=2,∴AC=4,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3,DC=AC﹣AD=,故DN=DC•sin60°=×=,则S阴影=S△ABC﹣S△AOD﹣S扇形DOB﹣S△DCF=×2×6﹣×3×﹣﹣××=3﹣π.故答案为:3﹣π.【点评】此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.16.(3分)(2017•恩施州)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=2.【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.【解答】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4不能在第四列,2不能在第五列,而2不能在第六列;所以2只能在第六行第四列,即a=2;则b 和c有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5不能在第六列,所以5在第五列的第一行;4和6在第六列的第一行和第二行,不确定,分两种情况:①当4在第一行时,6在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第五行缺少1和2,1不能在第1列,所以1在第五列,则2在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第二列缺少5和6,5不能在第四行,所以5在第三行,则6在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第三列缺少数字1和6,6不能在第五行,所以6在第三行,则1在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.【点评】本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)(2017•恩施州)先化简,再求值:÷﹣,其中x=.【分析】先化简分式,然后将x的值代入即可求出答案.【解答】解:当x=时,∴原式=÷﹣=×﹣=﹣==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得∠CAD=∠CBE,然后求出∠OAB+∠OBA=120°,再根据“八字型”证明∠AOP=∠PCB=60°即可.【解答】证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠APC=∠BPO,∴∠BOP=∠ACP=60°,即∠AOB=60°.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8分)(2017•恩施州)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=24,b=48;(2)在扇形统计图中,“排球”所在的扇形的圆心角为72度;(3)全校有多少名学生选择参加乒乓球运动?【分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【解答】解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=48.故答案是:24,48;(2)“排球”所在的扇形的圆心角为360°×=72°,故答案是:72;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).【点评】本题考查读扇形统计图获取信息的能力,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•恩施州)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)【分析】作OC⊥AB于C,由已知可得△ABO中∠A=60°,∠B=45°且OA=80m,要求OB的长,可以先求出OC和BC的长.【解答】解:由题意可知:作OC⊥AB于C,∠ACO=∠BCO=90°,∠AOC=30°,∠BOC=45°.在Rt△ACO中,∵∠ACO=90°,∠AOC=30°,∴AC=AO=40m,OC=AC=40m.在Rt△BOC中,∵∠BCO=90°,∠BOC=45°,∴BC=OC=40m.∴OB==40≈40×2.45≈82(米).答:小华家到学校的距离大约为82米.【点评】本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(8分)(2017•恩施州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求△OBC的面积.【分析】(1)把A(﹣1,a)代入反比例函数y=﹣得到A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=﹣2x,设直线MN的解析式为y=﹣2x+b,得到直线MN的解析式为y=﹣2x+10,解方程组得到C(1,8),于是得到结论.【解答】解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解得,或,∴C(1,8),∴△OBC的面积=S△OMN ﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.【点评】本题考查了一次函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•恩施州)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.23.(10分)(2017•恩施州)如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.【分析】(1)由BE∥CD知∠1=∠3,根据∠2=∠3即可得∠1=∠2;(2)连接EC、AC,由PC是⊙O的切线且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根据∠1=∠2得∠4=∠5,从而证得△PBC∽△PCE即可;(3)由PC2=PB•PE、BE﹣BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP得DF=BP=2,据此得出CD的长即可.【解答】解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,∴=,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴=,∴DE=BC,在Rt△DEF和Rt△BCP中,∵,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.【点评】本题主要考查切线的性质、相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握平行线的性质、切线的性质、圆周角定理、相似三角形的判定与性质及全等三角形的判定与性质等知识点是解题的关键.24.(12分)(2017•恩施州)如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x,x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+(x2+1﹣2)2=,再利用配方法可得到BF=x2+1,由于BC=x2+1,所以BF=BC;(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF为等边三角形,所以∠BCF=60°,则∠OCF=30°,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,先解方程组得B(1+,3+),设Q(t,t2+1),则E(t,t+2),则EQ=﹣t2+t+1,则S△QBF =S△EQF+S△EQB=•(1+)•EQ=•(1+)•)(﹣t2+t+1),然后根据二次函数的性质解决问题.【解答】解:(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC.理由如下:设B(x,x2+1),而F(0,2),∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,∴BF=x2+1,∵BC⊥x轴,∴BC=x2+1,∴BF=BC;(3)如图1,m为自然数,则点P在F点上方,∵以B、C、F、P为顶点的四边形是菱形,∴CB=CF=PF,而CB=FB,∴BC=CF=BF,∴△BCF为等边三角形,∴∠BCF=60°,∴∠OCF=30°,在Rt△OCF中,CF=2OF=4,∴PF=CF=4,∴P(0,6),即自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,当k=1时,一次函数解析式为y=x+2,解方程组得或,则B(1+,3+),设Q(t,t2+1),则E(t,t+2),∴EQ=t+2﹣(t2+1)=﹣t2+t+1,∴S△QBF =S△EQF+S△EQB=•(1+)•EQ=•(1+))(﹣t2+t+1)=﹣(t﹣2)2++1,当t=2时,S△QBF有最大值,最大值为+1,此时Q点坐标为(2,2).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.。

湖北省恩施州年中考数学试卷及答案解析版

湖北省恩施州年中考数学试卷及答案解析版

湖北省恩施州2015 年中考数学试卷一、选择题(本题共12小题,每小题3分,满分36 分,中每小题给出的四个选项中,只有一项符合题目要求的,请将正确选则项请的字母代号填涂在答题卷相应位置上)15的绝对值是()A. —5B.—C.D. 5考点:绝对值. 分析:利用绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得| —5|=5,故选D.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2. 恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶201 3年总产量达64000 吨,将64000 用科学记数法表示为()3 54 5A. 64X 10B. X 10C. X 10D. X 10 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a x 10n的形式,其中K |a| v 10, n为整数.确定n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:64000=X10 3 4,故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a x 10n的形式,其中1w|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.考点:分析:平行线的性质.延长ED交BC于F,根据平行线的性质求出/ MFC M B=70°,求出/ FDC=40,根据三角形外角性质得出/ C=Z MFO Z MDC代入求出即可.3(3 分)(2015?恩施州)如图,已知AB// DE / ABC=70,/ CDE=140,则/ BCD 的值为()A. 20°B. 30°C. 40D. 70°解答:解:延长ED交BC于F,•/ AB// DE / ABC=70 ,•••/ MFC M B=70°,•••/ CDE=140 ,•••/ FDC=180 - 140°=40°,•••/ C=Z MF G/ MDC=7° - 40°=30°, 故选B.点评:本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出/MFC 的度数,注意:两直线平行,同位角相等.4. ( 3分)(2015?恩施州)函数 y=+x - 2的自变量x 的取值范围是( ) A . x >2B. x >2C. x ^2D. x <2考点:函 数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于 0,分母不等于 0,可以求 出 x 的范围.解答:解:根据题意得:x - 2>0且x - 2工0,解得: x > 2. 故选: B .点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不能为0;( 3)当函数表达式是二次根式时,被开方数非负. 5. ( 3 分) ( 2 0 1 5?恩施州)下列计算正确的是()3264372510A . 4x ?2x =8xB . a +a =aC . ( - x ) =- x 考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式. 专题:计 算题. 分析:A 、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B 、 原式不能合并,错误;C 、 原式利用幕的乘方与积的乘方运算法则计算得到结果,即可做出判断;D 原式利用完全平方公式化简得到结果,即可做出判断. 解答:解:A 、原式=8x 5,错误; B 、 原式不能合并,错误;10C 、 原式=-x ,正确;D 原式=a 2- 2ab+b 2,错误, 故选 C点评:此题考查了单项式乘单项式, 合并同类项, 幂的乘方与积的乘方, 以及完全平方公式, 熟练掌握公式及法则是解本题的关键.6 . ( 3分) ( 2 0 1 5?恩施州)某中学开展“眼光体育一小时”活动,根据学校实际情况,如图 决定开设“A :踢毽子,B :篮球,C :跳绳,D :乒乓球”四项运动项目(每位同学必须选择 一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结 果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为( )A . 240B . 120C . 80D . 40考点:条 形统计图;扇形统计图.分析:根据A 项的人数是80,所占的百分比是40%即可求得调查的总人数,然后李用总人数 减去其它组的人数即可求解.解答:解:调查的总人数是:80- 40%=200(人),2 2 2D . ( a - b ) =a - b则参加调查的学生中最喜欢跳绳运动项目的学生数是:200 - 80 - 30 - 50=40 (人).故选D.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.(3 分)(2015?恩施州)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“ 1”;“学”相对的字是“ 2”;“5”相对的字是“ 0”.故选:A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.& ( 3分)(2015?恩施州)关于x的不等式组的解集为x v 3,那么m的取值范围为()A. m=3B. m>3C. m v 3D. m>3考点:解一元一次不等式组.专题:计算题.分析:不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可. 解答:解:不等式组变形得: ,由不等式组的解集为x v3,得到m的范围为m^3,故选D点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.9. (3分)(2015?恩施州)如图,在平行四边形ABCD中, EF// AB交AD于E,交BD于F, DE EA=3: 4, EF=3,则CD的长为()A. 4B. 7C. 3D. 12考点相似三角形的判定与性质;平行四边形的性质.分析由EF/ AB根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.解答解:•/ DE EA=3 4,••• DE DA=3: 7•/ EF// AB•,解得:AB=7,•••四边形ABCD是平行四边形,•C D=AB=.7故选B.点评:此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.10. (3分)(2015?恩施州)如图,AB是OO的直径,弦CD交AB于点E,且E为OB的中点, / CDB=30,CD=4,则阴影部分的面积为()A. nB. 4 nC. nD. n考点:扇形面积的计算.分析:首先证明OE=OC=QB则可以证得△ OEC^A BED贝U S阴影=半圆-S扇形OCB利用扇形的面积公式即可求解.解答:解:I/ COB=2CDB=60 ,又••• CDL AB•/ OCB=3°0 ,CE=DE,•O E=OC=OB=2OC=4.•O E=BE则在△ OEC和厶BED中,•△OEC2A BED•S阴影=半圆-S 扇形OCB=.故选D.点评:本题考查了扇形的面积公式,证明△ OE QA BED得到S阴影=半圆-S扇形OCB是本题的关键.11. (3分)(2015?恩施州)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%现售价为b元,则原售价为()A. (a+b)元B. (a+b)元C. (b+a)元D. (b+a)元考点:列代数式.分析:可设原售价是x元,根据降价a元后,再次下调了20%后是b元为相等关系列出方程,用含a,b 的代数式表示x 即可求解.解答:解:设原售价是x 元,则(x- a)(1 - 20% =b,解得x=a+b,故选A.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断 a 与0的关系,由抛物线与 y 轴的交点判断c 与0的关系, 然后根据对称轴及抛物线与 x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:•••抛物线的开口方向向下,a v 0;•••抛物线与x 轴有两个交点,2 2.b - 4ac >0, 即卩 b >4ac ,故①正确由图象可知:对称轴 x= - = - 1, 2a — b=0, 故②错误;•••抛物线与y 轴的交点在y 轴的正半轴上, • c > 0由图象可知:当 x=1时y=0, • a+b+c=0; 故③错误;由图象可知:当 x= - 1时y > 0,•••点B (-, y 1)、C (-, y 2)为函数图象上的两点,贝U y 1 v y 2, 故④正确. 故选B点评:此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与 x 轴交点的个数确定.二、填空题(共4小题,每小题3分,满分12分,不要求写出解答过程,请把答案直接填 写在答题卷相应位置上)13. ( 3分)(2015?恩施州)4的平方根是 ±2 . 考点:平方根. 专题:计算题.分析:根据平方根的定义,求数 a 的平方根,也就是求一个数 x ,使得x 2=a ,则x 就是a 的 平方根,由此即可解决问题.2解答:解:•(土 2) =4,•4的平方根是土 2.12. ( 3分)(2015?恩施州)如图是二次函数 0),对称轴为直线 x=- 1,给出四个结论: ①b > 4ac ;②2a+b=0;③a+b+c > 0;④若点 则 y i < y 2, 其中正确结论是( ) A .②④B.①④y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,B (-, y i )、C (-, y 2)为函数图象上的两点,C.①③D.②③故答案为:土2.点评:本题考查了平方根的定义•注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2 314. (3 分)(2015?恩施州)因式分解:9bx y - by = by (3x+y)(3x- y)•考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取by,再利用平方差公式分解即可.. , 2 2解答:解:原式=by (9x - y )=by (3x+y)(3x - y),故答案为:by (3x+y)(3x- y)点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2015?恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b, 然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5n .考点:弧长的计算;旋转的性质.分析:根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.解答:解:由图形可知,圆心先向前走OO的长度即圆的周长,然后沿着弧OC2旋转圆的周长,则圆心O运动路径的长度为:X 2nX 5+X 2nX 5=5 n, 故答案为:5 n.点评:本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.16. (3 分)(2015?恩施州)观察下列一组数:1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,…其中每个数n都连续出现n次,那么这一组数的第119个数是15 .考点:规律型:数字的变化类.分析:根据每个数n都连续出现n次,可列出1+2+3+4+- +x=119+1,解方程即可得出答案. 解答:解:因为每个数n都连续出现n次,可得:1+2+3+4+…+x=119+1,解得:x=15,所以第119个数是15.故答案为:15.点评:此题考查数字的规律,关键是根据题目首先应找出哪哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共8小题,满分72分,请在大题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (8分)(2015?恩施州)先化简,再求值:?-,其中x=2 - 1.考点:分式的化简求值.专题:计算题.分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把x 的值代入计算即可求出值.解答:解:原式=?-=-=-,当x=2 - 1时,原式=-=-.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18. ( 8分)(2015?恩施州)如图,四边形ABCD BEFG匀为正方形,连接AG CE( 1 )求证:AG=CE;(2)求证:AGL CE考点:全等三角形的判定与性质;正方形的性质. 专题:证明题.分析:(1)由正方形的性质得出AB=CB / ABC d GBE=90 , BG=BE得出/ ABG M CBE由SAS证明△CBE得出对应边相等即可;(2)由厶CBE得出对应角相等/ BAG M BCE由/BAG# AMB=90 ,对顶角 / AMB M CMN 得出/ BCE# CMN=9° ,证出/ CNM=9° 即可.解答:(1)证明:•••四边形ABCD BEFG均为正方形,••• AB=CB M ABC# GBE=90 , BG=BE•••/ ABG# CBE在厶ABG和厶CBE中,,•△ABG^A CBE( SAS ,• AG=C;E(2)证明:如图所示:•••△ ABG^^ CBE•# BAG=# BCE,•••# ABC=90 ,•# BAG+# AMB=9°0 ,•••# AMB# CMN•# BCE+# CMN=9°0 ,•# CNM=9°0 ,• AG L CE.点评:本题考查了正方形的性质、全等三角形的判定与性质、垂线的证法;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.19. (8 分)(2015?恩施州)质地均匀的小正方体,六个面分别有数字“ 1”、“2”、“3”、“4”、“5”、“6”,同时投掷两枚,观察朝上一面的数字.(1)求数字“ 1”出现的概率;( 2 )求两个数字之和为偶数的概率.考点:列表法与树状图法. 专题:计算题.分析:(1)列表得出所有等可能的情况数,找出数字“ 1”出现的情况数,即可求出所求的概率;(2)找出数字之和为偶数的情况数,即可求出所求的概率.解答:解:(1)列表如下:1234561(1,1) ( 2,1) ( 3,1) ( 4,1) ( 5,1) ( 6,1)2(1,2) ( 2,2) ( 3,2) ( 4,2) ( 5,2) ( 6,2)3(1,3) ( 2,3) ( 3,3) ( 4,3) ( 5,3) ( 6,3)4(1,4) ( 2,4) ( 3,4) ( 4,4) ( 5,4) ( 6,4)5(1,5) ( 2,5) ( 3,5) ( 4,5) ( 5,5) ( 6,5)6(1,6) ( 2,6) ( 3,6) ( 4,6) ( 5,6) ( 6,6)所有等可能的情况有36 种,其中数字“ 1”出现的情况有11 种,则P (数字“ 1”出现)=;(2)数字之和为偶数的情况有18 种,则P (数字之和为偶数)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20. (8分)(2015?恩施州)如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:~)考点:解直角三角形的应用-方向角问题.分析:过点C作CDL AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可.解答:解:如图,过点C作CDLAB于点D,AB=20< 仁20 (海里),•••/ CAF=60,/ CBE=30 ,•••/ CBA d CBE k EBA=120,/ CAB=90 -/ CAF=30 ,•••/ C=180 -Z CBA-Z CAB=30 ,•••/ C=Z CAB•B C=BA=2(0 海里),Z CBD=90 -Z CBE=60°,• CD=BC?si Z CBD= 17 (海里). 点评:此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.21. (8分)(2015?恩施州)如图,已知点A、P在反比例函数y= (k v 0)的图象上,点B、Q 在直线y=x - 3的图象上,点B的纵坐标为-1, AB Lx轴,且S MA=4,若P、Q两点关于y 轴对称,设点P 的坐标为(m,n).(1 )求点 A 的坐标和k 的值;(2)求的值.考点:反比例函数与一次函数的交点问题.分析:(1)先由点B在直线y=x - 3的图象上,点B的纵坐标为-1,将y= - 1代入y=x- 3, 求出x=2,即B (2,- 1).由AB丄x轴可设点A的坐标为(2, t),利用S ZA B=4列出方程(-1 - t )X 2=4,求出t= - 5,得到点A的坐标为(2,- 5);将点A的坐标代入y=,即可求出k的值;(2)根据关于y轴对称的点的坐标特征得到Q( m n),由点P (m, n)在反比例函数y=-的图象上,点Q在直线y=x - 3的图象上,得出mn=- 10, m+n=- 3,再将变形为,代入数据计算即可.解答:解:(1)v点B在直线y=x - 3的图象上,点B的纵坐标为-1, •••当y= - 1 时,x - 3= - 1,解得x=2,二 B (2,- 1).设点A的坐标为(2, t ),则t V- 1, AB=- 1 - t .TS △OA=4,•••(- 1 - t )X 2=4,解得t= - 5 ,•••点A的坐标为(2,- 5).•••点A在反比例函数y= (k V 0)的图象上,•- 5=,解得k=- 10;(2)T p、Q两点关于y轴对称,点P的坐标为(m n),•Q(- m,n ),•••点P在反比例函数y=-的图象上,点Q在直线y=x - 3的图象上,•n=-,n=- m- 3,•mn=- 10, m+n=- 3,点评:本题考查了反比例函数与一次函数的交点问题, 反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y轴对称的点的坐标特征,代数式求值,求出点A的坐标是解决第(1)小题的关键,根据条件得到mn=- 10, m+n=-3是解决第(2)小题的关键.22.(10 分)(2015?恩施州)某工厂现有甲种原料360 千克,乙种原料290 千克,计划用这两种原料全部生产A B两种产品共50件,生产A B两种产品与所需原料情况如下表所示:原料型号甲种原料(千克)乙种原料(千克)A 产品(每件)9 3B 产品(每件) 4 10(1)该工厂生产A、 B 两种产品有哪几种方案(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设工厂可安排生产x件A产品,则生产(50 - x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.解答:解:(1)设工厂可安排生产x件A产品,则生产(50 - x)件B产品由题意得:解得:30W x w 32的整数.•••有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30 件,B,20 件时,20X 120+30X 80=4800 (元).方案(二)A,31 件,B,19 件时,19X 120+31X 80=4760(元).方案(三)A,32 件,B,18 件时,18X 120+32X 80=4720(元).故方案(一)A,30 件,B,20 件利润最大.点评:本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.23. (10分)(2015?恩施州)如图,AB是OO的直径,AB=6,过点O作OHL AB交圆于点H, 点C 是弧AH上异于A、B的动点,过点C作CD L OA CE L OH垂足分别为 D E,过点C的直线交OA 的延长线于点G,且/ GCD M CED(1)求证:GC是OO的切线;(2 )求DE的长;(3)过点C作CF L DE于点F,若/ CED=30,求CF的长.考点:圆的综合题.分析:(1)先证明四边形ODC區矩形,得出/ DCE=90 , DE=OC MC=M,得出 / CED#MDC=9° ,Z MDC W MCD 证出/ GCD乂MCD=9°,即可得出结论;(2)由(1)得:DE=OC=AB即可得出结果;(3)运用三角函数求出CE再由含30°角的直角三角形的性质即可得出结果.解答:(1)证明:连接OC交DE于M,如图所示:•/ OHL AB CD L OA CEL OH•# DOE#= OEC#= ODC=9°0•四边形ODCE是矩形,•# DCE=9°0 DE=OC MC=MD•# CED+# MDC=9°0 ,# MDC#= MCD,•••/ GCD# CED•# GCD#+ MCD=9°0即GC L OC•GC是OO的切线;( 2)解:由( 1)得:DE=OC=AB=;3(3)解:I / DCE=90 , / CED=30 ,•CE=DE?co#s CED=X3 =,••• CF=CE=点评:本题是圆的综合题目,考查了切线的判定、矩形的判定与性质、等腰三角形的判定与性质、三角函数、含30°角的直角三角形的性质等知识;本题有一定难度,综合性强,特别是(1)中,需要证明四边形是矩形,运用角的关系才能得出结论.24. (12分)(2015?恩施州)矩形AOCD绕顶点A( 0, 5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2 CM=4( 1 )求AD 的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使S A PA=若存在,求出P点坐标;若不存在,请说明理由.考点:几何变换综合题.专题:综合题.分析:(1)作BP丄AD于P, BQLMC于Q 如图1,根据旋转的性质得AB=AO=5 BE=OC=AJD / ABE=90 ,利用等角的余角相等得/ ABP2 MBQ 可证明Rt△ ABP^Rt△ MBQ得到==, 设BQ=PD=x AP=y,则AD=x+y,所以BM=x+y- 2,利用比例性质得到PB?MQ=xy而PB -MQ=DQ MQ=DM=1利用完全平方公式和勾股定理得到52- y2- 2xy+(x+y - 2)- x2=1,解得x+y=7,则BM=5 BE=BM+ME=7所以AD=7;(2)由AB=BM可判断Rt△ ABP^Rt△ MBQ 贝U BQ=PD=-AP, MQ=AP 利用勾股定理得到(7-MQ 2+M Q=52,解得MQ=4(舍去)或MQ=3则BQ=4根据三角形面积公式和梯形面积公式,利用S 阴影部分=S 梯形ABQD- S A BQM进行计算即可;然后利用待定系数法求直线AM的解析式;(3)先确定B(3, 1),然后利用待定系数法求抛物线的解析式;(4)当点P在线段AM的下方的抛物线上时,作PK//y轴交AM于K,如图2设P (x,2 2 2x - x+5),则K( x, - x+5),则KP=- x +x,根据三角形面积公式得到?(- x +x)?7=, 解得X1=3, X2=,于是得到此时P点坐标为(3, 1)、(,);再求出过点(3, 1)与(,)的直线I的解析式为y= -x+,则可得到直线l与y轴的交点A'的坐标为(0,),所以AA =,然后把直线AM向上平移个单位得到I ',直线l '与抛物线的交点即为P 点,由于A〃(0,),则直线l '的解析式为y= - x+,再通过解方程组得P点坐标.解答:解:(1)作BP丄AD于P, B(QLMC于Q 如图1,•••矩形AOCD绕顶点A (0, 5)逆时针方向旋转得到矩形ABEF• AB=AO=5 BE=OC=AP / ABE=90 ,•••/ PBQ=90 ,•••/ ABP2 MBQ• Rt △ ABP^ Rt △ MBQ・ ?设BQ=PD=x AP=y,则AD=x+y, BM=x+y- 2,• ==,• PB?MQ=xy•/ PB- MQ=DQ MQ=DM=1•(PB- MQ)2=1 ,即PB2- 2PB?MQ+M2=Q1 ,2 2 2 2•••5 - y - 2xy+ (x+y - 2)- x =1,解得x+y=7,/• BM=5•B E=BM+ME=5+2,=7•A D=7;(2)v AB=BM• Rt △ ABP^ Rt △ MBQ• BQ=PD=-7 AP,MQ=AP,•/ B S+M Q=B M,•••( 7 - MQ 2+M Q=52,解得MQ=4(舍去)或MQ=3• BQ=7- 3=4,•S阴影部分=S 梯形ABQ- S^BQM=X(4+7)X 4-X 4X3=16;设直线AM的解析式为y=kx+b ,把A(0,5),M(7,4)代入得,解得,•直线AM的解析式为y= - x+5;2(3)设经过A、B D三点的抛物线的解析式为y=ax +bx+c,■/ AP=MQ=3 BP=DQ=4• B(3, 1 ),而A(0,5),D(7,5),•,解得,2•经过A、B、D三点的抛物线的解析式为y=x - x+5;(4)存在.当点P在线段AM的下方的抛物线上时,作PK//y轴交AM于K,如图2,2设P (x, x - x+5),贝U K (x, - x+5),2 2• KP=- x+5-(x - x+5)=- x +x,•「S △ PAI=,• ?(- x2+x)?7=,整理得7x2- 46x+75,解得X i=3, x?=,此时P点坐标为(3, 1)、(,),求出过点(3, 1)与(,)的直线I的解析式为y= - x+,则直线I与y轴的交点A 的坐标为(0 ,),• AA =5 -=,把直线AM向上平移个单位得到I ',贝U A〃(0,),贝U直线I '的解析式为y= - x+, 解方程组得或,此时P点坐标为(,)或(,),综上所述,点P的坐标为(3, 1)、(,)、(,)、(,).点评:本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形.。

恩施州中考数学试卷真题

恩施州中考数学试卷真题

恩施州中考数学试卷真题根据您的要求,我将为您提供一份恩施州中考数学试卷真题的文章。

请注意,由于我无法获取真实的恩施州中考数学试题,所以以下内容仅为示例,仅供参考。

恩施州中考数学试卷真题一、选择题1. 若向一个正方体又粘一块正方形面,则改变后的立体的面数、顶点数和边数之和分别是多少?A. 7, 9, 12B. 6, 8, 12C. 7, 8, 12D. 6, 9, 12选择题的答案为:B2. 下列哪一个十进制小数等于九分之二的百分数?A. 0.20%B. 0.2%C. 2.0%D. 20.0%选择题的答案为:C二、填空题1. 某地每小时加工200台手机,则24小时内共能加工____台手机。

填空题的答案为:48002. 如图所示,已知∠C = 90°,∠A = 30°,用线段AB、BC和AC表示的三个三角形分别为正三角形、等腰直角三角形和等边三角形。

求∠CBA的度数。

填空题的答案为:60°三、解答题1. 已知一个长方体的底面为10 cm × 8 cm,高为6 cm。

现在把这个长方体沿高度方向切割成若干块,要求每块的底面积都相等,问每块的底面积是多少?解答:底面积为10 cm × 8 cm = 80 cm²由于要求每块的底面积相等,假设每块的底面积为S,则每块的高度为6 cm / S根据体积相等的条件,有10 cm × 8 cm × 6 cm = S × (6 cm / S)解得 S = 48 cm²所以每块的底面积为48 cm²。

2. 甲、乙两人分别从A、B两地同时出发,以相同的速度往对方的地方走。

甲到达B地时,乙走了12 km,甲再次出发,与乙相遇于C 地,然后再返回B地,到达B地时乙走了多少公里?解答:设甲和乙的速度为v,甲到达B地的时间为t,则甲到达C地时的时间为2t。

在甲到达B地的时间内,乙走了12 km,所以乙的速度为12 km / t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省恩施州2013年中考数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。


1.(3分)的相反数是()
B
2.(3分)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记
2=180°,∠3=100°,则∠4等于()
3.(3分)如图所示,∠1+∠
223
.C D.
8.(3分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()
B
9.(3分)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线....
10.(3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()
11.(3分)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:
12.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()
B
二、填空题(本大题共有4小题,每小题3分,共12分。

不要求写出解答过程,请把答案直接填写在相应的位置上)
13.(3分)25的平方根是±5.
14.(3分)函数y=的自变量x的取值范围是x≤3且x≠﹣2.
15.(3分)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为6+π.
16.(3分)把奇数列成下表,
根据表中数的排列规律,则上起第8行,左起第6列的数是171.
三、解答题(本大题共有8个小题,共72分。

解答时应写出文字说明、证明过程或演算步骤)
17.(8分)先简化,再求值:,其中x=.
18.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.
19.(8分)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),
其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.
(1)求袋子里2号球的个数.
(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.
20.(8分)如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.
(1)求点C的坐标及反比例函数的解析式.
(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.
21.(8分)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,).
22.(10分)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
23.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB 于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.
24.(12分)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y 轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
答案
一、选择题
1-6 A B D C CC 7-12 D BBD DC
二、填空题
13、±5
14、x≤3且x≠﹣2
15、6+π
16、171
三、解答题
÷
×

﹣﹣.
EF=AC
GH=
BD
=,
下方的概率为:
y=
AC=6=3


恰好
n=
×(米)(米)
AD=AE+ED=55
=
DN=DF+NF=55+
+x=x+55
DN=55+

2932
的直径
DF=



则点
((
(×﹣(。

相关文档
最新文档