理论力学题库第二章
理论力学(机械工业出版社)第二章平面力系习题解答
第二章 习 题2-1 试计算图2-55中力F 对点O 之矩。
图2-55(a) 0)(=F O M (b) Fl M O =)(F (c) Fb M O -=)(F (d) θsin )(Fl M O =F(e) βsin )(22b l F M O +=F(f) )()(r l F M O +=F2-2 一大小为50N 的力作用在圆盘边缘的C 点上,如图2-56所示。
试分别计算此力对O 、A 、B 三点之矩。
图2-56mN 25.6m m N 625030sin 2505060cos 30sin 5060sin 30cos 50⋅=⋅=︒⨯⨯=︒⨯︒-︒⨯︒=R R M Om N 075.17825.1025.630cos 50⋅=+=⨯︒+=R M M O A m N 485.9235.325.615sin 50⋅=+=⨯︒+=R M M O B2-3 一大小为80N 的力作用于板手柄端,如图2-57所示。
(1)当︒=75θ时,求此力对螺钉中心之矩;(2)当θ为何值时,该力矩为最小值;(3) 当θ为何值时,该力矩为最大值。
图2-57(1)当︒=75θ时,(用两次简化方法)m N 21.20mm N 485.59.202128945.193183087.21sin 8025075sin 80⋅=⋅=+=⨯︒⨯+⨯︒⨯=O M (2) 力过螺钉中心 由正弦定理)13.53sin(250sin 30θθ-︒= 08955.03/2513.53cos 13.53sin tan =+︒︒=θ ︒=117.5θ(3) ︒=︒+︒=117.95117.590θ2-4 如图2-58所示,已知N 200N,300N,200N,150321='====F F F F F 。
试求力系向O 点的简化结果,并求力系合力的大小及其与原点O 的距离d 。
图2-58kN64.1615110345cos kN64.4375210145cos 321R321R-=+-︒-=∑='-=--︒-=∑='F F F F F F F F F F y y x x主矢RF '的大小 kN 54.466)()(22R =∑+∑='y x F F F 而 3693.064.43764.161tan RR ==''=x y F F α ︒=27.20α m N 44.21162.0511.045cos )(31⋅=-⨯+⨯︒=∑=F F M M O O Fmm 96.45m 04596.054.466/44.21/R==='=F M d O2-5 平面力系中各力大小分别为kN 60kN,260321===F F F ,作用位置如图2-59所示,图中尺寸的单位为mm 。
《理论力学》第二章力系的简化习题解
第二章力系的简化习题解[习题2-1] 一钢结构节点,在沿OA,OB,OC的方向上受到三个力的作用,已知,,,试求这三个力的合力.解:作用点在O点,方向水平向右.[习题2-2] 计算图中已知,,三个力分别在轴上的投影并求合力. 已知,,.解:合力的大小:方向余弦:作用点:在三力的汇交点A.[习题2-3] 已知,,,,求五个力合成的结果(提示:不必开根号,可使计算简化).解:合力的大小: 方向余弦:作用点:在三力的汇交点A.[习题2-4] 沿正六面体的三棱边作用着三个力,在平面OABC内作用一个力偶. 已知,,,.求力偶与三个力合成的结果.解:把,,向平移,得到:主矢量:的方向由E指向D.主矩:方向余弦:[习题2-5] 一矩形体上作用着三个力偶,,.已知,,,,求三个力偶合成的结果.解:先把在正X面上平行移动到x轴.则应附加力偶矩:把沿轴上分解:主矩:方向余弦:[习题2-6] 试求图诸力合成的结果.解:主矢量:竖向力产生的矩顶面底面斜面-0.76 0.2 0.75 主矩:方向余弦:[习题2-7] 柱子上作有着,,三个铅直力, 已知,,,三力位置如图所示.图中长度单位为,求将该力系向点简化的结果.解:主矢量:竖向力产生的矩3.5 1.7 0主矩:方向余弦:[习题2-8] 求图示平行力系合成的结果(小方格边长为)解:主矢量:ABCD8.4 -4.35主矩:方向余弦:[习题2-9] 平板OABD上作用空间平行力系如图所示,问应等于多少才能使该力系合力作用线通过板中心C.解:主矢量:由合力矩定理可列出如下方程:[习题2-10] 一力系由四个力组成。
已知F1=60N,F2=400N,F3=500N,F4=200N,试将该力系向A点简化(图中长度单位为mm)。
解:主矢量计算表0 0 600 200 0300 546.41 -140方向余弦:-110.564 120 0 主矩大小:方向余弦:[习题2-11]一力系由三力组成,各力大小、作用线位置和方向见图。
北师大理论力学习题答案2第二章思考题
图s2.3第二章 刚体运动学思2.1 答:0R θ=-=A C υυi ,并不能说明0=A a 。
因为0R θ=-=A C υυi 所表示的A υ是A 在一定特定位置,即与地面接触点时的速度,下一时刻与地面的接触点就换为别的质点了,所以不是同一质点速度的表达式。
若要通过对υ求时间的导数去求A a ,必须先将A υ表示成时间的函数式()t A υ,()()d d t t t=A A υa ,然后将在与地面接触时的时刻t 代入()t A a ,才能求得A a 。
思2.2 答:对R θυ=并不能求得R a θ=。
因为按加速度定义=a υ,应该是对速度矢量求导得加速度矢量。
正确的方法应该是:R θυ=R υθ==C υi iR θ==C C a υi又已知a =-C a iR a θ∴=-思2.3 解:设当圆柱A 位于圆柱B 顶部时,''P 与'P 点接触。
由于A 与B 间无滑动,所以弧长'''PP PP =,故无滑条件可写为r R ϕθ=。
选'O 为基点,绕基点的转动可以用由过基点方向固定的直线(称之为定线,'OQ )到过基点且和刚体固连的运动直线(称之为动线,'''O P )的夹角ψ来描述,刚体的角速度ωψ=。
由于'OO 方向不固定,所以刚体的角速度ωϕ≠。
思2.4 答:以瞬心为基点,设作为瞬心的那个点(基点)的瞬时加速度为0a ,则刚体上任一点的加速度为:20r r ωω=++n t a a e e思2.5 答:定点运动中的定点应是与刚体固连(可在刚体之外)且固定不动的点。
由于B 点不是与刚体固连的点,所以B 点不是定点。
根据瞬时轴的定义,因为B 点与刚体不固连,故BQ 和OB 均不是瞬时轴。
思2.6 答:解题时根据题目要求选择参考系,再根据具体情况建立适当的静止和运动坐标系。
例题3中选择地面做参考系,并在地面参考系中写出了相应的矢量表达式,只是为了计算方便才选择了动坐标系做矢量投影,所以P υ和P a 均是相对水平面的速度和加速度。
理论力学第二章习题答案
理论力学第二章习题答案理论力学是物理学中研究物体运动规律和相互作用的分支学科,它以牛顿运动定律为基础,通过数学方法来描述物体的运动和力的作用。
本章习题答案将帮助学生更好地理解和掌握理论力学的基本概念和计算方法。
习题1:考虑一个质量为m的物体在重力作用下自由下落。
忽略空气阻力,求物体下落过程中的速度和位移。
答案:物体自由下落时,受到的力只有重力,大小为mg,方向向下。
根据牛顿第二定律,F=ma,可以得到加速度a=g。
物体的速度v随时间t变化,可以使用公式v=gt计算。
物体的位移s随时间变化,可以使用公式s=1/2gt^2计算。
习题2:一个质量为m的物体在水平面上以初速度v0开始运动,受到一个大小为k的恒定摩擦力作用。
求物体停止前所经过的距离。
答案:物体在水平面上运动时,受到的摩擦力与物体的位移成正比,即F=-kx。
根据牛顿第二定律,F=ma,可以得到加速度a=-k/m。
物体的位移x随时间t变化,可以使用公式x=v0t - 1/2(k/m)t^2计算。
当物体速度减至0时,物体停止,此时t=2v0/k,代入公式得到x=2v0^2/k。
习题3:一个质量为m的物体在斜面上,斜面与水平面的夹角为θ。
物体受到一个向上的拉力F,使得物体沿斜面匀速上升。
求拉力F的大小。
答案:物体沿斜面匀速上升时,拉力F与重力分量mgsinθ和摩擦力μmgcosθ平衡。
根据平衡条件,F=mgsinθ + μmgcosθ。
如果摩擦系数为μ,可以进一步简化为F=mg(sinθ + μcosθ)。
习题4:考虑一个质量为m的物体在竖直平面内做圆周运动,圆心位于物体的正下方。
物体的运动由一个弹簧连接到圆心,弹簧的劲度系数为k。
求物体在圆周运动中的角速度。
答案:物体在圆周运动中,受到弹簧力和重力的作用。
根据牛顿第二定律,向心力Fc=mv^2/r=ma,其中r为圆的半径。
由于物体做圆周运动,向心力由弹簧力和重力的垂直分量提供。
因此,Fc=kx - mgcosθ,其中x为弹簧的伸长量,θ为物体与竖直方向的夹角。
理论力学(周衍柏 第二版)第2章习题解答
垂直 x 轴方向有:
mv0 = mv1 cosθ1 + mv2 cosθ2 ①
可知
0 = mv1 sinθ1 − mv2 sinθ2 ②
( ) v02 = v12 + v22 + 2v1v2 cos θ1 + θ2 ③
整个碰撞过程只有系统内力做功,系统机械能守恒:
由③④得
1 2
mv02
=
1 2
mv12
求绕此轴的动量矩。
2.6 一炮弹的质量为 M1 + M 2 ,射出时的水平及竖直分速度为U 及V 。当炮弹达到最高点 时,其内部的炸药产生能量 E ,使此炸弹分为 M1 及 M2 两部分。在开始时,两者仍沿原方
向飞行,试求它们落地时相隔的 距离,不计空气阻力。
2.7 质量为 M ,半径为 a 的光滑半球,其低面放在光滑的水平面上。有一质量为 m 的 质点 沿此半球面滑下。设质点的初位置与球心的连线和竖直向上的直线间所成之角为α ,并且 起始时此系统是静止的,求此质点滑到它与球心的连线和竖直向上直线间所成之角为θ 时θ
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
M
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
竖直方向
vx = u cosθ − V ③
vy = usiaθ ④ 在 m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)
理论力学作业卷答案(第二章)
16 2 4 2 m/ s 2 9 3 100 2 10 2 2 r1 1 0.3 m/ s 2 9 3
at R 20 rad s 2
鼓轮轮缘上一点的加速度
10(m/ s 2 ) at v an v 2 R 20t 2 (m/ s 2 )
2 a at2 an 10 1 4t 4 (m/ s 2 )
v R 20t rad s
题2-6图
题2-7图
题2-10图
题
第
2ቤተ መጻሕፍቲ ባይዱ
页共 21
页
n1
Ⅲ Ⅰ Ⅱ
2
v AB vBC vCD vDA a AB aCD 0
n1
30
r1 1 0.3
10 m/ s 3
W
题2-8图
2-6
升降机装置由半径为 R =50cm 的鼓轮带动,如图所示。被升降物体的运动方程为 x=5t2 (t 以 s
aBC r2 2 2 0.75
计,x 以 m 计) 。求鼓轮的角速度和角加速度,并求在任意瞬时,鼓轮轮缘上一点的全加速度的大小。 aDA 解: 轮缘上一点的速度与切向加速度为 2-10 车床的走刀架机构如图所示。已知各齿轮的齿数为 z1 =40,z2 =84 ,z3 =28 ,z4 =80 ,主轴转速 10t (m/ s) vx n1 =120r/min,丝杠螺距 t=12mm 试求走刀速度 v 2 。 a 2 10(m/ s ) at v 从而,鼓轮的角速度与角加加速度为
1
10 rad/ s 3 r i12 1 2 2 r1 30 r1 30 10 4 1 rad/ s r2 75 3 3
《理论力学》第二章作业答案
xyPTF22036O152-⋅图[习题2-3]动学家估计,食肉动物上颚的作用力P 可达800N ,如图2-15示。
试问此时肌肉作用于下巴的力T 、F 是多少? 解:解:0=∑xF036cos 22cos 00=-F T22cos 36cos F T =0=∑yF036sin 22sin 00=-+P F T 80036sin 22sin 22cos 36cos 000=+F F )(651.87436sin 22tan 36cos 80000N F =+=)(179.76322cos 36cos 651.87422cos 36cos 000N F T ===182-⋅图B[习题2-6] 三铰拱受铅垂力P F 作用,如图2-18所示。
如拱的重量不计,求A 、B 处支座反力。
解:0=∑x F0cos 45cos 0=-θB A R RB A R l l l R 22)23()2(222+=B A R R 10121=B A R R 51=0=∑yF0sin 45sin 0=-+P B A F R R θP B A F R l l l R =++22)23()2(2321P B A F R R =+10321的受力图轮A P B B F R R =+⨯1035121P B F R =104P P B F F R 791.0410≈=31623.0101)23()2(2cos 22≈=+=l l l θ0565.71≈θ P P P A F P F R 354.04241051≈=⨯=方向如图所示。
[习题2-10] 如图2-22所示,一履带式起重机,起吊重量kN F P 100=,在图示位置平衡。
如不计吊臂AB 自重及滑轮半径和摩擦,求吊臂AB 及揽绳AC 所受的力。
解:轮A 的受力图如图所示。
0=∑x F030cos 20cos 45cos 000=--P AC AB F T R的受力图轮A 603.869397.07071.0=-AC AB T R AC AB T R 3289.1476.122+=0=∑yF030sin 20sin 45sin 000=---P P AC AB F F T R010*******.07071.0=---AC AB T R 1503420.07071.0=-AC AB T R1503420.0)3289.1476.122(7071.0=-+⨯AC AC T T 1503420.09397.06023.86=-+AC AC T T 3977.635977.0=AC T )(069.106kN T AC ≈)(432.263069.1063289.1476.1223289.1476.122kN T R AC AB =⨯+=+=解法二:用如图所示的坐标系。
理论力学题库第二章
理论力学题库——第二章一、 填空题1. 对于一个有n 个质点构成的质点系,质量分别为123,,,...,...i n m m m m m ,位置矢量分别为123,,,...,...i n r r r r r u r u r u r u r u r,则质心C 的位矢为 。
2. 质点系动量守恒的条件是 。
3. 质点系机械能守恒的条件是 。
4. 质点系动量矩守恒的条件是 。
5. 质点组 对 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。
6. 质心运动定理的表达式是 。
7. 平面汇交力系平衡的充分必要条件是合力为零。
8.各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。
9. 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。
10. 质点组动能的微分的数学表达式为: ∑∑∑===⋅+⋅==n i i i i n i i e i n i i i r d F r d F v m d dT 1)(1)(12)21(ϖϖϖϖ ,表述为质点组动能的微分等于 内 力和 外 力所作的 元功 之和。
11. 质点组动能等于 质心 动能与各质点对 质心 动能之和。
12. 柯尼希定理的数学表达式为: ∑='+=ni i i C r m r m T 12221&ϖ&ϖ ,表述为质点组动能等于 质心 动能与各质点对 质心 动能之和。
13. 2-6.质点组质心动能的微分等于 内、外 力在 质心系 系中的元功之和。
14. 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。
15. 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动)的引力的运动。
16. 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个粒子。
17. 设木块的质量为m 2 , 被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。
如果有一质量为m 1的子弹以速率v 1 沿水平方向射入木块,子弹与木块将一起摆至高度为h 处,则此子弹射入木块前的速率为:2/11211)2(gh m m m +=v 。
理论力学(刘又文 彭献)答案第2章
答:不对。因为其中一个平面上的 3 个投影方程,完全可由其他两组方程导 出,故独立平衡方程数只有 6 个。
13.均质杆 AB、AC,铅垂架在粗糙水平面上,并处于临界平衡状态,如图 2.9 所示。研究整体,其受力为平面一般力系,则可解出 3 个未知量。对吗?
可由其导出,它们与上述 6 个方程互不独立;如果使用整体及其中一刚体的共 6
个平衡方程,则另一刚体的 3 个平衡方程也可由其导出。故该系统的独立平衡方
程只有 6 个。 9. 如 图 2.6 所 示 为 两 铰 拱 , A 、 B 支 座 处 有 4 个 未 知 约 束 力 , 可 由
∑ Fx = 0, ∑ Fy = 0, ∑ M A = 0, ∑ M B = 0,共 4 个平衡方程联立解出。对吗?
答:不对。平面一般力系,只有 3 个独立平衡方程,第 4 个方程一定是前 3
个的某种线性组合,是不独立的。该结构为超静定,4 个未知量不可由平衡方程
全部求出。
10.某力系中,各力的作用线平行于某一平面,则独立平衡方程的个数是 3。
对吗?
答:不对。平行于某平面的力线不一定共面,也不一定平行。如图 2.7 所示,
吗?
答:不对。当 A、B 两矩心与汇交点共线,且力系对于 AB 轴对称时,如图
∑ ∑ 2.3 所示汇交力系中, F1 = F2 ,虽有 MA = 0, MB = 0,但该力系并不平衡。
∑ ∑ ∑ 5.平面一般力系,满足 MA =0, MB =0, Fx = 0,则一定平衡。对吗?
答:不对。应补充 AB 不垂直 x 轴的条件,否则条件不充分。如图 2.3 所示 情形,力系虽满足上述三个方程,但并不平衡。
理论力学第二版第二章答案 罗特军
魏
π
y sin x
0
dy sin xdx 2
0
泳
π
涛
da w. co m
yC
π y sin x 1 1 π 2 π y d x d y d x y d y sin xdx 0 0 0 S S 2S 8
由对称性, xC
π 2
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
案
网
ww
w.
kh
da
7 πr 2 0 πr 2 r r 2 2 7 πr πr 6 2 2 7 πr 0 πr r r 图形形心 y 坐标: 2 2 7 πr πr 6
w.
co
静力学习题及解答—力系的简化
i i
123.6mm , yC
S y S
i i
涛
533.3
i
514.1mm
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
案
网
ww
w.
kh
da
w.
co
m
静力学习题及解答—力系的简化
2.8 均质平面薄板由正弦曲线与 x 轴的一段所围成,如图所示。求板的中心位置。
解:
S dxdy dx
魏
泳
涛
m
解: q h 1m 78.4 kN m M O (F1 ) F1a 891kN m M O (F2 ) F2b 297kN m 1 水压力主矢大小: qh 313.6kN ,方向水平向右 2 1 h 水压力对 O 点主矩: qh 836.3kN m 2 3 (313.6i 891 j ) kN 945(0.332i 0.943 j ) kN 因此,力系主矢: FR 力系对 O 点主矩: M O 243.3kN m 合力作用线距离 O 点: d
理论力学试题题目含参考答案
理论力学部分第一章 静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
( )2.两端用光滑铰链连接的构件是二力构件。
( )3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( )4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
( )5.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
( )6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
( )二、选择题1.若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。
则其合力可以表示为 。
① 1F -2F ;② 2F -1F ;③ 1F +2F ;2.三力平衡定理是 。
① 共面不平行的三个力互相平衡必汇交于一点;② 共面三力若平衡,必汇交于一点;③ 三力汇交于一点,则这三个力必互相平衡。
3.在下述原理、法则、定理中,只适用于刚体的有 。
① 二力平衡原理; ② 力的平行四边形法则;③ 加减平衡力系原理; ④ 力的可传性原理;⑤ 作用与反作用定理。
4.图示系统只受F 作用而平衡。
欲使A 支座约束力的作用线与AB 成30︒角,则斜面的倾角应为________。
① 0︒; ② 30︒;③ 45︒; ④ 60︒。
5.二力A F 、B F 作用在刚体上且0=+B A F F ,则此刚体________。
①一定平衡; ② 一定不平衡;③ 平衡与否不能判断。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
3.作用在刚体上的两个力等效的条件是。
4.在平面约束中,由约束本身的性质就可以确定约束力方位的约束有,可以确定约束力方向的约束有,方向不能确定的约束有(各写出两种约束)。
理论力学试题库参考资料
2014级理论力学期末考试试题题库理论力学试题第一章物系受力分析画图题1、2、3、4、5、第二章平面汇交力系计算题1、2、3、4、5、6、7、第三章平面任意力系计算题2、4、5、7、8、第四章空间力系计算题1、2、3、4、5、6、第五章静力学综合填空题1、作用在刚体上某点的力,可以沿着其作用线移动到刚体上任意一点,并不改变它对刚体的作用效果。
2、光滑面约束反力方向沿接触面公法线指向被约束物体。
3、光滑铰链、中间铰链有1个方向无法确定的约束反力,通常简化为方向确定的 2 个反力。
4、只受两个力作用而处于平衡的刚体,叫二力构件,反力方向沿二力作用点连线。
5、约束力的方向与该约束所能阻碍的位移方向相反 .6、柔软绳索约束反力方向沿绳索 ,指向背离被约束物体.7、在平面只要保持力偶矩和转动方向不变,可以同时改变力偶中力的大小和力臂的长短,则力偶对刚体的作用效果不变。
8、力偶的两个力在任一坐标轴上投影的代数和等于零,它对平面的任一点的矩等于力偶矩,力偶矩与矩心的位置无关。
9、同一平面的两个力偶,只要力偶矩相等,则两力偶彼此等效.10、平面汇交力系可简化为一合力 ,其大小和方向等于各个力的矢量和,作用线通过汇交点.11、平面汇交力系是指力作用线在同一平面 ,且汇交与一点的力系.12、空间平行力系共有 3 个独立的平衡方程.13、空间力偶对刚体的作用效果决定于力偶矩大小、力偶作用面方位、力偶的转向三个因素。
14、空间任意力系有 6 个独立的平衡方程.15、空间汇交力系的合力等于各分力的矢量和,合力的作用线通过汇交点 . 第五章静力学综合摩擦填空题1、当作用在物体上的全部主动力的合力作用线与接触面法线间的夹角小于摩擦角时,不论该合力大小如何,物体总是处于平衡状态,这种现象称为自锁现象.2、答案:50N3、答案:φm/24、静摩擦力Fs的方向与接触面间相对滑动趋势的方向相反,其值满足__0<=F S<=F MAX摩擦现象分为滑动摩擦和__滚动摩阻__两类。
理论力学题库第二章
理论力学题库——第二章一、 填空题1. 对于一个有n 个质点构成的质点系,质量分别为123,,,...,...i n m m m m m ,位置矢量分别为123,,,...,...i n r r r r r ,则质心C 的位矢为 。
2. 质点系动量守恒的条件是 。
3. 质点系机械能守恒的条件是 。
4. 质点系动量矩守恒的条件是 。
5. 质点组 对 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。
6. 质心运动定理的表达式是 .7. 平面汇交力系平衡的充分必要条件是合力为零.8.各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。
9. 质点组的角动量等于 质心角动量 与各质点对质心角动量之和.10. 质点组动能的微分的数学表达式为: ∑∑∑===⋅+⋅==n i i i i n i i e i n i i i r d F r d F v m d dT 1)(1)(12)21( ,表述为质点组动能的微分等于 内 力和 外 力所作的 元功 之和. 11. 质点组动能等于 质心 动能与各质点对 质心 动能之和.12. 柯尼希定理的数学表达式为: ∑='+=ni i i C r m r m T 12221 ,表述为质点组动能等于 质心 动能与各质点对 质心 动能之和。
13. 2-6。
质点组质心动能的微分等于 内、外 力在 质心系 系中的元功之和。
14. 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上.15. 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动)的引力的运动。
16. 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个粒子。
17. 设木块的质量为m 2 , 被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。
如果有一质量为m 1的子弹以速率v 1 沿水平方向射入木块,子弹与木块将一起摆至高度为h 处,则此子弹射入木块前的速率为:2/11211)2(gh m m m +=v 。
理论力学第二章习题答案
理论力学第二章习题答案理论力学第二章习题答案理论力学是物理学的基础学科之一,它研究物体的运动规律以及力的作用原理。
在理论力学的学习过程中,习题是检验学生理解和掌握程度的重要方式之一。
下面将为大家提供理论力学第二章的习题答案,希望对大家的学习有所帮助。
1. 一个质点在匀速直线运动中,它的加速度是多少?答:在匀速直线运动中,速度保持不变,所以加速度为0。
2. 一个质点的速度随时间的变化规律为v=3t+2,求它在t=2s时的速度。
答:将t=2s代入速度变化规律中,得到v=3*2+2=8m/s。
3. 一个质点做匀加速直线运动,它的初速度为2m/s,加速度为3m/s²,求它在t=4s时的位移。
答:根据匀加速直线运动的位移公式s=vt+1/2at²,将初速度v=2m/s,时间t=4s,加速度a=3m/s²代入,得到s=2*4+1/2*3*4²=8+24=32m。
4. 一个质点做匀加速直线运动,它的初速度为4m/s,位移为20m,加速度为2m/s²,求它的末速度。
答:根据匀加速直线运动的末速度公式v²=u²+2as,将初速度u=4m/s,位移s=20m,加速度a=2m/s²代入,得到v²=4²+2*2*20=16+80=96,所以末速度v=√96≈9.8m/s。
5. 一个质点做直线运动,它的速度随时间的变化规律为v=2t²+3t,求它在t=3s时的加速度。
答:加速度是速度对时间的导数,所以将速度变化规律v=2t²+3t对时间t求导,得到加速度a=dv/dt=4t+3。
将t=3s代入,得到a=4*3+3=15m/s²。
6. 一个质点做直线运动,它的速度随时间的变化规律为v=5t²+2t,求它在t=2s 时的加速度。
答:同样地,将速度变化规律v=5t²+2t对时间t求导,得到加速度a=dv/dt=10t+2。
理论力学第二章 质点组力学习题(带答案解析)
《理论力学》第二章质点组力学一、单选题(共14题)1、对功的概念有以下儿种说法:()①保守力作正功时,系统内相应的势能增加②质点运动经一闭合路径,保守力对质点作的功为零.③作用力和反作用力大小相等、方向相反,两者所作功的代数和必为零.A、①、②是正确的B、②、③是正确的C、只有②是正确的D、只有③是正确的正确答案:C解析:①错(保守力作正功时,系统相应的势能减少)。
③错.(作用力和反作用力虽然大小相等、方向相反,但两者所作功的代数和不一定为零;而等于力与两者相对位移的乘积。
)2、一小球在竖直平面内作匀速圆周运动,则小球在运动过程中:()A、机械能不守恒、动量不守恒、角动量守恒;B、机械能守恒、动量不守恒、角动量守恒;C、机械能守恒、动量守恒、角动量不守恒;D、机械能守恒、动量守恒、角动量守恒。
正确答案:A解析:小球在竖直平面内作匀速圆周运动,其动能不变,势能改变,所以机械能不守恒。
小球在运动过程中,速度方向在改变,所以动量不守恒。
由于小球作匀速圆周运动,它所受的合力指向圆心,力矩为零,所以角动量守恒。
3、甲、乙、丙三物体的质量之比是1:2:3,若它们的动能相等,并且作用于每一物体上的制动力都相同,则它们制动距离之比是:()A、1:2:3B、1:4:9C、1:1:1D、3:2:1正确答案:C解析:由动能定理可知三个制动力对物体所作的功相等;在这三个相同的制动力作用下,物体的制动距离是相同的.4、如图的系统,物体A,B置于光滑的桌面上,物体A和C,B和D之间摩擦因数均不为零,首先用外力沿水平方向相向推压A和B,使弹簧压缩,后拆除外力,则A和B弹开过程中,对A、B、C、D和弹簧组成的系统()A、动量守恒,机械能守恒;B、动量不守恒,机械能守恒;C、动量不守恒,机械能不守恒;D、动量守恒,机械能不一定守恒.正确答案:D解析:桌面光滑,A、B、C、D和弹簧组成的系统不受外力,动量守恒;在A和B弹开过程中,物体A和C,B和D之间摩擦因数均不为零,一定存在摩擦力,如果A、C或B、D之间没发生相对位移,摩擦力不做功,则机械能守恒,若发生了相对位移,摩擦力做负功,机械能不守恒。
理论力学第二章答案
[
]
代入完整保守体系的拉格朗日方程,并化简得
&& θ + sinθ ⋅ cosθ ⋅ ω 2 = 0
2.9 用拉格朗日方程写出习题1.27的运动微分方程 解:体系为自由度为2的完整约束体系,取x,y为广义坐标
m & & T = (x2 + y2) 2
则
V =−
e2 4 πε 0
⋅
1 x2 + y2 1 x2 + y2
ϕ +ϕ ϕ +ϕ m1g sinϕ1 − k cos 1 2 ⋅ (l − 2R) ⋅ sin 1 2 = 0 2 2 m g sinϕ − k cosϕ1 + ϕ2 ⋅ (l − 2R) ⋅ sinϕ1 + ϕ2 = 0 2 2 2 2
o
ϕ1 ϕ2
m2
m1
2.23 质量为m,电荷为q的粒子在轴对称电场 中运动。写出粒子的拉格朗日函数和运动微分方程。 v v v v 解: 由题中 E = E 0 e r ,B = B 0 k 令 ϕ = E 0 ln R v 1 v A = B 0 R eθ 2 v v 在柱坐标系中,有: = 1 mv 2 − q ϕ + q A ⋅ V , L 2 d ∂L ∂L − =0 代入: & dt ∂ q α ∂ qα
o
2.6 用拉格朗日程写出习题1.20的运动微分方程 解:如图,取底面圆心处为坐标原点,建立柱坐标系,质点到 v &v v v & eϕ + ze z & 轴距为R,则: υ = R er + Rϕ & & 由几何关系 R = ( R2 + z ⋅ tan α ), R = z ⋅ tan α
理论力学第二章课后习题答案
理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。
2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。
(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。
(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。
(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。
6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。
(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。
2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。
则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。
5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。
1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。
(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。
理论力学答案第二章
《理论力学》第二章作业习题2-5解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力Fr外, 沿DB有一拉力Tr和沿DE有一拉力ETr。
列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑cos0sin0EET TT Fθθ-=⎧⎨-=⎩解之得800/0.18000()T Fctg Nθ=≈=(2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T'r外,沿BA有一铅直向下的拉力ATr,沿BC有一拉力CTr,且拉力T'r与D点所受的拉力Tr大小相等方向相反,即T T'=-r r。
列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑sin0cos0CC AT TT Tθθ'-=⎧⎨-=⎩解之得8000/0.180000()AT T ctg Nθ'=≈=答:绳AB作用于桩上的力约为80000N。
习题2-6 解:(1) 取构件BC 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末B 、C 处所受的约束力B F r 、C F r必定形成一个阻力偶与之平衡。
列平衡方程()0B M F =∑r0C M F l -=所以 C M F l=(2) 取构件ACD 为研究对象,其受力情况如上图(b)所示:C 处有一约束力C F 'r与BC 构件所受的约束力C F r 互为作用力与反作用力关系,在D 处有一约束力D F r 的方向向上,在A 处有一约束力A F r,其方向可根据三力汇交定理确定,即与水平方向成45度角。
列平衡方程0X F =∑sin 450o A C F F '-=所以 222A C C M F F F l'=== 2Ml(b)所示。
习题2-7解:(1) 取曲柄OA 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末O 、A 处所受的约束力O F ρ、BA F ρ必定形成一个阻力偶与之平衡。
《理论力学》第二章-力系的简化试题及答案
第2章 力系的等效简化2-1 一钢结构节点,在沿OC 、OB 、OA 的方向受到三个力的作用,已知F 1=1kN ,F 2=2kN ,F 3=2kN 。
试求此力系的合力。
解答 此平面汇交力学简化为一合力,合力大小可由几何法,即力的多边形进行计算。
作力的多边形如图(a ),由图可得合力大小kN F R 1=,水平向右。
2-2 计算图中1F 、2F 、3F 三个力的合力。
已知1F =2kN ,2F =1kN ,3F =3kN 。
解答 用解析法计算此空间汇交力系的合力。
kN F F F F ix Rx 424.26.0126.0222221=´´+=´´+=S =kN F F F iy Ry 566.08.018.022222=´´=´´=S =kN F F F F iz Rz 707.313222223=´+=´+=S =kN F F F F Rz Ry Rx R 465.4222=++=合力方向的三个方向余弦值为830.0cos ,1267.0cos ,5428.0cos ======RRz R Ry R Rx F FF F F F g b a2-3已知 N F N F N F N F 24,1,32,624321====,F 5=7N 。
求五个力合成的结果(提示:不必开根号,可使计算简化)。
解答 用解析法计算此空间汇交力系的合力。
N F F F F F ix Rx 0.460cos 45cos 537550043=´´++-=S =N F F F F F iy Ry 0.460sin 45cos 547550042=´´+-=S =N F F F F F iz Rz 0.445sin 7625041=´++-=S =N F F F F Rz Ry Rx R 93.634222==++=合力方向角:4454),(),(),(¢°=Ð=Ð=Ðz F y F x F R R R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学题库——第二章一、填空题1.对于一个有"个质点构成的质点系,质量分别为加],加2,加3,…叫,…加",位置矢量分别为,“,£,•",•••—,则质心c的位矢为_______________ 。
2.质点系动量守恒的条件是______________________________ 。
3.质点系机械能守恒的条件是__________________________ ,4.质点系动量矩守恒的条件是___________________________________ o5.质点组_______ 对______ 的微商等于作用在质点组上外力的矢量和,此即质点组的定理。
& 质心运动定理的表达式是______________________________ 07.平面汇交力系平衡的充分必要条件是合力为零。
8.各质点对质心角动量对时间的微商等于外力对质心的力矩之和。
9.质点组的角动量等于质心角动量与各质点对质心角动量之和。
10.质点组动能的澈分的数学表达式为:£耳"・心+£戸件叭2 t.i /-I /-I表述为质点组动能的微分等于_力和力所作的元功之和。
11.质点组动能等于质心动能与各质点对质心动能之和。
12.柯尼希定理的数学表达式为:丁=丄〃呢2+£性十2 ,表述为质点组动能等于质心2 /.I动能与各质点对质心动能之和。
13.2-6•质点组质心动能的微分等于、外力在质心系系中的元功之和。
14.包含运动电荷的系统,作用力与反作用力不--定在同一条直线上。
15.太阳、行星绕质心作圆锥曲线的运动可看成质量为折合质量的行星受太阳(不动)的引力的运动。
16.两粒子完全弹性碰撞,当质量相等时,一个粒子就有可能把所有能量转移给另一个粒子。
17.设木块的质呈为nh ,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。
如果有一质量为叫的子弹以速率v,沿水平方向射入木块,子弹与木块将一起摆至高度为久=佟上竺(2g〃严h处,则此子弹射入木块前的速率为:E___________ 。
18.位力定理(亦称维里定理)可表述为:系统平均动能等于均位力积的负值。
(或沧士护T )二、选择题1.关于质心,以下说法错误的是()A.均质物体的质心和其几何中心重合;B.处于均匀重力场中的物体,重心和质心重合;C.质点组合外力为零时,质心将靜止;D.质心可以在物体的外部。
2.质点组运动的总动能的改变()A.与外力无关,力有关;B.与外力、力都有关;C.与外力、力都无关;D.与外力有关,力无关。
3.满足下列哪种情况,质点组的机械能守恒()A 只有保守力做功;B 外力和力都不是保守力;C 所有力均为保守力;D 所有外力均为保守力。
2-4.如果某质点系所受合外力为篆,则该质点系的[A] A动量守恒;B角动量守恒;C动能守恒;D不能确定。
2-5.质点系的力有如下性质,其中错误的说法是:【C】A力的动量之和为零;B力的角动量之和为零;C力的动能之和为零;D力的矢量和为零。
2-6.关于力的说法中错误的有:【B】A质点系的力不能改变质点系的动量;B质点系的力不能改变质点系的动能;C质点系的力在运动过程中可能作功,可能不作功;D刚体在运动过程中力不作功。
2-7.以下四种说法中,哪一种是正确的?(A)作用力与反作用力的功一定是等值异号;(B)力不能改变系统的总机械能;(C)摩擦力只能作负功;(D)同一个力作功在不同的参考系中,也不一定相同。
【D】2-&对机械能守恒和动量守恒的条件,正确的是:(A)系统不受外力作用,则动量和机械能必定同时守恒.;(B)对一系统,若外力作功为零,而力都是保守力,则其机械能守恒;(C)对一系统,若外力作功为零,则动量和机械能必定同时守恒;(D)系统所受和外力为篆,和力也为零,则动量和机核能必定同时守恒.o (B]2-9. 一人握有两只哑铃,站在一可无摩擦地转动的水平平台上,开始时两手平握哑铃,人、哑铃、平台组成的系统以一角速度旋转,后来此人将哑铃下垂于身体两侧,在此过程中,系统[A](A)角动量守恒,机械能不守恒;(B)角动量守恒,机械能守恒;(0角动量不守恒,机械能守恒;(D)角动量不守恒,机械能不守恒。
2-10.如果某质点系的动能变大,则该质点系的【D】A动量变大;B各质点的动量一定变大;C质点系的能量变大;D不能确定。
2-11.如果某质点系的动量变大,则该质点系的【D】A质点系的动能一定变大;B各质点的动量一定变大;C质点系的能量一定变大;D不能确定。
2-12.如果某质点系所受合外力变大,则该质点系的【D】A动疑一定变大;B角动量一定变大;C动能一定变大;D不能确定。
二、简答2.1 一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? .答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。
对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。
2.2 一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心, 何故?答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。
2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将靜止不动或作匀速直线运动?答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有3〃个相互关联的三个二阶微分方程组,难以解算。
但对于二质点组成的质点组,每一质点的运动还是可以解算的。
若质点组不受外力作用,由于每一质点都受到组其它各质点的作用力,每一质点的合力不一定等于篆,故不能保持靜止或匀速直线运动状态。
这表明,力不改变质点组整体的运动,但可改变组质点间的运动。
2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?答:把碰撞的二球看作质点组,由于碰撞力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。
如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。
2.5水面上浮着一只小船。
船上一人如何向船尾走去,则船将向前移动。
这是不是与质心运动定理相矛盾?试解释之。
•答:不矛盾。
因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。
当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。
2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2. 6•答:碰撞过程中不计外力,碰撞力不改变系统的总动量,但碰撞力很大,使物体发生形变,力做功使系统的动能转化为相碰物体的形变能(分子间的结合能),故动量守恒能量不一定守恒。
只有完全弹性碰撞或碰撞物体是刚体时,即相幢物体的形变可以完全恢复或不发生形变时,能量也守恒,但这只是理想情况。
2.7选用质心坐标系,在动量定理中是否需要计入惯性力?.答:设质心的速度V-第i个质点相对质心的速度V:,则V. = v t. + V;,代入质点组动1 / 、量定理可得}工〃2” =工F$)+工巧⑴+工(一J这里用到了质心运动定理dt;;;;工Ff=:工加故选用质心坐标系,在动量定理中要计入惯性力。
但质点组相对质心i v的动量守恒工〃"叫=常矢量。
当外力改变时,质心的运动也改变,但质点组相对于质心r参考系的动量不变,即相对于质心参考系的动量不受外力影响,这给我们解决问题带来不少方便。
值得指出:质点组中任一质点相对质心参考系有,对质心参考系动量并不守恒。
秋千何以能越荡越高?这时能量的増长是从哪里来的?答:秋千受縄的拉力和重力的作用,在运动中绳的拉力提供圆弧运动的向心力,此力不做功,只有重力做功。
重力是保守力,故重力势能与动能相互转化。
当秋千荡到铅直位置向上去的过程中,人站起来提高系统重心的位置,人克服重力做功使系统的势能增加;当达到最高点向竖直位置折回过程中,人蹲下去,力做功降低重心位置使系统的动能增大,这样循环往复,系统的总能不断增大,秋千就可以越荡越高。
这时能量的增长是人体力做功,消耗人体能转换而来的。
2. 10在火箭的燃料全部燃烧完后,§2.7 (2)节中的诸公式是否还能应用?为什么?答:火箭里的燃料全部烧完后,火箭的质量不再改变,然而质量不变是变质量物体运动问题的特例,故§2.7 (2)中诸公式还能适用,但诸公式都已化为恒质量系统运动问题的公式。
2. 11多级火箭和单级火箭比起来,有哪些优越的地方?答:由v = v0 + v r In —^ = v0+V r]nz^t要提高火箭的速度必须提高喷射速度齐或增大m s m..质量比由于燃料的效能,材料的耐温等一系列技术问题的限制,h•不能过大;又由叫于火箭的外壳及各装置的质量加。
相当大,质量比也很难提高,故采用多级火箭,一级火箭的燃料燃完后外売自行脱落减小火箭的质量使下一级火箭开始工作后便于提高火箭的速度。
若各级火箭的喷射速度都为匕,质量比分别为可各级火箭的工作使整体速度增加儿川2,…叫,则火箭的最后速度V = + V, + • • • + 匕=v r(ln Z, + In Z2 + • • ■ In Z;r) = v r In(z, -z2因每一个z都大于1,故卩可达到相当大的值。
但火箭级数越多,整个重量越大,制造技术上会带来困难,再者级越高,质量比越减小,级数很多时,质量比逐渐减小趋近于1,速度増加很少。
故火箭级数不能过多,一般三至四级火箭最为有效。
三、计算题1.重为“的人,手里拿着一个重为❻的物体。
此人用与地平线成67角的速度q向前跳去,“(4)如设「与水平面夹角为0,则tan^ =—=V sin<ztana (5)当他达到最高点时,将物体以相对速度"水平向后抛出。
问由于物体的抛出,人規的距离增加了多少?2.一光滑球人与另一靜止的光滑球3发生斜碰。
如两者均为完全弹性体,且两球的质量相等,则两球碰撞后的速度互相垂吏,试证明之。
3.质量为“的质点,沿倾角为&的光滑直角劈滑下,劈的本身质量为加2,又可在光滑水平面自由滑动。
试求质点水平方向的加速度及劈的加速度。
4.求均匀扇形薄片的质心,此扇形的半径为",所对的圆心角为2&,并证半圆片的质心4 a离圆心的距离为§兀。