实际生活中反比例函数(含教案和试题)
实际问题与反比例函数教案
![实际问题与反比例函数教案](https://img.taocdn.com/s3/m/40d94976ce84b9d528ea81c758f5f61fb73628ae.png)
实际问题与反比例函数教案教案标题:应用问题与反比例函数教案目标:通过了解和掌握反比例函数的特点及其应用,学生能够解决实际问题,并将其应用在实际生活中。
教学目标:1. 理解反比例函数的定义和性质。
2. 能够根据实际问题确定反比例函数的关系。
3. 能够运用反比例函数解决实际问题。
教学重点:1. 理解反比例函数的定义和性质。
2. 掌握根据实际问题确定反比例函数的关系。
3. 运用反比例函数解决实际问题的能力。
教学准备:1. 反比例函数的定义和性质的教学材料。
2. 实际问题的案例分析材料。
3. 教学投影仪或白板、笔等教学工具。
教学步骤:引入(10分钟):1. 使用引人入胜的例子引起学生的兴趣,如“如果你的车以60英里每小时的速度行驶,你需要多长时间才能到达目的地?如果速度增加到75英里每小时,需要多长时间才能到达相同的目的地?”2. 引导学生思考关于速度和时间之间的关系,并提出反比例函数的概念。
讲解(20分钟):1. 使用示意图和表格解释反比例函数的定义和性质。
2. 解释反比例函数的图像特点,包括直线通过原点、图像关于y轴的对称性以及导数的特殊性质。
实践与应用(40分钟):1. 提供一些实际问题的案例,如“如果一条蛇在8小时内从地洞中爬出并伸展到40米长,那么它在12小时内能延伸到多长?”2. 引导学生分析问题,确定自变量和因变量之间的关系,以建立反比例函数的模型。
3. 引导学生使用所学的方法和技巧解决实际问题。
4. 指导学生用图形和符号两种方式来解释和验证他们的答案。
概括与评价(10分钟):1. 总结反比例函数的特点和应用。
2. 鼓励学生将所学的知识应用到其他实际问题中。
3. 针对学生的表现给予积极的评价和指导。
拓展活动:1. 鼓励学生根据自己的兴趣选择更复杂的实际问题进行解决,并与同学分享他们的解决方法。
2. 对学生进行反比例函数的问答游戏,加深对知识的理解和记忆。
教学辅助:教师以及同学之间的讨论与合作,以及适量的教学材料和多媒体工具。
反比例函数的实际应用、 实际问题与反比例函数(教案)
![反比例函数的实际应用、 实际问题与反比例函数(教案)](https://img.taocdn.com/s3/m/4e45adeb3c1ec5da51e27008.png)
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
反比例函数教学案(含答案)
![反比例函数教学案(含答案)](https://img.taocdn.com/s3/m/f30034e602020740bf1e9b0f.png)
1.1 反比例函数(1)我预学1. 上学的你,每天会沿着同一条路从家赶往学校,当你突然发现将迟到的时候,你通常会做出怎样的举动?你能用数学知识给出解释吗?2. 小学里我们曾经学过,如果两个变量的积是一个不为零的常数,我们称这两个变量成.请举一例:.3. 阅读教材中的本节内容后回答:(1)阿基米德曾经说过:“给我一个合适的支点我可以撬动整个地球。
”其间蕴藏着一个自然科学的杠杆原理,你知道杠杆原理中动力、动力臂、阻力和阻力臂这四个量之间的关系式吗?.(2)变量x、y应满足怎样的关系式才称之为反比例函数?我求助:预习后,你或许有些疑问,请写在下面的空白处:我梳理个性反思:通过本节课的学习,你一定有很多感想和收获,请写在下面的空白处:我达标1.下列函数关系式中,不是反比例函数关系的是( )A . x y 3=B . 3x -=yC . 21=x y D . 12-=x y2.反比例函数x y 43-=的比例系数是 3.在函数xy --=43中,自变量x 的取值范围是 4.杭州市土地总面积为41068.1⨯ 平方千米,人均占有的土地面积s (单位:平方千米/人)关于全市总人口n (单位:人)的函数关系式是 .5.平行四边形面积一定,当平行四边形的底边cm a 8=时,这边上的高.5.1h cm =(1)求h 关于a 的函数关系式和自变量a 的取值范围;(2) h 关于a 的函数是反比例函数吗?如果是,请写出比例系数;(3)当底边长a = 4 cm 时,高是多少?6.我们学习了反比例函数.例如,当矩形面积S 一定时,长a 就是宽b 的反比例函数,其函数关系式可以写为)为常数,0(a ≠=S S bS . 请你仿照上例另举一个日常生活中具有反比例函数关系的量的实例,并写出它的的函数关系式.实例: ;函数关系式:.我挑战 7.若函数1322)(+--=m mx m m y 是反比例函数,则m 的值是 .8.已知变量满足34)x 2222-+=+y x y (,问x 、y 是否成反比例?请说明理由.9.小聪和爸爸早晨骑自行车到动物园,他们骑车的速度是8千米/时,用了两小时到达.(1)小聪家到动物园的路程是多少?(2)如果回来时,小聪坐汽车,汽车的平均速度为v 千米/时(v >8),那么小聪回家的时间将如何改变?(3)写出时间t 关于v 的函数关系式;(4)若汽车的速度在原来的基础上提高20%,则小聪到达家的时间将可以减少几分之几?A B CD E P我登峰10.如图,在梯形ABCD 中,AD ∥BC ,2231900====∠BC AB AD B ,,,. P 是BC 边上的一个动点(P 与点B 不重合,可以与点C 重合),,于点E AP DE ⊥设AP=x ,DE=y ,求y 与x 的函数关系式,并指出自变量x 的取值范围.参考答案1.C2. 43-3. 4≠x4. ns 41068.1⨯= 5. )0(12h a a =;是;系数为12;3 6.略 7.2 8.成反比例函数 9. 16;回来时间将小于2小时;六分之一10. )2523,23≤=x x y (。
实际生活中的反比例函数 教案
![实际生活中的反比例函数 教案](https://img.taocdn.com/s3/m/374f1cce0975f46527d3e1f8.png)
实际生活中的反比例函数教案本资料为woRD文档,请点击下载地址下载全文下载地址数学:1.3《实际生活中的反比例函数》教案1三维目标一、知识与技能.能灵活列反比例函数表达式解决一些实际问题.2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.二、过程与方法.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.三、情感态度与价值观.积极参与交流,并积极发表意见.2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.教学重点掌握从物理问题中建构反比例函数模型.教学难点从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教具准备多媒体.教学过程一、创设问题情境,引入新课活动1问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.在某一电路中,保持电压不变,电流I和电阻R成反比例,当电阻R=5欧姆时,电流I=2安培.求I与R之间的函数关系式;当电流I=0.5时,求电阻R的值.设计意图:运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.师生行为:可由学生独立思考,领会反比例函数在物理学中的综合应用.教师应给“学困生”一点物理学知识的引导.师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件得到字母系数k的值.生:解:设I=kR∵R=5,I=2,于是2=k5,所以k=10,∴I=10R.当I=0.5时,R=10I=100.5=20.师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?生:这是古希腊科学家阿基米德的名言.师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;阻力×阻力臂=动力×动力臂下面我们就来看一例子.二、讲授新课活动2小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?若想使动力F不超过题中所用力的一半,则动力臂至少要加长多少?设计意图:物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.师生行为:先由学生根据“杠杆定律”解决上述问题.教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.教师在此活动中应重点关注:①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;②学生能否面对困难,认真思考,寻找解题的途径;③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.生:解:根据“杠杆定律”有F•l=1200×0.5.得F=600l当l=1.5时,F=6001.5=400.因此,撬动石头至少需要400牛顿的力.若想使动力F不超过题中所用力的一半,即不超过200牛,根据“杠杆定律”有Fl=600,l=600F.当F=400×12=200时,l=600200=3.3-1.5=1.5因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.生:也可用不等式来解,如下:Fl=600,F=600l.而F≤400×12=200时.600l≤200l≥3.所以l-1.5≥3-1.5=1.5.即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.生:还可由函数图象,利用反比例函数的性质求出.师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k,所以根据“杠杆定理”得Fl=k,即F=kl根据反比例函数的性质,当k>o时,在第一象限F随l 的增大而减小,即动力臂越长越省力.师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.活动3问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y与元成反比例.又当x =0.65元时,y=0.8.求y与x之间的函数关系式;若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?设计意图:在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.师生行为:由学生先独立思考,然后小组内讨论完成.教师应给予“学困生”以一定的帮助.生:解:∵y与x-0.4成反比例,∴设y=kx-0.4.把x=0.65,y=0.8代入y=kx-0.4,得k0.65-0.4=0.8.解得k=0.2,∴y=0.2x-0.4=15x-2∴y与x之间的函数关系为y=15x-2根据题意,本年度电力部门的纯收入为=0.3=0.3=0.3×2=0.6答:本年度的纯收人为0.6亿元,师生共析:由题目提供的信息知y与之间是反比例函数关系,把x -0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;纯收入=总收入-总成本.三、巩固提高活动4一定质量的二氧化碳气体,其体积y是密度ρ的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1kg/m3时二氧化碳气体的体积V的值.设计意图:进一步体现物理和反比例函数的关系.师生行为由学生独立完成,教师讲评.师:若要求出ρ=1.1kg/m3时,V的值,首先V和ρ的函数关系.生:V和ρ的反比例函数关系为:V=990ρ.生:当ρ=1.1kg/m3根据V=990ρ,得V=990ρ=9901.1=900.所以当密度ρ=1.1kg/m3时二氧化碳气体的气体为900m3.四、课时小结活动5你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得.设计意图:这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.师生行为:学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流.教师组织学生小结.反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.板书设计7.2实际问题与反比例函数.2.用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力?设阻力为F1,阻力臂长为l1,所以F1×l1=k.动力和动力臂分别为F,l.则根据杠杆定理,F•l=k即F=kl.由此可知F是l的反比例函数,并且当k>0时,F随l 的增大而减小.活动与探究学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.绿化带面积是多少?你能写出这一函数表达式吗?完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?x203040y过程:点A在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.结果:绿化带面积为10×40=400设该反比例函数的表达式为y=kx,∵图象经过点A把x=40,y=10代入,得10=k40,解得,k=400.∴函数表达式为y=400x.把x=10,20,30,40代入表达式中,求得y分别为40,20,403,10.从图中可以看出。
反比例函数教案(优秀8篇)
![反比例函数教案(优秀8篇)](https://img.taocdn.com/s3/m/b3fef89e32d4b14e852458fb770bf78a65293a93.png)
反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
三、情感态度与价值观1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。
2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。
教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。
二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
实际问题与反比例函数教案doc
![实际问题与反比例函数教案doc](https://img.taocdn.com/s3/m/1f4a42c088eb172ded630b1c59eef8c75fbf9539.png)
26.2实际问与反比例函数(1)教学目标:1、知识与技能:利用反比例函数的解析式、图象解决实际问题。
2、过程与方法:经历探索反比例函数解决实际生活中的问题的过程,体会反比例函数的解析式和图象在解决实际问题中的作用,进一步体会数学建模思想,培养学生的数学应用意识3、情感、态度与价值观:在运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。
重点、难点1.重点:利用反比例函数的知识分析、解决实际问2.难点:分析实际问中的数量关系,正确写出函数解析式3.难点的突破方法:用函数观点解实际问,一要搞清目中的基本数量关系,将实际问抽象成数学问,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问。
教学中要让学生领会这一解决实际问的基本思路。
教学过程:一、复习旧知:复习常见的与实际问题相关的反比例关系,并由此引入新课。
二、新课讲解:1、探究活动(1):市煤气公司要在地下修建一个容积为4m的圆柱形煤气储存室.102(1)储存室的底面积S(单位: 2m)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为5002m,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?2、归纳小结:3、练习强化1:如图,某玻璃器皿制造公司要制造一种容积为1升(1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100cm2,则漏斗的深为多少?4、探究活动2:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?5、练习强化2:变式装卸工人往一辆大型运货车上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图:(1)这批货物的质量是多少?(2)写出y与x之间的函数关系式;(3)货车到达目的地后开始卸货,如果以min的速度卸货,需要多长时间才能卸完货物?三、反思小结,观点提炼:四、作业布置:课本P16 2 、7。
反比例函数教学设计【优秀10篇】
![反比例函数教学设计【优秀10篇】](https://img.taocdn.com/s3/m/cb9de8dd541810a6f524ccbff121dd36a32dc49a.png)
反比例函数教学设计【优秀10篇】《反比例函数》教学设计篇一教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t (单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。
学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数.二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析及解答:1.只有xy=123是反比例函数.2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设,因为x=2时,y=6,所以有解得k=12三、巩固提高活动51.已知y是x的反比例函数,并且当x=3时,y=?8.(1)写出y与x之间的函数关系式.(2)求y=2时x的值.2.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.《反比例函数》教师教案篇二教学目标(一)教学知识点1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。
中考复习教案_反比例函数_附练习试卷(含答案
![中考复习教案_反比例函数_附练习试卷(含答案](https://img.taocdn.com/s3/m/40fc5b4c0a4e767f5acfa1c7aa00b52acec79c5d.png)
中考复习教案_反比例函数_附练习试卷(含答案)教案章节:一、反比例函数的定义及性质教学目标:1. 理解反比例函数的定义;2. 掌握反比例函数的性质;3. 能够运用反比例函数解决实际问题。
教学内容:1. 反比例函数的定义:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是常数,k≠0),函数y = k/x称为反比例函数;2. 反比例函数的性质:a. 反比例函数的图像是双曲线;b. 反比例函数的渐近线是x轴和y轴;c. 反比例函数的单调性:在第一象限和第三象限,函数随着x的增大而减小;在第二象限和第四象限,函数随着x的增大而增大;d. 反比例函数的顶点是原点(0,0)。
教学步骤:1. 引入反比例函数的概念,引导学生理解反比例函数的定义;2. 通过示例,引导学生掌握反比例函数的性质;3. 练习题:巩固反比例函数的定义和性质。
教学评估:1. 课堂提问:检查学生对反比例函数定义的理解;2. 练习题:评估学生对反比例函数性质的掌握程度。
教案章节:二、反比例函数的图像和性质教学目标:1. 理解反比例函数的图像特点;2. 掌握反比例函数的单调性;3. 能够分析反比例函数的实际应用。
教学内容:1. 反比例函数的图像:双曲线;2. 反比例函数的单调性:在第一象限和第三象限,函数随着x的增大而减小;在第二象限和第四象限,函数随着x的增大而增大;3. 反比例函数的实际应用:examples。
教学步骤:1. 通过示例,引导学生掌握反比例函数的图像特点;2. 通过示例,引导学生掌握反比例函数的单调性;3. 练习题:巩固反比例函数的图像和性质。
教学评估:1. 课堂提问:检查学生对反比例函数图像特点的理解;2. 练习题:评估学生对反比例函数单调性的掌握程度。
教案章节:三、反比例函数的图像和性质(续)教学目标:1. 掌握反比例函数的渐近线;2. 理解反比例函数的顶点;3. 能够分析反比例函数的实际应用。
教学内容:1. 反比例函数的渐近线:x轴和y轴;2. 反比例函数的顶点:原点(0,0);3. 反比例函数的实际应用:examples。
26.2实际问题与反比例函数 教案(共2课时)
![26.2实际问题与反比例函数 教案(共2课时)](https://img.taocdn.com/s3/m/59eb0443591b6bd97f192279168884868762b81d.png)
26.2实际问题与反比例函数 教案(共2课时)第1课时 反比例函数在实际生活中的应用教学目标1.通过分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力. 重点难点重点:从实际问题中建立反比例函数模型,运用反比例函数的意义和性质解决实际问题.难点:根据具体实际问题的情景建立反比例函数的模型.教学过程 导入你吃过拉面吗?知道在做拉面的过程中渗透着什么数学知识吗?(1)将体积为20 cm 3的面团做成拉面,面条的长度y (单位:cm)与面条的粗细(横截面面积)S (单位:mm 2)有怎样的函数关系?(2)某家面馆的师傅手艺精湛,她拉的面条粗1 mm 2,则面条总长是多少?探究新知探究点一 建立反比例函数模型【例1】某项工程需要沙石料2×106 m 3,阳光公司承担了该工程运送沙石料的任务.(1)在这项任务中,平均每天的工作量v (单位:m 3)与完成任务所需要的时间t (单位:天)之间成怎样的函数关系?写出这个函数的解析式;(2)阳光公司计划投入A 型卡车200辆,每天一共可以运送沙石料2×104 m 3,则完成全部运送任务需要多少天?如果工作了25天后,由于工程进度的需要,公司准备再投入A 型卡车120辆,那么在保持每辆车每天工作量不变的前提下,是否能提前28天完成任务?【解析】(1)根据题意,得这项任务中平均每天的工作量v (单位:m 3)与完成任务所需要的时间t (单位:天)之间的关系为v · t =2×106,成反比例函数关系;(2)用待定系数法可得反比例函数的解析式,再进一步求解可得答案.【解】(1)成反比例函数关系,v =2×106t.(2)把v =2×104代入函数解析式,得t =100, 即完成全部运送任务需要100天.根据题意,得(2×106-2×104×25)÷[(200+120)×100]=46.875. ∵100-25-46.875=28.125>28, ∴能提前28天完成任务. 【方法总结】现实生活中存在大量成反比例函数关系的两个变量,解答该类问题的关键是先确定两个变量之间的函数关系,然后利用待定系数法求出函数解析式.探究点二 反比例函数在实际生活中的应用【例2】某乡镇要在生活垃圾存放区建一个老年活动中心,这样就必须把1 200 m 3的生活垃圾运走.(1)假如每天能运x m 3,所需时间为y 天,写出y 与x 之间的函数解析式;(2)若每辆拖拉机一天能运12 m 3,则5辆这样的拖拉机要用多少天才能运完全部 垃圾? (3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?【解析】(1)根据每天能运x m 3与所需时间y 天的积就是1 200 m 3,即可写出函数解析式;(2)把x =12×5=60代入,即可求得天数;(3)首先算出8天以后剩余的数量,然后计算出6天运完所需的拖拉机数,即可求解.【解】(1)y =1 200x.(2)把x =12×5=60代入函数解析式,得y =1 20060=20.故5辆这样的拖拉机要用20天才能运完全部垃圾.(3)运了8天后剩余的垃圾是1 200-8×60=720(m 3).剩下的任务要在不超过6天的时间完成,则每天至少运720÷6=120(m 3),则需要的拖拉机数是120÷12=10(辆),所以至少需要增加10-5=5(辆),才能按时完成任务.【方法总结】在解决反比例函数相关的实际问题中,若题目要求“至多”“至少”,可以利用反比例函数的增减性来解答.课堂训练1.矩形的面积是2 cm 2,设长为y cm ,宽为x cm ,则y 与x 之间的函数解析式为________. 2.学校锅炉旁建有一个储煤库,开学时购进一批煤,现在知道:按每天用煤0.6 t 计算,一学期(按150天计算)刚好用完.若每天的用煤量为x t ,则这批煤能维持y 天.(1)y 与x 之间有怎样的函数关系? (2)画出函数图象;(3)若每天节约0.1 t ,则这批煤能维持多少天? 答案1.y =2x (x >0) 【解析】根据等量关系:长×宽=矩形面积,得xy =2,∴y 与x 之间的函数解析式为y =2x.根据x 的实际意义知x 应大于0.2.解:(1)煤的总量为0.6×150=90(t). ∵x ·y =90,∴y =90x ,y 与x 之间有反比例函数关系.(2)函数的图象如图所示.(3)∵每天节约0.1 t 的煤,∴每天的用煤量为0.6-0.1=0.5(t),∴y =90x =900.5=180,即每天节约0.1 t ,这批煤能维持180天板书设计第1课时 反比例函数在实际生活中的应用1.建立反比例函数模型常见的与实际相关的反比例:(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例; (3)体积一定时,柱(锥)体的底面面积与底面上的高成反比例; (4)工作总量一定时,工作效率与工作时间成反比例; (5)总价一定时,商品单价与商品的件数成反比例; (6)溶质一定时,溶液的浓度与溶液的质量成反比例. 2.反比例函数在工程问题中的应用 3.利用反比例函数解决利润问题课堂小结本节课从实际问题中获取信息,转化为数学问题,建立反比例函数模型,利用反比例函数知识解决问题.其中根据题意写出函数解析式是解题的关键.教学反思本节课是用函数的观点处理实际问题.关键在于分析实际情境,建立函数模型,并进一步明确数学问题.将实际问题置于已有的知识背景之中,用数学知识重新解释“这是什么”,使学生逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,联系数形结合的思想.第2课时 反比例函数在其他学科中的应用教学目标1.能根据与其他学科相关的公式确定反比例关系,并求出反比例函数的解析式. 2.能够根据实际问题情景建立反比例函数的模型,并解决与其他学科知识相关的 问题.3.通过探究与其他学科相关的实际问题,让学生体会数学建模思想的构建.教学重难点重点:利用反比例函数的知识解决跨学科问题.难点:根据实际问题情景建立反比例函数的数学模型.教学过程 导入某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速地通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务.问题思考:(1)请你解释他们这样做的道理;(2)当人和木板对湿地的压力一定时,随着木板面积S (单位:m 2)的变化,人和木板对湿地地面的压强p (单位:Pa)将如何变化?探究新知探究点一 反比例函数在力学中的应用【例1】某校科技小组进行野外考察,利用铺垫木板的方式通过一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S (单位:m 2)的变化,人和木板对湿地地面的压强p (单位:Pa)将如何变化?已知人和木板对湿地地面的压力合计600 N.(1)用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么? (2)当木板面积为0.2 m 2时,压强是多少?(3)如果要求压强不超过6 000 Pa ,木板面积至少要多大? (4)画出相应的函数图象. 【解析】本题考查了反比例函数的应用,解题的关键是具有一定的物理知识,明确压强、压力及受力面积之间的关系.(1)根据压强等于压力除以受力面积和反比例函数的定义即可解得;(2)将S =0.2代入函数解析式,计算压强即可;(3)令压强小于等于6 000 Pa ,求得面积即可;(4)根据函数解析式作出反比例函数的图象,注意其取值范围.【解】(1)由p =F S ,得p =600S,∴根据反比例函数的定义,可知p 是S 的反比例函数. (2)令S =0.2,则p =6000.2=3 000,∴物体受到的压强为3 000 Pa. (3)∵p ≤6 000, ∴p =600S≤6 000,解得S ≥0.1.故压强不超过6 000 Pa ,木板面积至少要0.1 m 2. (4)函数图象如图所示.探究点二 反比例函数在电学中的应用【例2】在某一电路中,电源电压U 保持不变,电流I (单位:A)与电阻R (单位:Ω)之间的函数关系如图所示.(1)写出I 与R 之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12 A 时,电路中的电阻R 的取值范围是什么?【解析】(1)根据图象可知I 与R 之间的关系,列出函数解析式I =UR ,可知U 保持不变,把图象所经过的点A (6,6)代入函数解析式,求出U 的值等于36;(2)当I =12时,R =3,∴求出R 的取值范围是R ≥3.【解】(1)电源电压U 保持不变,由图象可知,I 与R 的函数解析式为I =UR .将点A (6,6)代入,解得U =36, ∴I 与R 之间的函数解析式为I =36R .(2)∵I =36R,∴当I =12时,R =3,∴当电路中的电流不超过12 A 时,R ≥ 3Ω. 【方法总结】解决跨学科问题的一般步骤:(1)审题:弄清题意,分析问题中的等量关系;(2)建模:根据等量关系,将跨学科问题转化为数学问题,利用反比例函数知识建立数学模型;(3)解模:根据反比例函数的性质解决问题.课堂训练1.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (单位:kPa)是气体体积V (单位:m 3)的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( )A .不大于54 m 3B .大于54 m 3C .不小于45 m 3D .小于45m 32.某汽车的输出功率P 为一定值,汽车行驶时的速度v (单位:m/s)与它所受的牵引力F (单位:N)之间的函数关系如图所示.(1)求这辆汽车的功率,并写出v 与F 之间的函数解析式;(2)当它所受的牵引力为2 400 N 时,汽车的速度为多少? (3)如果限定汽车的速度不超过30 m/s ,则F 在什么范围内?答案1.C 【解析】设气球内气体的气压p (单位:kPa)和气体体积V (单位:m 3)的解析式为p =k V .∵图象过点(1.6,60),∴k =96,即p =96V .在第一象限内,p 随V 的增大而减小,∴当p ≤120时,V =96p ≥45.2.解:(1)设v 与F 之间的函数解析式为v =PF .把(3 000,20)代入v =PF,得P =60 000,∴这辆汽车的功率是60 000 W ,函数解析式为v =60 000F .(2)将F =2 400N 代入v =60 000F ,得v =60 0002 400=25.故汽车的速度为25 m/s.(3)把v ≤30代入v =60 000F ,得60 000F ≤30,解得F ≥2 000.故F 不小于2 000 N板书设计第2课时 反比例函数在其他学科中的应用1.反比例函数在其他学科中的应用的解题思路 现实世界、其他学科在数学中的问题情境→抽象出公式→列出反比例函数→性质→应用解题2.反比例函数与其他学科的综合在利用反比例函数解决跨学科问题时,一定要注意y =kx (k ≠0,k 是常数)这一条件,结合图象说明其性质,根据性质大致画出图象及求函数的解析式.课堂小结本节课学生学习利用反比例函数解决跨学科问题时,要根据物理、化学等学科中的公式建立函数关系式,再根据需要进行变形或计算;还学到了转化思想及数学建模思想,如将实际问题中的数量关系转化为数学问题中的函数关系.课堂反思本节课是反比例函数在其他学科中的运用,强调用函数的观点来处理问题.在教学中,教师要注意改变学生的学习方式.教师给出问题后,让学生体会实际情景,经过小组交流、讨论得出结论,解释现象,使知识内化到学生原有的认知结构里,再给学生总结出应用反比例函数解决问题的思路:分析问题→找到反比例函数关系→建立模型→求解,以便让学生更加清晰解题的思路和方法,提高学习效率.。
反比例函数教案设计(优秀篇)
![反比例函数教案设计(优秀篇)](https://img.taocdn.com/s3/m/193fd5112f3f5727a5e9856a561252d380eb2036.png)
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。
3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。
二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。
2. 反比例函数的性质:比例系数、定义域、值域、图像特点。
3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。
4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。
三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。
2. 难点:反比例函数的实际应用,特别是复杂问题的解决。
四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。
2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。
五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。
2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。
3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。
4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。
5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。
6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。
7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。
六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。
2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。
3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。
七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。
反比例函数教案设计(6篇)
![反比例函数教案设计(6篇)](https://img.taocdn.com/s3/m/a2f561581fb91a37f111f18583d049649b660eba.png)
反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。
2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。
教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。
今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。
这两种量之间是反比例关系。
活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。
(2)三角形的面积肯定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积肯定,底面积和高。
反比例函数教案优秀3篇
![反比例函数教案优秀3篇](https://img.taocdn.com/s3/m/74595e57a9114431b90d6c85ec3a87c240288af2.png)
反比例函数教案优秀3篇反比例函数教案篇一教学目标1、经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
2、理解反比例函数的概念,会列出实际问题的反比例函数关系式。
3、使学生会画出反比例函数的图象。
4、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。
教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1、什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。
假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。
设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。
因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1、路程一定时,时间t就是速度v的反比例函数。
即速度增大了,时间变小;速度减小了,时间增大。
2、自变量v的取值是v>0.问题2:学校课外→←生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。
设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。
分析根据矩形面积可知xy=24,即从这个关系中发现:1、当矩形的面积一定时,矩形的一边是另一边的反比例函数。
即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2、自变量的取值是x>0.反比例函数教案篇二一、教学设计思路1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
人教版数学九年级下册:(反比例函数)实际问题与反比例函数(教案)
![人教版数学九年级下册:(反比例函数)实际问题与反比例函数(教案)](https://img.taocdn.com/s3/m/ee503b06bc64783e0912a21614791711cd797970.png)
实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中的水将用多长时间排完?【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.第2课时实际问题与反比例函数(2)【知识与技能】运用反比例函数解决实际应用问题,增强数学建模思想.【过程与方法】经历“实际问题一数学建模一拓展应用”的过程,发展学生分析问题,解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强数学应用意识,提高学习数学的兴趣. 【教学重点】用反比例函数的有关知识解决实际应用问题.【教学难点】构建反比例函数模型解决实际应用问题,巩固反比例函数性质.一、情境导入,初步认识“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、典例精析,掌握新知例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?例2—个用电器的电阻是可调节的,其范围是110〜220Ω,已知电压为220 V,这个用电器的电路图如图所示.(1 )输出功率犘与电阻只有怎样的函数关系?(2)这个用电器功率的范围是多少?【分析】要想顺利解决本题,应了解电学中关于电功率P、电阻R和电压U的关系,即有PR= U2,可以发现2UPR=或2URP=.这样由于用电器电压U = 220V是确定的,从而可得(1)的解应为P =2220R,再把R = 110和R = 220代入可得电功率P值分别为440 W和220 W,故电功率P的范围为220≤P≤440.事实上,这里还可以由2220RP=及 110≤R≤220,得110≤2220P≤220,得220≤P≤440.【教学说明】教学时,教师应先让学生熟悉与本例相关的电学知识,即PR= U2,然后让学生独立完成,由于题目难度不大,学生应该能予以解决,对个别有困难的同学,可予以指导,也可让他们与同伴交流,从而能解决问题,在大多数同学完成以后,教师仍可设置以下两个问题,让学生进一步加深对知识的理解:(1 )想一想,为什么收音机的音量,某些台灯的亮度以及电风扇的转速都可以调节?(2)你还能列举一些生活中用电器应用反比例函数性质的例子吗?培养学生学以致用的能力,即能用所学知识解决现实世界中实际问题的能力,也可增强学生的学习兴趣.三、运用新知,深化理解1.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6小时到达目的地.(1)当他按原路返回来,汽车的平均速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,则返程时的平均速度不能低于多少?2.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需贴瓷砖,已知楼体的外表面面积为5×103 m2 .(1)所需的瓷砖块数n与每块瓷砖的面积 S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V=806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.四、师生互动,课堂小结1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?1. 布置作业:从教材“习题26.2”中选取.2. 完成创优作业中本课时的“课时作业”部分.本节课讨论了反比例函数的其他一些应用(主要是在物理学科中的应用).在这些实际应用中,备课时应注意到与学生的实际生活相联系,并且注意用函数观点来对这些问题做出某种解释,从而加深对函数的认识,并突出知识之间的内在联系,特别是与物理知识之间的联系.。
中考复习教案_反比例函数_附练习试卷(含答案
![中考复习教案_反比例函数_附练习试卷(含答案](https://img.taocdn.com/s3/m/4feb2572905f804d2b160b4e767f5acfa1c783d5.png)
中考复习教案_反比例函数_附练习试卷(含答案)教案章节:一、反比例函数的定义及性质【教学目标】1. 理解反比例函数的定义及其表达形式;2. 掌握反比例函数的性质,包括图像特征和基本性质;3. 能够运用反比例函数解决实际问题。
【教学内容】1. 反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),就称y是x的反比例函数;2. 反比例函数的性质:反比例函数的图像是一条通过原点的双曲线,其渐近线是x轴和y轴;3. 反比例函数的单调性:在第一象限和第三象限,反比例函数是单调递减的;在第二象限和第四象限,反比例函数是单调递增的;4. 反比例函数的实际应用。
【教学步骤】1. 引入反比例函数的概念,引导学生理解反比例函数的定义及其表达形式;2. 通过示例和练习,让学生掌握反比例函数的性质,包括图像特征和基本性质;3. 通过实际问题,让学生学会运用反比例函数解决实际问题。
【练习题目】1. 判断下列函数是否是反比例函数,并说明理由:a) y=2/xb) y=3x2. 画出下列反比例函数的图像:a) y=1/xb) y=2/xc) y=-1/x教案章节:二、反比例函数的图像和性质【教学目标】1. 能够绘制反比例函数的图像;2. 理解反比例函数的单调性和渐近线;3. 能够运用反比例函数的性质解决实际问题。
【教学内容】1. 反比例函数的图像:反比例函数的图像是一条通过原点的双曲线,其渐近线是x轴和y轴;2. 反比例函数的单调性:在第一象限和第三象限,反比例函数是单调递减的;在第二象限和第四象限,反比例函数是单调递增的;3. 反比例函数的渐近线:反比例函数的渐近线是x轴和y轴,即y=0和x=0。
【教学步骤】1. 通过示例和练习,让学生学会绘制反比例函数的图像;2. 通过示例和练习,让学生理解反比例函数的单调性和渐近线;3. 通过实际问题,让学生学会运用反比例函数的性质解决实际问题。
【练习题目】1. 绘制下列反比例函数的图像:b) y=-1/xc) y=2/x2. 判断下列函数的单调性,并说明理由:a) y=1/xb) y=-1/xc) y=2/x教案章节:三、反比例函数的性质及应用【教学目标】1. 理解反比例函数的性质,包括单调性、渐近线等;2. 能够运用反比例函数的性质解决实际问题;3. 掌握反比例函数的图像特征。
反比例函数教案设计(篇)
![反比例函数教案设计(篇)](https://img.taocdn.com/s3/m/13a3128d85254b35eefdc8d376eeaeaad0f31658.png)
反比例函数教案设计(优秀篇)第一章:反比例函数的引入1.1 学习目标理解反比例函数的概念。
掌握反比例函数的定义和性质。
1.2 教学内容反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x称为反比例函数。
反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
1.3 教学活动通过实际例子引入反比例函数的概念,让学生感受反比例函数在生活中的应用。
引导学生通过观察实际例子,发现反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
第二章:反比例函数的图像2.1 学习目标学会绘制反比例函数的图像。
理解反比例函数图像的特点。
2.2 教学内容反比例函数的图像是一条通过原点的曲线,称为双曲线。
双曲线的两支分别沿着x轴的正方向和负方向延伸,且越来越接近x轴,但永远不会与x轴相交。
2.3 教学活动引导学生通过绘制反比例函数的图像,观察和总结反比例函数图像的特点。
让学生通过分析反比例函数图像,理解反比例函数的性质。
第三章:反比例函数的性质3.1 学习目标掌握反比例函数的性质。
能够应用反比例函数的性质解决实际问题。
3.2 教学内容反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
3.3 教学活动通过实际例子,引导学生理解和掌握反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
设计练习题,让学生应用反比例函数的性质解决实际问题。
第四章:反比例函数的应用4.1 学习目标学会应用反比例函数解决实际问题。
能够运用反比例函数的知识进行综合分析。
4.2 教学内容反比例函数在实际中的应用,例如在物理学中描述两个变量之间的关系。
4.3 教学活动通过实际例子,引导学生学会应用反比例函数解决实际问题。
设计练习题,让学生运用反比例函数的知识进行综合分析。
反比例函数教案
![反比例函数教案](https://img.taocdn.com/s3/m/5c5174b9b8d528ea81c758f5f61fb7360b4c2b09.png)
反比例函数教案教案标题:探索反比例函数教学目标:1. 理解什么是反比例函数以及其在实际生活中的应用。
2. 能够绘制反比例函数图像并解决与之相关的问题。
3. 掌握如何使用表格、图像和方程来表示反比例关系。
学习内容:1. 反比例函数的定义和特征。
2. 反比例函数图像的形状和性质。
3. 如何绘制和解读反比例函数图像。
4. 反比例函数的应用:速度和时间、工作时间和工人等。
教学准备:1. 教案提供的教学资源,包括教学课件、练习题和案例分析。
2. 准备数学工具,如直尺、圆规和计算器等。
3. 计算机和投影仪,用于展示教学课件和相关图像。
教学过程:引入:1. 利用一个有趣的问题或实际生活中的例子引起学生对反比例关系的兴趣,并让学生思考这种关系的特点。
概念讲解:1. 介绍反比例函数的定义和概念,以及与正比例函数的对比。
2. 解释反比例函数图像的特点,包括对称轴、渐进线和坐标轴截距等。
图像展示与绘制:1. 使用教学课件展示一组反比例函数的图像,并解释图像上的关键点和特征。
2. 分步教导学生如何通过给定的变化规律绘制反比例函数图像。
图像和方程关联:1. 引导学生通过观察反比例函数的图像和特点,推导出与之相关的方程。
2. 使用方程验证图像上的关键点,加深学生对图像和方程之间关联的理解。
应用问题解决:1. 利用实际生活中的例子,让学生运用他们所学的反比例函数知识解决相关问题。
2. 引导学生将问题抽象成反比例关系,并通过方程或图像找到解决方法。
练习与巩固:1. 给予学生一些与反比例函数相关的练习题,包括图像绘制、方程求解和应用问题解答等。
2. 通过教师引导和学生自主讨论巩固学习成果。
总结与展望:1. 回顾本节课所学内容,强调重点概念和方法。
2. 鼓励学生思考反比例函数在更多实际问题中的应用,并展望下节课的内容。
这份教案提供了基本的教学框架和活动安排,你可以根据实际情况进行调整和补充。
同时,可以根据教材和学生的实际水平调整难易度和深入程度。
初中数学《实际生活中的反比例函数》教案
![初中数学《实际生活中的反比例函数》教案](https://img.taocdn.com/s3/m/8288216d376baf1ffc4fad9f.png)
初中数学《实际生活中的反比例函数》教案数学:1.3《实际生活中的反比例函数》教案1(湘教版九年级下)三维目标一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题.2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.三、情感态度与价值观1.积极参与交流,并积极发表意见.2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.教学重点掌握从物理问题中建构反比例函数模型.教学难点从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教具准备多媒体课件.教学过程一、创设问题情境,引入新课活动1问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5时,求电阻R的值.设计意图:运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.师生行为:可由学生独立思考,领会反比例函数在物理学中的综合应用.教师应给“学困生”一点物理学知识的引导.师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.生:(1)解:设I=kR ∵R=5,I=2,于是2=k5 ,所以k=10,I=10R .(2) 当I=0.5时,R=10I=100.5 =20(欧姆).师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?生:这是古希腊科学家阿基米德的名言.师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;阻力阻力臂=动力动力臂(如下图)下面我们就来看一例子.二、讲授新课活动2小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?设计意图:物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.师生行为:先由学生根据“杠杆定律”解决上述问题.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
6.3.反比例函数的实际应用(教案)
![6.3.反比例函数的实际应用(教案)](https://img.taocdn.com/s3/m/97340e9a6037ee06eff9aef8941ea76e58fa4ac6.png)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数的实际应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程与时间成反比的情况?”比如,汽车以固定速度行驶,行驶时间越长,路程就越远。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
(3)解决问题:给出实际问题,如物体在反比例力作用下做直线运动,要求学生运用反比例函数的性质求解物体的运动规律。例如,物体在反比例力F = k/x的作用下,从x=2处开始运动,求物体在x=4时的速度。
在教学过程中,针对难点内容,教师应采用举例、绘图、实际操作等多种教学方法,帮助学生透彻理解反比例函数的核心知识,突破难点。
五、教学反思
在上完这节《反比例函数的实际应用》后,我对整个教学过程进行了深入的思考。首先,我发现学生在理解反比例函数的概念上存在一定难度,尤其是对于函数表达式中常数k的理解。在今后的教学中,我需要更加注重从生活实例出发,让学生在实际问题中感受反比例函数的含义。
在讲授新课的过程中,我尽量用简洁明了的语言解释反比例函数的定义和性质,并通过图像展示来加深学生的印象。然而,从学生的反馈来看,这部分内容的讲解还可以更加生动有趣,可以尝试加入一些互动环节,让学生在课堂上就能及时消化吸收所学知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(其中k为常数,k≠0)的函数。它在描述现实生活中的反比关系中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以每小时50公里的速度行驶,那么它行驶的时间t与路程s的关系可以表示为s = 50/t。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际生活中的反比例函数教学目标:知识与技能要求1. 能列反比例函数关系式。
2. 能运用反比例函数的性质解释实际问题。
过程与方法要求1. 经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观要求1. 积极参与交流,并积极发表意见。
2. 体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具。
二. 重点、难点: 教学重点:列函数关系式以及利用反比例函数的性质解释实际问题,是本节的重点,也是难点。
三. 学法指导:1. 要善于发现实际问题中变量之间的关系,进一步建立反比例函数模型。
2. 通过本节课的学习,要注意体会数学与现实生活的联系,增强应用意识,认识到数学是解决问题的重要工具。
3. 在应用反比例函数的性质解决问题时,要注意变量的取值不能使实际问题失去意义。
四. 主要内容:(一)反比例函数的性质:反比例函数xk y =(k 是常数,0≠k )当0>k 时,图象的两个分支分别位于第一、三象限。
在每一个象限内,y 的值随x 值的增大而减小。
当0<k 时,图象的两个分支分别位于第二、四象限。
在每一个象限内,y 的值随x 值的增大而增大。
(二)能利用反比例函数及其性质解决实际问题,解释一些生活中的现象,体会数学的价值。
比如:使劲踩气球时,气球为什么会爆炸?因为在温度不变的情况下,气球内气体的压强p (Pa )与它的体积V (m 3)的乘积是一个常数k 。
即pV =k (k 为常数,k>0)在温度不变的情况下,气球内气体的压强p 是气球体积V 的反比例函数,即)0(>=k Vkp 。
根据反比例函数的性质当k>0时,p 随V 的减小而增大。
如果用力踩气球,气球的体积会变小,压强会变大。
当压强大到一定程度时,气球便会爆炸。
【典型例题】例1. 某一电路中,保持电压U 不变,电流I (安培)与电阻R (欧姆)之间的关系为U=IR 。
当电阻R=5欧姆时,电流I=2安培。
(1)电流I 是电阻R 的反比例函数吗?写出它的解析式? (2)求电流I=0.5安培时电阻R 的值。
分析:略解:(1)当U 不变时,电流I 是电阻R 的反比例函数即I U R =当R=5欧姆,I=2安培 ∴==⨯=U IR 2510∴=I R I R 与的函数解析式为10(2)当I=0.5安培时,代入解析式得0510.=R∴=R 20例2. 某商场出售一批名牌衬衣,衬衣进价为80元,在营销中发现,该衬衣的日销售量y (件)是日销售价x (元)的反比例函数,且当售价定为100元/件时,每日可售出30件。
(1)请求出y 与x 之间的函数关系式。
(2)若商场计划经营此种衬衣的日销售利润为2000元,则其单价应定为多少元? 分析:略解:依题意,设(的常数)y k xk =≠0把x=100,y=30代入 得k=3000∴=≥y x y x x 与之间的函数关系式为()300080()依题意得2802000()x y -⨯=即()x x -⨯=8030002000解得x=240答:这种衬衣的定价应为240元。
强调:根据给出的已知条件及题意,求得函数关系式,再利用方程解决问题是中考应用题中常见题型。
例3. 为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图)。
观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息,解答下列问题:x(1)药物燃烧时和药物燃烧后,分别求出y 关于x 的函数关系式及自变量x 的取值范围。
(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室。
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:这是一道紧扣生活热点的应用题,应引起同学们的重视,同时要学会看图形。
解:由图知药物燃烧时,函数为正比例函数设y 与x 的解析式为y=kx (k ≠0) ∵点(8,6)在直线上 ∴6=8k∴=k 34∴=<≤y x y x x 与的解析式为()3408药物燃烧后函数为反比例函数设与的解析式为()y x y k x k =≠''0点(8,6)在曲线上 ∴=⨯=k'8648∴=>y x y x x 与的解析式为()488(2)将x=1.6代入反比例函数解析式中y ==481630.(分钟)答:从消毒开始,至少要经过30分钟后学生才能回教室。
(3)把y=3分别代入两个函数解析式 解得x=4和x=16 而1641210-=>即空气中每立方米的含药量不低于3毫克的持续时间为12分钟 ∴这次消毒有效例4. 你吃过拉面吗?实际上在做拉面的过程中,就渗透着数学知识。
一定体积的面团做成拉面,面条的总长度y (m )是面条粗细(横截面积)S (mm 2)的反比例函数,如图: (1)写出y 与S 的函数关系式。
(2)求当面条粗1.6mm 2时,面条的总长度是多少?分析:根据图象中的条件可求。
解:()设反比例函数()10y kS k =≠把P (4,32)代入得 k yS ==⨯=324128∴=y S y S 与的函数关系式为128()当时2162S mm =.y m ==1281680.()∴当面条粗1.6mm 2时面条的总长度为80m 。
例5. 已知正比例函数y=(k+1)x 的图象与反比例函数y k x=-3的图象相交于第一、三象限。
(1)求出满足上述条件的k 的整数值。
(2)任取一个你求出的k 值,代入两个函数关系式,求出这两个函数的交点坐标。
分析:略解:()与相交于第一、三象限1 y k x y kx =+=-()13∴+>->⎧⎨⎩k k 1030∴-<<13k∴满足条件的的整数值为,,k 012 (2)当k=0时两个函数的关系式分别是,y x y x ==3解方程组y x y x ==⎧⎨⎪⎩⎪3得x y x y 11223333==⎧⎨⎪⎩⎪=-=-⎧⎨⎪⎩⎪∴==--函数与的两个交点坐标分别是(,)(,)y x y x 33333【模拟试题】单元测试题(答题时间:60分钟)一. 选择题:1. 已知点(-5,2)在反比例函数y kx =的图象上,下列不在此函数图象上的点是( )A. (-5,-2)B. (5,-2)C. (2,-5)D. (-2,5)2. 如果三角形的面积为52cm ,则如图中表示三角形一边a 与这边上的高h 的函数关系的图象是( )a a a aO h O h O h O hA B C D3. 已知反比例函数y x=-8上有三点A (x 1,2),B (x 2,1),C (x 3,-3),则下列关系正确的是( ) A. x x x 123<< B. x x x 123>> C. x x x 213<<D. x x x 213>>二. 填空题:1. 有一面积为60的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x 的函数关系式是__________________。
m,4小时可以放完,已知放水时间t(h)与每小2. 现有一水塔,装满水后,每小时放水103时放水量x(m3)之间的函数关系式为______________,当t=8h时x=_____________。
3. 近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜片的焦距为0.25 米,则眼镜度数y(度)与镜片焦距x(米)之间的函数关系式为__________。
4. 请在实际生活中找出一个反映反比例函数的例子:__________________。
三. 解答题:1. 某件商品的成本价为15元,据市场调查知,每天的销售量y(件)与销售价格x(元)有下列关系:仔细观察,你能发现什么规律?你能写出y与x的关系式吗?它们之间是什么函数关系?画出它的图象。
2. 在某一电路中保持电压不变,电流I(A)与电阻R(Ω)将如何变化?若已知当电阻R=5Ω时,电流I=2A。
(1)求I与R之间的关系式。
(2)电阻是8Ω时,电流是多少?(3)如果要求电流的最大值为10A,那么电阻R的最小值是多少?3. 如图,一次函数y=kx+b的图象与反比例函数y m的图象交于A、B两点。
x(1)利用图中条件,求反比例函数与一次函数的解析式。
(2)根据图象写出使一次函数的值大于反比例函数的值的自变量的取值范围。
x4. 如图,平行四边形ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于F点,设DE=x(cm),BF=y(cm)。
(1)求y与x之间的函数关系式,并写出自变量的取值范围。
(2)画出此函数图象。
A DEB C F5. 某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之x 04元成反比例。
间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(.)又当x=0.65元时,y=0.8。
(1)求y与x之间的函数关系式。
(2)若每度电的成本价为0.3元,则电价调至多少时本年度电力部门的收益将比上年度增加20%?(收益=用电量×(实际电价-成本价))【试题答案】一. 选择题 1. A 2. C3. C二. 填空题1.y x x =>900() 2.t xx x m h=>=40053()/3.y x x =>1000()4. 略三. 解答题1. 解:由图表观察知:xy=300∴=≥y x x 30020()y 是x 的反比例函数 如图2. 解:(1)由物理知识知:U=IR∵R=5,I=2 ∴U=5×2=10∴I 与R 的关系式为I R R =>100()(2)当R =8Ω时,I A ==108125.()(3)当I=10A 时R R ==∴101011()ΩΩ电阻的最小值是 3. 解:如图(1)∵点A (-2,1)在反比例函数图象上∴=-⨯=-∴=-∴=-=-m y xB n n 21221212反比例函数的解析式为又点(,)在反比例函数图象上∴B (1,-2)又点A (-2,1),B (1,-2)在一次函数y kx b =+的图象上∴-+=+=-⎧⎨⎩=-=-⎧⎨⎩∴=--212111k b k b k b y x 解得一次函数的解析式为(2)一次函数值大于反比例函数的值,即直线在双曲线上的部分由图知:x x <-<<201或4. 解:如图(1)∵平行四边形ABCD 中,AD//BC∴△ADE ∽△FCE∴=AD CF DE CEAB BC DE x BF y y x xxy y x x ====∴-=-==<<411144414,,,整理得:即()(2)5. 解:(1)依题意,设y k x k =-≠040.()把,代入与的函数关系式为x y k k y x y x x ==-=∴=∴=-=-065080650408020204152........(2)由题意知:()(.)(..)(11520310803120%)+--=⨯-⨯+x x 整理得x x 211030-+=.. 解得x x 120506==..0550750506....<<∴=∴=x x x 不合题意,舍去元答:略。