中考数学专题复习 探索性问题复习学案 (新版)新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索性问题
【学习目标】
1.通过观察、类比、操作、猜想、探究等活动,了解探索性数学问题中的常见四大类型,并体会解题策略.
2.能够根据相应的解题策略解决探索性问题.
3.使学生会关注探索性数学问题,提高学生的解题能力. 【重点难点】
重点:条件探索型、结论探索型、规律探索型的问题. 难点:对各探索型问题策略的理解. 【知识回顾】
1.
_____.
2. 观察下面的一列单项式:x ,2
2x -,3
4x ,4
8x -,…根据你发现的规律,第7个单
项式为 ;第n 个单项式为 3. 观察算式:
224135-=⨯; 225237-=⨯;
226339-=⨯ 2274311-=⨯;
…………
则第n (n 是正整数)个等式为________. 4.如图,在△ABC 中,AB =AC ,AD ⊥BC 于D . 由以上两个条件可得________.(写出一个结论)
【综合运用】
例1抛物线y =ax 2+bx +c 的部分图象如图所示,根据这个函数图象,你能得到关于该函
2
1 D C
B A
数的那些性质和结论?
例2(1)探究新知:如图①,已知△ABC 与△ABD 的面积相等,试探究AB 与CD 的位置关系,并说明理由.
(2)结论应用:① 如图②,点M ,N 在反比例函数
k
y x
(k >0)的图象上,过点M
作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试探究MN 与EF 的位置关系. ② 若①中的其他条件不变,只改变点M ,N 的位置如图③所示,试探究MN 与EF 的位置关系.
【直击中考】
O
y N M
图②
E
F
x
N x
O y D
M
E
N
F
A
B D
C
图①
G H
1. 对一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;
第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.
(1)证明:∠ABE=30°;
(2)证明:四边形BFB′E为菱形.
2. 已知点A(-1,-1)在抛物线y=(k2-1)x2-2(k-2)x+1上,
(1)求抛物线的对称轴;
(2)若B点与A点关于抛物线的对称轴对称,问是否存在与抛物线只交于一点B的直线?如果存在,求符合条件的直线;如果不存在,说明理由.
【总结提升】
1.请你画出本节课的知识结构图.
2.通过本课复习你收获了什么?
【课后作业】
一、必做题:
1、如图,坐标平面内一点A (2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、
O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )
A .2
B .3
C .4
D .5
2、已知(x 1,y 1),(x 2,y 2)为反比例函数x
k
y
图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的值可为___________.(只需写出符合条件的一个..k 的值)
二、选做题:
3、(xx.山东临沂)如图1,已知矩形ABED ,点C 是边DE 的中点,且AB =2AD. (1)判断△ABC 的形状,并说明理由;
(2)保持图1中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线段AD 、BE 在直线MN 的同侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;
(3)保持图2 中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.
探索性问题复习学案答案
综合运用
例1.对称轴是x = -1,开口向下,与y 轴交于(0,3)点等 例2. (1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,
则∠CGA =∠DHB =90°. ∴ CG ∥DH .
∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ∴ 四边形CGHD 为平行四边形. ∴ AB ∥CD .
(2)①证明:连结MF ,NE .
设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2). ∵ 点M ,N 在反比例函数(k >0)的图象上, ∴
∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2.
∴ S △EFM = 111122x y k = S △EFN = 2211
22
x y k =
∴S △EFM =S △EFN .
由(1)中的结论可知:MN ∥EF . ② MN ∥EF . 直击中考
1. 证明:(1)∵对折AD 与BC 重合,折痕是MN , ∴点M 是AB 的中点, ∴A ′是EF 的中点, ∵∠BA′E=∠A =90°, ∴BA ′垂直平分EF , ∴BE =BF ,
∴∠A′BE =∠A′BF ,
由翻折的性质,∠ABE =∠A′BE , ∴∠ABE =∠A′BE =∠A′BF , ∴∠ABE =×90°=30°;
(2)∵沿EA ′所在的直线折叠,点B 落在AD 上的点B′处,