高一数学上学期期末试题及答案

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。

河南省高一上学期期末考试数学试题(解析版)

河南省高一上学期期末考试数学试题(解析版)

一、单选题1.已知集合,集合,则=( ){}2|4A x x =>{}23|B y y x ==-+A B ⋂A .B .()2,3(]2,3C . D .()(],22,3-∞- ()(),22,3-∞-⋃【答案】C【分析】求出集合,利用交集的定义求解即可.,A B 【详解】因为或,,{}{242A x x x x ==<-}2x >{}{}2|33B y y x y y ==-+=≤所以或. {2A B x x ⋂=<-}23x <≤故选:C.2.命题“,”的否定为( ) 0x ∃≥210x -≥A ., B ., 0x ∀<210x -<0x ∃≥210x -≥C ., D .,0x ∃≥210x -<0x ∀≥210x -<【答案】D【分析】利用含有一个量词命题的否定的定义求解.【详解】解:因为命题“,”是存在量词命题, 0x ∃≥210x -≥所以其否定是全称量词命题,即为,, 0x ∀≥210x -<故选:D3.函数,若,则( ) 3()tan 2f x ax bx x =--+()1f m =()f m -=A .1 B .-1 C .3 D .-3【答案】C【分析】先求出,再整体代入即得解.3tan 1am bm m --=-【详解】由题得,()3tan 21f m am bm m =--+=3tan 1am bm m ∴--=-所以.()33tan 2(tan )2123f m am bm m am bm m +-=-++=---+=+=故选:C4.若函数在上不单调,则实数取值范围是( ) 231y x mx m =-+-[3,4]-m A . B .C .D .[6,8]-(6,8)-(,6][8,)-∞-⋃+∞(,6)(8,)-∞-⋃+∞【答案】B【分析】利用二次函数的对称轴与所给区间的关系即可得解. 【详解】因为二次函数的对称轴方程为,且在上不单调, 231y x mx m =-+-2mx =[3,4]-所以,解得, 342m-<<68m -<<故选:B5.已知函数,若,则不等式的解集为( )()32log 12313x x a x f x x -+≥⎧⎪=⎨+<⎪⎩()1f a =()28(2)f x f x -<A . B . C . D .(2,4)-(2,)-+∞(4,2)-(1,4)-【答案】A【分析】先由,求得,再判断其单调性,然后由,利用其单调性求()1f a =()f x ()28(2)f x f x -<解.【详解】解:因为函数,且,()32log 12313x x a x f x x -+≥⎧⎪=⎨+<⎪⎩()1f a =当时,,解得, 1a ≥3log 1a a +=1a =当时,,解得(舍去), 1a <22313a -+=1a =所以,32log 1,1()23,13x x x f x x -+≥⎧⎪=⎨+<⎪⎩当时,单调递增;1x ≥3()log 1f x x =+当时,,单调递增,且, 1x <22()33x f x -=+1232log 1133-+=+所以在R 上递增,()f x 因为,()28(2)f x f x -<所以,即, 282x x -<2280x x --<解得, 24-<<x 故选:A6.Logistic 模型是常用数学模型之一,可应用于流行病学领城,有学者根据公布数据建立了某地区某种疾病累计确诊病例数的单位:天)的Logistic 模型:,其中为最大()(I t t ()()0.24531e t K I t --=+K 确诊病例数.当时,则t 约为( ) ()0.8I t K =()ln 4 1.39≈A .48B .72C .63D .59【答案】D【分析】根据题意得到,再两边取对数求解即可.0.24(53)()0.81e t K I t K --==+【详解】由题意得:,0.24(53)()0.81e t KI t K --==+即, 0.24(53)e41t --=两边取对数得, 10.24(53)ln ln 4 1.394t --==-≈-即, 0.24(53) 1.39t -≈解得, 59t ≈故选:D.7.锐角三角形的内角A ,B ,C 满足:,则有( ) cos sin 2cos sin A B B C =A . B . sin 2cos 0B C -=sin 2cos 0B C +=C . D .sin 2sin 0B C -=sin 2sin 0B C +=【答案】C【分析】由三角恒等变换化简可得,得出,再由诱导公式即可得解. A B =π2C B =-【详解】因为, cos sin 2cos sin A B B C =所以, 2cos sin cos cos sin A B B B C =又,所以, π02B <<cos 0B ≠所以, 2cos sin sin sin()sin cos cos sin A B C A B A B A B ==+=+即,又为锐角, in 0()s A B -=,A B 所以,故,A B =π2C B =-所以,, sin sin(π2)sin 2C B B =-=cos cos(π2)cos 2C B B =-=-故, sin 2sin 0B C -=故选:C 8.已知,则等于( ) 1124m m+=+2log m m A .-1 B .-2 C .-3 D .-4【答案】C【分析】首先根据已知条件得到,再根据求解即128mm ⋅=()2222log log 2log log 2m m m m m m +=+=⋅可.【详解】因为,所以,即.1124m m+=128m m =128mm ⋅=所以. ()222221log log 2log log 2log 38m mm m m m +=+=⋅==-故选:C二、多选题9.下列说法中,正确的是( )A .集合和表示同一个集合 {}1,2A =(){}1,2B =B .函数的单调增区间为()f x [3,1]--C .若,则用a ,b 表示2log 3a =2log 5b =303log 401b a b +=++D .已知是定义在上的奇函数,当时,,则当时,()f x (,0)(0,)-∞+∞ 0x >21()1f x x x=+-0x < 21()1f x x x=--+【答案】BC【分析】对于A ,根据集合的定义即可判断;对于B ,利用复合函数的单调性即可判断;对于C ,利用对数的换底公式及运算性质即可判断;对于D ,利用函数的奇偶性求对称区间上的解析式即可判断.【详解】对于A ,集合中元素为数,集合为点,可知表示的不是同一个集合,{1,2}A ={(1,2)}B =所以A 选项错误;对于B ,根据解得函数的定义域为, 2320x x --≥()f x =[3,1]-令则,232t x x =--y =为二次函数,开口向下,对称轴为,232t x x =--()2121x -=-=-⨯-所以函数在区间上单调递增,在区间上单调递减,232t x x =--[]3,1--[]1,1-函数为增函数,根据复合函数的单调性可知函数,y =()f x =[]3,1--所以B 选项正确;对于C ,因为,,根据对数的换底公式可得2log 3a =2log 5b =,所以C 选项正确;22223022222log 40log (58)log log 83log 40log 30log (352155)log 3log log 2b a b ⨯++==+==⨯⨯+++对于D ,因为当时,,可令,则,所以 0x >21()1f x x x=+-0x <0x ->, 2211()()11()f x x x x x-=-+-=---又因为是定义在上的奇函数,所以与题干结果不()f x (,0)(0,)-∞+∞ 21()()1f x f x x x=--=-++符,所以D 选项错误; 故选:BC.10.下列函数中,最小正周期为的是( ) πA . B .|sin |y x =πtan 6y x ⎛⎫=- ⎪⎝⎭C . D .cos ||y x =πsin 23y x ⎛⎫=- ⎪⎝⎭【答案】ABD【分析】依次判断选项中的函数周期即可得到答案。

高一数学上学期期末试题及答案

高一数学上学期期末试题及答案

高一数学上学期期末试题及答案一、选择题(每题4分,共40分)1. 若f(x)=x^2-4x+3,则f(1)的值为:A. 0B. -2C. 1D. 22. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. x^2-6x+2C. 3x^2-6x+2D. x^3-6x^2+63. 已知集合A={x|x<0},B={x|x>0},则A∩B的元素个数为:A. 0C. 2D. 无数个4. 以下哪个不是等差数列:A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 1, 4, 7, 105. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若a, b, c是等比数列,且a+b+c=14,b^2=ac,则b的值为:A. 2C. 7D. 147. 函数y=2^x的反函数为:A. y=log2(x)B. y=2^(-x)C. y=-2^xD. y=x^(1/2)8. 已知向量a=(3, -1),b=(2, 4),则向量a+b的坐标为:A. (5, 3)B. (1, 3)C. (5, -3)D. (1, -3)9. 函数y=x^2-6x+8的顶点坐标为:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)10. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,b=1,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。

12. 已知等差数列{an}的首项a1=3,公差d=2,则a5=________。

13. 已知向量a=(1, 2),b=(3, -2),则向量a·b=________。

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案

人教版高一数学上册期末考试试卷及答案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!人教版高一数学上册期末考试试卷及答案人教版高一数学上册期末考试试卷及答案(含解析)这个学期马上就要结束了,我们也应该做好期末考试的准备了,那么关于高一数学期末试卷怎么做呢?以下是本店铺准备的一些人教版高一数学上册期末考试试卷及答案,仅供参考。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套本试卷满分150分,考试时间120分钟。

请在答题卷上作答。

第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.若sinα=-,且α为第四象限角,则tanα的值为( )A. B.- C. D.-2.已知f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在区间 [-1,3]上的解集为()A. (1,3)B. (-1,1)C. (-1,0)∪(1,3)D. (-1,0)∪(0,1)3.若cos(2π-α)=,则sin等于( )A.- B.- C. D.±4.设集合A={x|1<x<4},B={x|-1≤x≤3},则A∩(∁R B)等于( )A.{x|1<x<4} B.{x|3<x<4} C.{x|1<x<3} D.{x|1<x<2}∪{x|3<x<4} 5.下列表示函数y=sin在区间上的简图正确的是( )6.已知函数f(x)=sin(ω>0)的最小正周期为π,则函数f(x)的图象的一条对称轴方程是( ) A.x= B.x= C.x= D.x=7.使不等式-2sin x≥0成立的x的取值集合是( )A.B.C.D.8.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在上单调递减9.已知函数y=3cos(2x+)的定义域为[a,b],值域为[-1,3],则b-a的值可能是( )A. B. C. D.π10.一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32 m(即OM长),巨轮的半径长为30 m,AM=BP=2 m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t) m,则h(t)等于( )A.30sin+30 B.30sin+30C.30sin+32 D.30sin11.若函数y=f(x)是奇函数,且函数F(x)=af(x)+bx+2在(0,+∞,)上有最大值8,则函数y=F(-∞,,0)上有 ( )A.最小值-8 B.最大值-8 C.最小值-6 D.最小值-412.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( ) A.75,25 B.75,16 C.60,25 D.60,16第II卷非选择题(共90分)13.若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是________.14.若不等式(m2-m)2x-()x<1对一切x∈(-∞,-1]恒成立,则实数m的取值范围是________.15.函数y=sin2x+2cos x在区间[-,a]上的值域为[-,2],则a的取值范围是________.16.函数y=sinωx(ω>0)的部分图象如图所示,点A,B是最高点,点C是最低点,若△ABC是直角三角形,则ω的值为________.三、解答题(共6小题,共70分)17.(12分)已知定义在区间上的函数y=f(x)的图象关于直线x=对称,当x≥时,f(x)=-sin x.(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.18. (10分)已知函数f(x)=cos(2x-),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.19. (12分)已知函数g(x)=A cos(ωx+φ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:(1)函数f(x)在上的值域;20. (12分)已知f(x)=x2+2x tanθ-1,x∈[-1,],其中θ∈(-,).(1)当θ=-时,求函数f(x)的最大值;(2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数.21.(12分)已知函数f(x)=x2-(a+1)x+b.(1)若b=-1,函数y=f(x)在x∈[2,3]上有一个零点,求a的取值范围;(2)若a=b,且对于任意a∈[2,3]都有f(x)<0,求x的取值范围.22. (12分)已知抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点.(1)求m的取值范围;(2)若抛物线与x轴的两个交点为A,B,且点B的坐标为(3,0),求出点A的坐标,抛物线的对称轴和顶点坐标.答案1.D2. C3.A4. B5.A6.C7.C8.D9.B10.B11.D12.D13.[,]14.-2<m<315.[0,]16.17.(1)y=f(x)的图象如图所示.(2)任取x∈,则-x∈,因函数y=f(x)图象关于直线x=对称,则f(x)=f,又当x≥时,f(x)=-sin x,则f(x)=f=-sin=-cos x,即f(x)=(3)当a=-1时,f(x)=a的两根为0,,则Ma=;当a∈时,f(x)=a的四根满足x1<x2<<x3<x4,由对称性得x1+x2=0,x3+x4=π,则Ma=π;当a=-时,f(x)=a的三根满足x1<x2=<x3,由对称性得x3+x1=,则Ma=;当a∈时,f(x)=a两根为x1,x2,由对称性得Ma=. 综上,当a∈时,Ma=π;当a=-时,Ma=;当a∈∪{-1}时,Ma=.18.(1)f(x)的最小正周期T===π.当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.(2)∵x∈[-,],则2x-∈[-,],故cos(2x-)∈[-,1],∴f(x)max=,此时2x-=0,即x=;f(x)min=-1,此时2x-=-,即x=-.19.解(1)由图知B==1,A==2,T=2=π,所以ω=2,所以g(x)=2cos(2x+φ)+1.把代入,得2cos+1=-1,即+φ=π+2kπ(k∈Z),所以φ=2kπ+(k∈Z).因为|φ|<,所以φ=,所以g(x)=2cos+1,所以f(x)=2cos+1.因为x∈,所以2x-∈,所以f(x)∈[0,3],即函数f(x)在上的值域为[0,3].(2)因为f(x)=2cos+1,所以2cos+1≥2,所以cos≥,所以-+2kπ≤2x-≤+2kπ(k∈Z),所以kπ≤x≤kπ+(k∈Z),所以使f(x)≥2成立的x的取值范围是.20.解(1)当θ=-时,f(x)=x2-x-1=(x-)2-,x∈[-1,].∴当x=-1时,f(x)的最大值为.(2)函数f(x)=(x+tanθ)2-(1+tan2θ)图象的对称轴为x=-tanθ,∵y=f(x)在[-1,]上是单调函数,∴-tanθ≤-1或-tanθ≥,即tanθ≥1或tanθ≤-.因此,θ角的取值范围是(-,-]∪[,).22.(1)∵抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点,∴方程x2-2(m-1)x+(m2-7)=0有两个不相等的实数根,∴Δ=4(m-1)2-4(m2-7)=-8m+32>0,∴m<4.(2)∵抛物线y=x2-2(m-1)x+(m2-7)经过点B(3,0),∴9-6(m-1)+m2-7=0,m2-6m+8=0,解得m=2或m=4.由(1)知m<4,∴m=2.∴抛物线的解析式为y=x2-2x-3.令y=0,得x2-2x-3=0,解得x 1=-1,x 2=3, ∴点A 的坐标为(-1,0). 又y =x 2-2x -3=(x -1)2-4,∴顶点坐标为(1,-4),对称轴为直线x =1.高一第一学期数学期末试卷及答案一、选择题(本题共12小题,每小题5分,共60分)1. 2{4,21,}A a a =--,=B {5,1,9},a a --且{9}A B ⋂=,则a 的值是( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 2. 函数()14log 12-=x y 的定义域为( )A.)21,0(B. )43(∞+, C .)21(∞+, D.⎝ ⎛⎭⎪⎫34,13. 若方程032=+-mx x 的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A. )2(∞+,B. )20(, C .)4(∞+, D. )4,0(4.设2150.a =,218.0=b ,5.0log 2=c ,则( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<5. 为了得到函数)33sin(π-=x y 的图象,只需把函数x y 3sin =的图象( ) A .向右平移9π个单位长度 B .向左平移9π个单位长度 C .向右平移3π个单位长度 D .向左平移3π个单位长度6. 给出下列各函数值:① 100sin ;②)100cos( -;③)100tan(-;④sin 7π10cos πtan17π9.其中符号为负的是( )A .①B .② C.③ D .④7.设D 为ABC ∆所在平面内一点3BC CD =,则( ) A. AD =34AB +31AC B.1433AD AB AC =-C. AD = 31-AB +34AC D.4133AD AB AC =-8. 已知210cos 2sin ,=+∈αααR ,则=α2tan ( ) A. 53-43-或 B. 43- C. 43 D. 53-9. 设10<<a ,实数,x y 满足1||log 0ax y-=,则y 关于x 的函数的图像形状大致是( ) A B C D10.若函数)1,0( )2(log )(2≠>+=a a x x x f a 在区间)21,0(内恒有()0f x >,则()f x 的单调递增区间为( )A. )21,(--∞ B. ),41(+∞-C. (0,+∞)D. )41,(--∞ 11. 已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数)2(2)(x f b x g --= ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )A .),87(+∞ B. )2,47( C.)1,87( D. )4,27(12. 设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) .A .3B .4C .5D .6二、填空题(本题共4小题,每小题5分,共20分)13. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②OM MP <<0; ③0<<MP OM ;④ 0OM MP <<,其中正确的是______________________。

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。

2023-2024学年黑龙江省哈尔滨市高一上学期期末数学试题+答案解析(附后)

2023-2024学年黑龙江省哈尔滨市高一上学期期末数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求2023-2024学年黑龙江省哈尔滨市高一上学期期末数学试题❖的。

1.集合,集合,则( )A. B.C.D.2.命题“”的否定是( )A. B.C.D.3.是的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.不等式的解集为( )A. B.C. 或D.或5.计算:( )A. 0 B. 6C.D.6.若点在幂函数的图象上,则的图象大致是( )A. B.C. D.7.函数的最小值为( )A. 12B. 10C. 8D. 48.关于函数,给出以下四个命题:①当时,严格单调递减且没有最值;②方程一定有解;③如果方程有解,则解的个数一定是偶数;④是偶函数且有最小值,其中真命题是( )A. ②③B. ②④C. ①③D. ③④二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知,则下列计算正确的是( )A. B.C. D.10.已知函数下列叙述正确的是( )A.B. 的零点有3个C. 的解集为或D. 若a,b,c互不相等,且,则的取值范围是11.将函数的图象上所有点的纵坐标不变,横坐标缩短到原来的,再将所得图象向右平移个单位长度后得到函数的图象,则下列叙述正确的是( )A. 函数是偶函数B. 函数的一个对称中心是C. 若,则D. 函数的一个对称中心是12.已知函数若关于x的方程有四个不相等的实根,则m的值可以是A. B. C. D. 0三、填空题:本题共4小题,每小题5分,共20分。

13.__________.14.函数的定义域为__________.15.已知定义在R上的函数满足,设,则的大小顺序是__________用“>”号连接16.已知图象上有一最低点,若图象上各点纵坐标不变,横坐标缩短到原来的,再将所得图象向左平移1个单位得到的图象,又的所有根从小到大依次相差3个单位,则的解析式为__________.四、解答题:本题共6小题,共70分。

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

2024届山东省青岛市高一上数学期末综合测试试题含解析

2024届山东省青岛市高一上数学期末综合测试试题含解析
2024 届山东省青岛市高一上数学期末综合测试试题
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
BD1 3 3 【点睛】考查了异面直线所成角的计算方法,关键得出直线 AD1 与 EF 所成角即为∠AD1B ,难度中等 12、 2 【解析】根据直线一般式,两直线平行则有 A1B2 A2B1 0 ,代入即可求解. 【详解】由题意,直线 x y 2 0 与直线 ax 2y 0 平行,
则有1 (2) 1 a 0 a 2 故答案为: 2
3

则反射光线所在直线方程 y 3 3 1 x 4 4 1
即: 4x 5y 1 0
故选 A 10、D 【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解.
【详解】方程 x2 (m 2)x 2m 1 0 对应的二次函数设为: f x x2 (m 2)x 2m 1
(m 2)2 42m 1 0 ,解得 m 6 2 7 ,
当 m 6 2 7 时,方程 x2 (m 2)x 2m 1 0 的根为 2 7 ,不合题意;
若 m 6 2 7 ,方程 x2 (m 2)x 2m 1 0 的根为 7 2 ,符合题意
综上:实数
m
的取值范围为
不一定有对任意 x R , f x 0 ,所以 A 错误,
对于 B,当函数 y f x 的图像关于原点成中心对称,可知 f (x) f (x) ,函数 f (x) 为奇函数,所以 B 错误,

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。

四川省宜宾市2023-2024学年高一上学期期末数学试题含解析

四川省宜宾市2023-2024学年高一上学期期末数学试题含解析

宜宾高2023级高一上期期末考试数学试题(答案在最后)本试卷共4页,22小题,满分150分.考试用时120分钟.第I 卷选择题(60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A∩B={3},∩A={9},则A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【答案】D 【解析】【详解】因为A ,B 均为集合U={1,3,5,7,9}的子集,且A∩B={3},∩A={9},所以,3∈A ,9∈A ,若5∈A ,则5∉B ,从而5∈∁U B ,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理可得:1∉A ,7∉A.故选D .2.已知点()43P ,-是角α终边上的一点,则()sin πα-=A.35B.35-C.45-D.45【答案】A 【解析】【分析】根据三角函数的定义求出sinα,然后再根据诱导公式求出()sin πα-即可.【详解】∵点()4,3P -是角α终边上的一点,∴3sinα5=,∴()3sin sinα5πα-==.故选A.【点睛】本题考查三角函数的定义和诱导公式的运用,解题的关键是根据定义求出正弦值,然后再用诱导公式求解,解题时要注意三角函数值的符号,属于基础题.3.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断.【详解】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x-=-+-=-cos sin cos sin x b x x b x +=-,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.4.函数()ln 23f x x x =+-的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3)D.(3,4)【答案】B 【解析】【分析】易知函数()ln 23f x x x =+-是()0,∞+上的增函数,(1)(2)0f f ⋅<,结合零点存在性定理可判断出函数零点所在区间.【详解】函数ln y x =是()0,∞+上的增函数,23y x =-是R 上的增函数,故函数()ln 23f x x x =+-是()0,∞+上的增函数.(1)ln12310f =+-=-<,(2)ln 2223ln 210f =+⨯-=+>,则()0,1x ∈时,()0f x <;()2,x ∈+∞时,()0f x >,因为(1)(2)0f f ⋅<,所以函数()ln 23f x x x =+-在区间()1,2上存在零点.故选:B.【点睛】本题考查了函数零点所在区间,利用函数的单调性与零点存在性定理是解决本题的关键,属于基础题.5.若集合2{|60}A x x x =+-<,2{|0}3x B x x +=≤-,则A B ⋂等于A.(3,3)- B.(2,2)- C.[2,2)- D.[2,3)-【答案】C【解析】【分析】解不等式,可得集合A 与集合B,根据交集运算即可得解.【详解】集合2{|60}A x x x =+-<,2{|0}3x B x x +=≤-解不等式,可得{|32}A x x =-<<,{|23}B x x =-≤<所以[){|32}{|23}2,2A B x x x x =-<<⋂-≤<=- 所以选C【点睛】本题考查了一元二次不等式、分式不等式解法,集合交集运算,注意分式不等式分母不为0的限制要求,属于基础题.6.若函数()32m f x x -=在()0,∞+上单调递减,则实数m 的取值范围为()A.2,3⎛⎫+∞⎪⎝⎭ B.3,2⎛⎫+∞⎪⎝⎭C.2,3⎛⎫-∞ ⎪⎝⎭D.3,2⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】【分析】根据幂函数的单调性求解.【详解】因为函数()32m f x x -=在()0,∞+上单调递减,所以320m -<,解得23m <,故选:C.7.定义{}*1,,A B Z Z xy x A y B ==+∈∈,设集合{}0,1A =,集合{}1,2,3B =,则*A B 集合的子集的个数是()A.14B.15C.16D.17【答案】C 【解析】【分析】根据题中定义,运用列举法、集合子集个数公式进行求解即可.【详解】因为{}*1,2,3,4A B =,所以*A B 集合的子集的个数是4216=,故选:C8.函数()f x 的定义域为D ,若满足:(1)()f x 在D 内是单调函数;(2)存在,22m n D ⎡⎤⊆⎢⎥⎣⎦,使得()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[],m n ,那么就称函数()f x 为“梦想函数”.若函数()()log xa f x a t =+()0,1a a >≠是“梦想函数”,则t 的取值范围是A.1,04⎛⎫-⎪⎝⎭B.1,04⎡⎤-⎢⎥⎣⎦C.1,02⎛⎫-⎪⎝⎭D.1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】根据“梦想函数”定义将问题改写为22log log m a n a a t ma t n ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩,等价转化为20x x a a t --=有2个不等的正实数根,转化为二次方程,利用根的分布求解.【详解】因为函数()()()log 0,1xa f x a ta a =+>≠是“梦想函数”,所以()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[],m n ,且函数是单调递增的.所以22log log m a na a t m a t n ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,即22m mnna t a a t a ⎧+=⎪⎨⎪+=⎩∴20xx a a t --=有2个不等的正实数根,令2xw a =即20w w t --=有两个不等正根,∴140t ∆=+>且两根之积等于0t ->,解得104t -<<.故选:A.【点睛】此题以函数新定义为背景,实际考查函数零点与方程的根的问题,通过等价转化将问题转化为二次方程根的分布问题,综合性比较强.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.方程2210x x -+=的解集中有两个元素B.0N ∉C.2∈{|x x 是质数}D.1Q 3∈【答案】CD 【解析】【分析】利用集合元素的性质、元素与集合的关系判断作答.【详解】对于A ,方程2210x x -+=有等根1,因此方程2210x x -+=的解集中只有1个元素,A 错误;对于B ,0是自然数,B 错误;对于C ,2是最小的质数,C 正确;对于D ,13是正分数,是有理数,D 正确.故选:CD 10.已知23x <<,23y <<,则()A.629x y <+<B.223x y <-< C.11x y -<-< D.49xy <<【答案】ACD 【解析】【分析】根据不等式的基本性质,逐个选项进行判断求解即可.【详解】由已知得,426x <<,23y ->->-,得到,对于A ,由426x <<和23y <<,得到629x y <+<,A 正确;对于B ,由426x <<和32y -<-<-,得到124x y <-<,与题意不符,故B 错误;对于C ,由23x <<,32y -<-<-,得到11x y -<-<,C 正确;对于D ,由23x <<,23y <<,得到49xy <<,D 正确;故选:ACD11.若函数()221f x x x=-,则()A.函数()f x 为偶函数B.函数()f x 在定义域上单调递增C.函数()f x 的值域为RD.()1f x f x ⎛⎫=- ⎪⎝⎭【答案】ACD【解析】【分析】由函数奇偶性的定义判断选项A ,分别判断(),0x ∈-∞与()0,x ∈+∞时,函数2y x =与21y x =的单调性,从而得函数()f x 的单调性,分析x →-∞与0x -→对应的()f x 取值范围,计算得1f x ⎛⎫⎪⎝⎭,并判断与()f x 的关系.【详解】因为函数()f x 定义域为()(),00,∞-+∞U ,()()()()222211f x x x f x xx -=--=-=-,所以函数()f x 为偶函数,A 正确;当(),0x ∈-∞时,2y x =单调递减,21y x =单调递增,所以函数()221f x x x =-单调递减,当()0,x ∈+∞时,2y x =单调递增,21y x=单调递减,所以函数()221f x x x =-单调递增,B错误;当x →-∞时,221,0→+∞→x x ,所以221⎛⎫-→+∞ ⎪⎝⎭x x ,当0x -→时,2210,→→+∞x x ,所以221⎛⎫-→-∞ ⎪⎝⎭x x ,所以函数()f x 的值域为R ,C 正确;()2222111⎛⎫-=-⎛⎫= ⎪⎝-=- ⎪⎝⎭⎭x x f x x f x x ,D 正确.故选:ACD12.已知x ,()0,y ∈+∞,设2M x y =+,N xy =,则以下四个命题中正确的是()A.若1N =,则MB.若6M N +=,则N 有最大值2C.若1M =,则108N <≤D.若231M N =+,则M 有最小值85【答案】BC 【解析】【分析】利用基本不等式及二次函数性质求各项对应代数式的最值,注意取值条件,即可判断各项正误.【详解】A :1N xy ==,由2M x y =+≥=,2x y ==B :26M N x y xy xy +=++=≥+,当且仅当1,2x y ==时等号成立,即60xy +-=+≤,可得002xy <≤⇒<≤,所以N 有最大值2,对;C :2112M x y y x =+=⇒=-,则221122(48N xy x x x ==-=--+,又x ,()0,y ∈+∞,则120x ->,可得102x <<,所以108N <≤,对;D :由题设223(2)31(2)18x y xy x y +=+≤⋅++,即28(2)255x y x y +≤⇒+≤,当且仅当,105x y ==时等号成立,所以05M <≤,错.故选:BC第II 卷非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知集合{}{}21,3,0,3,A B m =-=,若B A ⊆,则实数m 的值为__________.【答案】0【解析】【分析】解方程20m =即得解.【详解】解:因为B A ⊆,所以21m =-(舍去)或20m =,所以0m =.故答案为:014.化简()()sin 400sin 230cos850tan 50︒-︒︒-︒的结果为______.【答案】cos50︒【解析】【分析】先根据诱导公式化简,再利用同角三角函数的关系:切化弦得解.【详解】()()()()()()()()sin 36040sin 18050sin 400sin 230sin 40sin 50sin 50=cos50sin 50cos850tan 50cos 7209040tan 50sin 40tan 50cos50︒+︒-︒+︒⎡⎤︒-︒︒︒︒⎣⎦===︒︒︒-︒︒+︒+︒-︒-︒-︒︒故填cos50︒.【点睛】本题考查诱导公式和同角三角函数的关系,属于基础题.15.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae -bt (cm 3),经过8min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.【答案】16【解析】【分析】根据经过8min 后发现容器内还有一半的沙子,得到e -8b=12,然后又容器中的沙子只有开始时的八分之一时,即y =ae-bt=18a 联立求解.【详解】当t =8时,y =ae -8b=12a ,所以e-8b=12.容器中的沙子只有开始时的八分之一时,即y =ae -bt=18a ,所以e-bt=18=(e -8b )3=e -24b ,则t =24.所以再经过16min 容器中的沙子只有开始时的八分之一.故答案为:16【点睛】本题主要考查指数型函数的应用,属于基础题.16.设函数f (x )=ln(1+|x |)-211x+,则使得f (x )>f (2x -1)成立的x 的取值范围是________.【答案】1,13⎛⎫ ⎪⎝⎭【解析】【分析】判断()f x 的奇偶性和单调性,据此等价转化不等式,则问题得解.【详解】由f (x )=ln(1+|x |)-211x+()()()21ln 11x f x x =+--=-+-,且其定义域为R ,故f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x ≥0时,f (x )=ln(1+x )-211x +,()21ln 1,1y x y x=+=-+在[)0,∞+均是单调增函数,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,两边平方得3x 2-4x +1<0,解得13<x <1.故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题考查函数奇偶性和单调性的判断,涉及利用函数性质解不等式,属综合基础题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.计算下列各式的值(1)210232183(2(9.6)()()4272----+(2)7log 2327log lg 25lg 473+++.【答案】(1)12;(2)154.【解析】【分析】(1)利用指数的运算规则进行求解;(2)利用对数的运算规则进行求解.【详解】(1)原式1213222223292332211432233⨯-⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭312=-12=;(2)原式()31424333log lg 2542log 3lg1023-=+⨯+=++1224=-++154=.18.已知集合{}45A x x =-<<,{}36B x x =-<<,{}|121,R C x m x m m =-≤≤+∈.(1)求A B ⋃,A B ⋂;(2)若()C A B ⊆⋂,求实数m 的取值范围.【答案】(1){}46A B x x ⋃=-<<,{}35A B x x ⋂=-<<(2)2m <-或22m -<<.【解析】【分析】(1)根据集合的交并运算求得A B ⋃,A B ⋂;(2)根据C 是否为空集进行分类讨论,由此求得m 的取值范围.【小问1详解】{}45A x x =-<<,{}36B x x =-<<,∴{}46A B x x ⋃=-<<,{}35A B x x ⋂=-<<.【小问2详解】{}35A B x x ⋂=-<<,当C =∅时,121m m ->+,∴2m <-.当C ≠∅时,213215m m m ≥-⎧⎪->-⎨⎪+<⎩,∴22m -<<.综上所述,2m <-或22m -<<.19.已知()f x 是定义在[1,1]-上的偶函数,且[1,0]x ∈-时,2()1xf x x =+.(1)求函数()f x 的表达式;(2)判断并证明函数在区间[0,1]上的单调性.【答案】(1)22,[0,1]1(),[1,0)1xx x f x x x x -⎧∈⎪⎪+=⎨⎪∈-⎪+⎩(2)单调减函数,证明见解析【解析】【分析】(1)设[0,1]x ∈,则[1,0]x -∈-,根据()f x 是偶函数,可知()()f x f x -=,然后分两段写出函数()f x 解析式即可;(2)利用函数单调性的定义,即可判断函数的单调性,并可证明结果.【小问1详解】解:设[0,1]x ∈,则[1,0]x -∈-,2()1xf x x --=+,因为函数()f x 为偶函数,所以()()f x f x -=,即2()1xf x x -=+,所以22,[0,1]1(),[1,0)1xx x f x x x x -⎧∈⎪⎪+=⎨⎪∈-⎪+⎩.【小问2详解】解:设1201x x <<<,()()()()()()211221212222212111111x x x x x x f x f x x x x x -----=-=++++,∵1201x x <<<,∴210x x ->,1210x x -<,∴()()21f x f x <,∴()f x 在[0,1]为单调减函数.20.已知函数()sin(),22f x x ππϕϕ⎛⎫⎛⎫=+∈- ⎪ ⎪⎝⎭⎝⎭,对任意x ∈R 都有()3f x f x π⎛⎫+=- ⎪⎝⎭.(1)求()f x 的解析式;(2)对于任意x ∈R ,不等式()1f x m -≤恒成立,求实数m 的取值范围.【答案】(1)()sin 3f x x π⎛⎫=+⎪⎝⎭(2)2m ≥【解析】【分析】(1)根据()3f x f x π⎛⎫+=- ⎪⎝⎭得到函数()f x 的对称轴,再利用对称轴列方程,求ϕ即可;(2)根据函数()f x 的解析式求出()1f x -的最大值即可得到m 的范围.【小问1详解】因为对任意x ∈R 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,所以6x π=是函数()f x 的一条对称轴,si 616n f ππϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭,解得()Z 3k k πϕπ=+∈,又,22ππϕ⎛⎫∈- ⎪⎝⎭,所以3πϕ=,()sin 3f x x π⎛⎫=+ ⎪⎝⎭.【小问2详解】因为对任意x ∈R ,不等式()1f x m -≤,所以()max 1m f x ≥-,因为()sin 3f x x π⎛⎫=+ ⎪⎝⎭,x ∈R ,所以()[]()[]sin 1,110,23f x x f x π⎛⎫=+∈-⇒-∈ ⎪⎝⎭,所以2m ≥.21.某厂家生产医用防护用品需投入年固定成本为150万元,每生产x 万件,需另投入成本为()C x 万元.当年产量不足60万件时,()213802C x x x =+万元;当年产量不小于60万件时,()810004102550C x x x =+-万元.通过市场分析,若每件售价为400元时,该厂年内生产的商品能全部售完.(利润=销售收入-总成本)(1)写出年利润L 万元关于年产量x 万件的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值.【答案】21.()2120150,060,281000240010,60,x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩22.年产量为90万件时,该厂在这一商品的生产中所获利润最大,最大值为600万元【解析】【分析】(1)利用“利润=销售收入-总成本”求得L 关于x 的函数解析式.(2)根据二次函数的性质以及基本不等式求得正确答案.【小问1详解】当060x ≤<时,()22114003801502015022L x x x x x x =---=-+-,当60x ≥时,()81000810004004102550150240010L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭.所以()2120150,060,281000240010,60,x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩.【小问2详解】当060x ≤<时,()()221120*********L x x x x =-+-=--+,所以当20x =时,()L x 取得最大值()2050L =(万元);当60x ≥时,()81000240010240021090600L x x x ⎛⎫=-+≤-⨯⨯= ⎪⎝⎭,当且仅当8100010x x=,即90x =时等号成立.综上,当90x =时,()L x 取得最大值600万元.所以年产量为90万件时,该厂在这一商品的生产中所获利润最大,最大值为600万元.22.已知函数()1ln1kx f x x -=+为奇函数.(1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.【答案】(1)1;(2)增函数,证明见解析;(3)209m <<【解析】【分析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m 的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性.【详解】(1)因为函数()1ln 1kx f x x -=+为奇函数,所以()()0f x f x +-=,即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln1x f x x -=+的定义域关于原点对称.所以1k =为满足题意的值.(2)结论:()f x 在(),1∞-,()1,+∞上均为增函数.证明:由(1)知()1ln 1x f x x -=+,其定义域为()(),11,-∞-+∞U ,任取12,(1,)x x ∈+∞,不妨设12x x <,则()()()()()()11212222111111ln 111ln 1ln x x x x f x f x x x x x --+=+--=++--,因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->,所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-,即()()12f x f x <,所以()f x 在()1,+∞上为增函数.同理,()f x 在(),1∞-上为增函数.(3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x m mx x -=-+的两实根,问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =-则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩,即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<.【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。

(完整版)高一上学期期末数学试卷(含答案)

(完整版)高一上学期期末数学试卷(含答案)

高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)设集合A={x|﹣4<x<3},B={x|x≤2},则A∪B=()A.(﹣4,3)B.(﹣4,2]C.(﹣∞,2]D.(﹣∞,3)2.(5分)设,则tan(π+x)等于()A.0B.C.1D.3.(5分)函数y=log3(x﹣1)+的定义域为()A.(1,2]B.(1,+∞)C.(2,+∞)D.(﹣∞,0)4.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个5.(5分)角α满足条件sinα•cosα>0,sinα+cosα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线.A.4B.3C.1D.07.(5分)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)=()A.﹣x﹣1B.﹣x+1C.x+1D.x﹣18.(5分)把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象正好关于y轴对称,则φ的最小值为()A .πB .πC.D .π9.(5分)函数y=a x ﹣(a>0,a≠1)的图象可能是()A.B.C.D.10.(5分)已知函数f(x)=,若对任意x x≠x2,都有<0成立,则a的取值范围是()A.(0,]B .(,1)C.(1,2)D.(﹣1,2)二、填空题(每小题4分,共20分)11.(4分)已知函数f(x)=,则f(0)+f(1)=.12.(4分)如果角α的终边过点(2sin30°,﹣2cos30°),则sinα的值等于.13.(4分)设a=log33,b=log43,c=,则a,b,c之间的大小关系是.14.(4分)已知表示“向东方向航行1km”,表示“向南方向航行1km”,则﹣表示“”15.(4分)当0<x <时,函数f(x)=的最大值是.三、解答题16.(8分)已知集合A={x|﹣2≤x≤5},B={x|m﹣1≤x≤m+1}(1)若m=5,求A∩B(2)若B⊆A,求实数m的取值范围.17.(8分)已知=(6,1),=(x,8),=(﹣2,﹣3)(1)若,求x的值(2)若x=﹣5,求证:.18.(10分)某桶装水经营部每天的房租、员工工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如表所示:销售价格/元6789101112日均销售量/桶480440400360320280240(1)设经营部在进价基础上增加x元进行销售,则此时的日均销售量为多少桶?(2)在(1)中,设日均销售净利润(除去固定成本)为y元,试求y的最大值及其对应的销售单价.19.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)设集合A={x|﹣4<x<3},B={x|x≤2},则A∪B=()A.(﹣4,3)B.(﹣4,2]C.(﹣∞,2]D.(﹣∞,3)考点:并集及其运算.专题:集合.分析:直接利用并集的运算法则求解即可.解答:解:集合A={x|﹣4<x<3},B={x|x≤2},则A∪B={x|﹣4<x<3}∪{x|x≤2}={x|x<3},故选:D.点评:本题考查集合的并集的求法,考查并集的定义以及计算能力.2.(5分)设,则tan(π+x)等于()A.0B.C.1D.考点:运用诱导公式化简求值.专题:计算题.分析:先利用诱导公式化简tan(π+x),将x的值代入,求出正切值.解答:解:∵tan(π+x)=tanx∴时,tan(π+x)=tan=故选B.点评:给角的值求三角函数值时,应该先利用诱导公式化简三角函数,在将x的值代入求出值.3.(5分)函数y=log3(x﹣1)+的定义域为()A.(1,2]B.(1,+∞)C.(2,+∞)D.(﹣∞,0)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组,求解x的取值集合得答案.解答:解:由,解得:1<x≤2.∴函数y=log3(x﹣1)+的定义域为(1,2].故选:A.点评:本题考查了函数的定义域及其求法,考查了不等式组的解法,是基础题.4.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个考点:函数的零点.专题:函数的性质及应用.分析:根据根的存在定理,判断函数值的符号,然后判断函数零点个数即可.解答:解:依题意,∵f(2)>0,f(3)<0,f(4)>0,f(5)<0,∴根据根的存在性定理可知,在区间(2,3)和(3,4)及(4,5)内至少含有一个零点,故函数在区间上的零点至少有3个,故选B.点评:本题主要考查函数零点个数的判断,用二分法判断函数的零点的方法,比较基础.5.(5分)角α满足条件sinα•cosα>0,sinα+cosα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限考点:三角函数值的符号.专题:三角函数的图像与性质.分析:sinα•cosα>0得到sinα和cosα同号;再结合sinα+cosα<0即可得到sinα<0,cosα<0;进而得到结论.解答:解:因为sinα•cosα>0∴sinα和cosα同号.又∵sinα+cosα<0∴sinα<0,cosα<0.即α的正弦和余弦值均为负值.故α的终边在第三象限.故选:C.点评:本题主要考查三角函数值的符号和象限角.是对基础知识的考查,要想做对,需要熟练掌握三角函数值的符号的分布规律.6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线.A.4B.3C.1D.0考点:命题的真假判断与应用.专题:平面向量及应用;简易逻辑.分析:①利用向量相等与菱形的性质即可判断出正误;②利用菱形的性质、模相等的定义即可判断出正误;③利用菱形的性质、直角三角形的边角关系即可判断出正误.④利用向量共线定理即可判断出与共线,即可判断出正误.解答:解:①图中所标出的向量中与相等的向量只有1个,(不含本身),正确;②图中所标出的向量与的模相等的向量有4个,,,(不含本身),正确;③利用菱形的性质、直角三角形的边角关系可得:的长度恰为长度的倍,正确.④与共线,因此不正确.因此说法中错误说法的个数是1.故选:C.点评:本题考查了向量相等、菱形的性质、模相等的定义、直角三角形的边角关系、向量共线定理、简易逻辑的判定,考查了推理能力,属于基础题.7.(5分)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)=()A.﹣x﹣1B.﹣x+1C.x+1D.x﹣1考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据题意,x<0时,﹣x>0,求出f(﹣x)的表达式,再利用奇函数求出f(x)的表达式.解答:解:∵函数f(x)是定义域为R的奇函数,且x>0时,f(x)=﹣x+1,∴当x<0时,﹣x>0,∴f(﹣x)=﹣(﹣x)+1=x+1;又f(﹣x)=﹣f(x),∴﹣f(x)=x+1,∴f(x)=﹣x﹣1.故选:A.点评:本题考查了利用函数的奇偶性求函数解析式的应用问题,是基础题目.8.(5分)把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象正好关于y轴对称,则φ的最小值为()A .πB.πC.D .π考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.解答:解:把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象对应的函数的解析式为y=cos(x﹣φ+),由于所得图象正好关于y轴对称,则﹣φ+=kπ,k∈z,即φ=﹣kπ,故φ的最小值为,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.9.(5分)函数y=a x ﹣(a>0,a≠1)的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:讨论a与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可.解答:解:函数y=a x ﹣(a>0,a≠1)的图象可以看成把函数y=a x 的图象向下平移个单位得到的.当a>1时,函数y=a x ﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x ﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.点评:本题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于基础题.10.(5分)已知函数f(x)=,若对任意x x≠x2,都有<0成立,则a的取值范围是()A.(0,]B.(,1)C.(1,2)D.(﹣1,2)考点:函数单调性的性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:由条件可得,f(x)在R上是单调递减函数,则0<a<1①,a﹣2<0,即a<2②,a0≥(a﹣2)×0+2a③,求出它们的交集即可.解答:解:由于对任意x1≠x2,都有<0成立,则f(x)在R上是单调递减函数,当x<0时,y=a x为减,则0<a<1;①当x≥0时,y=(a﹣2)x+5a为减,则a﹣2<0,即a<2;②由于f(x)在R上是单调递减函数,则a0≥(a﹣2)×0+2a,解得a ≤.③由①②③得,0<a ≤.故选A.点评:本题考查分段函数及运用,考查分段函数的单调性,注意各段的单调性,以及分界点的情况,属于中档题和易错题.二、填空题(每小题4分,共20分)11.(4分)已知函数f(x)=,则f(0)+f(1)=1.考点:函数的值.专题:函数的性质及应用.分析:直接利用分段函数,化简求解函数值即可.解答:解:函数f(x)=,则f(0)+f(1)=(0﹣1)+(1+1)=1;故答案为:1.点评:本题考查分段函数以及函数值的求法,考查计算能力.12.(4分)如果角α的终边过点(2sin30°,﹣2cos30°),则sinα的值等于.考点:三角函数的化简求值.专题:计算题.分析:先利用角α的终边求得tanα的值,进而利用点(2sin30°,﹣2cos30°)判断出α的范围,进而利用同角三角函数的基本关系求得sinα的值.解答:解:依题意可知tanα==﹣∵,﹣2cos30°<0,2sin30°>0∴α属于第四象限角∴sinα=﹣=﹣故答案为:﹣点评:本题主要考查了同角三角函数的基本关系的运用.解题的关键是利用α的范围确定sinα的正负.13.(4分)设a=log33,b=log43,c=,则a,b,c之间的大小关系是c<b<a.考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数的性质进行计算即可.解答:解:∵=<<1=;∴c<b<a,故答案为:c<b<a.点评:本题考查了对数函数的性质,是一道基础题.14.(4分)已知表示“向东方向航行1km”,表示“向南方向航行1km”,则﹣表示“向东北方向航行km;”考点:向量的几何表示.专题:平面向量及应用.分析:根据平面向量表示的几何意义,画出图形,进行解答即可.解答:解:∵表示“向东方向航行1km”,表示“向南方向航行1km”,∴﹣表示“向北方向航行1km”,∴﹣表示“向东北方向航行km”如图所示.故答案为:向东北方向航行km.点评:本题考查了平面向量的几何意义,是基础题目.15.(4分)当0<x <时,函数f(x)=的最大值是﹣.考点:函数最值的应用.专题:函数的性质及应用.分析:根据1的代换,利用换元法将函数进行转化,利用一元二次函数的性质进行求解.解答:解:f(x)===tanx﹣(tanx)2﹣1,设t=tanx,∵0<x <,∴0<tanx<1,即0<t<1,则函数f(x)等价为y=﹣t2+t﹣1=﹣(t ﹣)2﹣,∴当t=时,函数取得最大﹣,故答案为:﹣点评:本题主要考查函数最值的求解,根据条件利用换元法结合一元二次函数的单调性的性质是解决本题的关键.三、解答题16.(8分)已知集合A={x|﹣2≤x≤5},B={x|m﹣1≤x≤m+1}(1)若m=5,求A∩B(2)若B⊆A,求实数m的取值范围.考点:交集及其运算;集合的包含关系判断及应用.专题:集合.分析:(1)若m=5,求出集合B,即可求A∩B(2)若B⊆A,根据集合关系即可求实数m的取值范围.解答:解:(1)因为m=5,所以B={x|4≤x≤6}.…(1分)所以A∩B={x|4≤x≤6}…(3分)(2)易知B≠∅,…(4分)所以由B⊆A 得…(7分)得﹣1≤m≤4…(8分)点评:本题主要考查集合的基本运算和集合关系的应用,要求熟练掌握集合的交并补运算,比较基础.17.(8分)已知=(6,1),=(x,8),=(﹣2,﹣3)(1)若,求x的值(2)若x=﹣5,求证:.考点:数量积判断两个平面向量的垂直关系;平行向量与共线向量.专题:平面向量及应用.分析:(1)由可得﹣3x=﹣2×8,解方程可得;(2)当x=﹣5时,可得的坐标,可得=0,可判垂直.解答:解:(1)∵=(x,8),=(﹣2,﹣3)又∵,∴﹣3x=﹣2×8,解得x=(2)当x=﹣5时,=++=(4+x,6)=(﹣1,6),∵=(6,1),∴=﹣1×6+6×1=0∴.点评:本题考查数量积与向量的垂直关系和平行关系,属基础题.18.(10分)某桶装水经营部每天的房租、员工工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如表所示:销售价格/元6789101112日均销售量/桶480440400360320280240(1)设经营部在进价基础上增加x元进行销售,则此时的日均销售量为多少桶?(2)在(1)中,设日均销售净利润(除去固定成本)为y元,试求y的最大值及其对应的销售单价.考点:根据实际问题选择函数类型.专题:函数的性质及应用.分析:(1)利用表格的特征变化规律,推出关系式,即可在经营部在进价基础上增加x元进行销售,求出此时的日均销售量的桶数.(2)在(1)中,设日均销售净利润(除去固定成本)为y元,求出函数的解析式,利用二次函数的最值求解最大值及其对应的销售单价.解答:解:(1)由表可以看出,当销售单价每增加1元时,日均销售量将减少40桶.…(2分)当经营部在进价基础上增加x元进行销售时,此时的日均销售量为:480﹣40(x﹣1)=520﹣40x(桶)…(5分)(2)因为x>0,且520﹣40x>0,所以0<x<13…(6分)所以y=(520﹣40x)x﹣200=﹣40x2+520x﹣200,0<x<13.…(8分)易知,当x=6.5时,y有最大值1490元.即只需将销售单价定为11.5元,就可获得最大净利润1490元.…(10分)(本题改编自教科书104页例5)点评:本题考查函数的最值,实际问题的应用,考查分析问题解决问题的能力.19.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.考点:两角和与差的正弦函数;三角函数的最值.专题:计算题;三角函数的图像与性质.分析:(1)由两角和与差的正弦函数公式化简可得f(x)=4sin(2x+),由2k≤2x+≤2k(k∈Z)可解得函数f(x)的单调递增区间.(2)由x,可得2x+∈,由正弦函数的图象和性质即可求函数f(x)的最大值、最小值及其对应的x的值.解答:解:(1)f(x)=2(cos2x+sin2x)=4(cos2x+sin2x)=4sin(2x+)…(3分)由2k≤2x+≤2k(k∈Z)可解得:kπ﹣≤x≤k π(k∈Z)故函数f(x)的单调递增区间是:(k∈Z)…(5分)(2)∵x,∴2x+∈,…(6分)∴当x=时,函数f(x)的最大值为4…(8分)当x=时,函数f(x)的最大值为﹣2…(10分)点评:本题主要考查了两角和与差的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基本知识的考查.20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.考点:利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用;三角函数的图像与性质.分析:(1)根据“弱增函数”的定义,判断f(x)、g(x)在(1,2)上是否满足条件即可;(2)根据“弱增函数”的定义,得出①h(x)在(0,1)上是增函数,在(0,1)上是减函数,列出不等式组,求出b与θ的取值范围.解答:解:(1)由于f(x)=x﹣4在(1,2)上是增函数,且F(x)==1﹣在(1,2)上也是增函数,所以f(x)=x﹣4在(1,2)上不是“弱增函数”…(2分)g(x)=﹣x2+4x在(1,2)上是增函数,但=﹣x+4在(1,2)上是减函数,所以g(x)=﹣x2+4x在(1,2)上是“弱增函数”…(4分)(2)设h(x)=x2﹣(sinθ﹣)x﹣b(θ、b是常数)在(0,1)上是“弱增函数”,则①h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数,由h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数得≤0,…(6分)∴sin θ≤,θ∈(k∈Z);…(8分)②H(x)==x ﹣+﹣sinθ在(0,1)上是减函数,记G(x)=x﹣,在(0,1)上任取0<x1<x2≤1,则G(x1)﹣G(x2)=(x1x2+b)>0恒成立,…(11分)又∵<0,∴x1x2+b<0恒成立,而当0<x1<x2≤1时,0<x1x2<1,∴b≤﹣1;(如果直接利用双沟函数的结论扣2分)∴b≤﹣1;且θ∈(k∈Z)时,h (x)在(0,1]上是“弱增函数”.…(14分)点评:本题考查了三角函数的图象与性质的应用问题,也考查了函数与导数的应用问题,考查了新定义的应用问题,考查了分析与解决问题的能力,是综合性题目.。

平顶山市2024届高一数学第一学期期末统考试题含解析

平顶山市2024届高一数学第一学期期末统考试题含解析

平顶山市2024届高一数学第一学期期末统考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12小题,共60分)1.已知圆C :x 2+y 2+2x =0与过点A (1,0)的直线l 有公共点,则直线l 斜率k 的取值范围是() A.33,22⎡-⎢⎣⎦ B.33,33⎡-⎢⎣⎦C.11,22⎡⎤-⎢⎥⎣⎦ D.[]1,1-2.已知函数,则()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,则()()11f f --=A.22log 32- B.2log 71-C.2D.2log 63.如果幂函数()a f x x =的图象经过点()2,4,则()f x 在定义域内A.为增函数B.为减函数C.有最小值D.有最大值4.已知(2,5,6)A -,点P 在y 轴上,||7PA =,则点P 的坐标是A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,8,0)-5.角α的终边经过点()2,1-,则2sin 3cos αα+的值为()A.55-C.5D.5-6.已知函数1()sin()f x x ωφ=+(0,2ωφπ><)的部分图象如图所示,则,ωφ的值分别为A.2,3π B.2, 3π-C.1, 6π D.1, 6π-7.已知1tan 2α=,则cos sin cos sin αααα+=-().A.2B.2-C.3D.3-8.如图,四边形ABCD 是平行四边形,则()A. B.C. D.9.下表是某次测量中两个变量,x y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是x 23456789y0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10.已知角α满足2cos2cos 04παα⎛⎫=+≠⎪⎝⎭,则sin2α=A .18- B.78-C.18 D.7811.已知角θ为第四象限角,则点()sin ,tan P θθ位于()A.第一象限B.第二象限C.第三象限D.第四象限12.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A.910 B.45C.25 D.12二、填空题(本大题共4小题,共20分)0.258+(1258-)0+323log=_____14.若tan(2,4πα+=则sin cossin cosαααα-=+______15.已知tan3α=,则sin cossin cosαααα+=-___________16.函数212()log()f x x x=-的单调增区间为________三、解答题(本大题共6小题,共70分)17.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是()2sin(0,0)3f x A x Aπϕϕπ⎛⎫=+>≤<⎪⎝⎭,其中的振幅为2,且经过点()1,2-.(1)求该噪声声波曲线的解析式()f x以及降噪芯片生成的降噪声波曲线的解析式()g x;(2)将函数()f x图象上各点的横坐标变为原来的3π倍,纵坐标不变得到函数()h x的图象.若锐角θ满足()1013hθ=-,求cos2θ的值.18.已知定义域为R的函数()122xxaf xb+-+=+是奇函数.(1)求,a b的值;(2)判断函数()f x的单调性(只写出结论即可);(3)若对任意的[1,1]t∈-不等式()()2220f t t f k t-+-<恒成立,求实数k的取值范围19.已知a R ∈,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程()()2log 4250f x a x a ⎡⎤--+-=⎣⎦的解集中恰有一个元素,求a 的取值范围;(3)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.20.如图,正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC =()1求二面角1B AD B --的正切值;()2求三棱锥11C ABB -的体积21.函数()()2log 21x f x =-(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围22.已知,a b ∈R ,0a ≠,函数()cos )f x x x b =++,1()sin cos 22a g x a x x a =⋅+++(1)若(0,)x π∈,()5f x b =-+,求sin cos x x -的值;(2)若不等式()()f xg x ≤对任意x ∈R 恒成立,求b 的取值范围参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r =1,设直线方程为y ﹣0=k (x ﹣1),即kx ﹣y ﹣k =0∴圆心到直线的距离d =≤1,解得33-≤k 33≤故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题2、B 【解析】因为()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,所以()()()()2112617117log 71f f f f --=---=--==-,,故选B.3、C【解析】由幂函数()f x x α=的图象经过点(2,4),得到2()f x x =,由此能求出函数的单调性和最值【详解】解: 幂函数()f x x α=的图象经过点(2,4),()224a f ∴==,解得2a =,2()f x x ∴=,()f x ∴在(],0x ∈-∞递减,在[)0,x ∈+∞递增,有最小值,无最大值故选C【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答4、C【解析】依题意设()0,,0P b ,根据7PA ==,解得2,8b =,所以选C .5、D【解析】根据三角函数定义求解即可.【详解】因为角α的终边经过点()2,1-,所以5sin 5α==,25cos 5α==-,所以2565452sin 3cos 555αα+=-=-.故选:D6、B 【解析】由条件知道:27,36x x ππ==均是函数的对称中心,故这两个值应该是原式子分母的根,故得到27sin()0,sin()036w w πφπφ+=+=,由图像知道周期是π,故2w =,故47sin()0,sin()033πφπφ+=+=,再根据三角函数的对称中心得到4+=k 3πφπ,故.3πφ=-如果7433k πφπφπ+=⇒=-,根据2πφ<,得到.3πφ=-故答案为B 点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法7、C 【解析】将cos sin cos sin αααα+-分子分母同除以cos α,再将1tan 2α=代入求解.【详解】11cos sin 1tan 231cos sin 1tan 12αααααα+++===---.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.8、D【解析】由线性运算的加法法则即可求解.【详解】如图,设交于点,则.故选:D9、D【解析】对于A ,由于x 均匀增加1,而y 值不是均匀递增,∴不是一次函数模型;对于B ,由于该函数是单调递增,不是二次函数模型;对于C ,x y a =过()0,1,∴不是指数函数模型,故选D.10、B【解析】∵2cos2cos 4παα⎛⎫=+ ⎪⎝⎭∴2222(cos sin )2(cos sin )(cos sin )(cos sin )02αααααααα-=+-=-≠,∴2cos sin 4αα+=,两边平方整理得11+2sin cos 1+sin28ααα==,∴7sin28α=-.选B 11、C 【解析】根据三角函数的定义判断sin θ、tan θ的符号,即可判断.【详解】因为θ是第四象限角,所以sin 0θ<,tan 0θ<,则点(sin ,tan )θθ位于第三象限,故选:C12、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为2225110C C =,则2名同学中至少有一名男同学的概率是1911010-=.故选:A .二、填空题(本大题共4小题,共20分)13、5【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式()1134422122125=⨯++=++=.故答案为:5【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.14、12-【解析】sin cos sin cos αααα-=+tan 111tan 12tan()4απαα-=-=-++15、2【解析】将齐次式弦化切即可求解.【详解】解:因为tan 3α=,所以sin cos tan 1312sin cos tan 131+++===---αααααα,故答案为:2.16、1,12⎡⎫⎪⎢⎣⎭.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由20x x ->得()f x 定义域为()0,1,令2t x x =-,则t 在112⎡⎫⎪⎢⎣⎭,单调递减,又12log y t =在()0,∞+单调递减,所以()f x 的单调递增区间是112⎡⎫⎪⎢⎣⎭,.故答案为:112⎡⎫⎪⎢⎣⎭,.三、解答题(本大题共6小题,共70分)17、(1)()252sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()252sin 36g x x ππ⎛⎫=-+ ⎪⎝⎭(2)123526【解析】(1)利用函数的振幅求得A ,代入()1,2-求得ϕ的值,从而求得函数()f x ,利用对称性求得函数()g x ;(2)利用三角函数图像变换求得()h x ,由()1013h θ=-得5cos 2313πθ⎛⎫+=- ⎪⎝⎭,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由()2sin (0,0)3f x A x A πϕϕπ⎛⎫=+>≤< ⎪⎝⎭振幅为2知2A =,()22sin 3f x x πϕ⎛⎫∴=+ ⎪⎝⎭,代入()1,2-有22sin 23πϕ⎛⎫+=- ⎪⎝⎭,272,2326k k πππϕπϕπ∴+=-+∴=-+,而0ϕπ≤<,()525,2sin 636f x x πππϕ⎛⎫∴=∴=+ ⎪⎝⎭而()f x 与()g x 关于x 轴对称,()()252sin 36g x f x x ππ⎛⎫∴=-=-+ ⎪⎝⎭【小问2详解】由已知()352sin 26h x f x x ππ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,()5102sin 22sin 22cos 2623313h ππππθθθθ⎛⎫⎛⎫⎛⎫∴=+=++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5cos 2313πθ⎛⎫∴+=- ⎪⎝⎭40,22333ππππθθ<<∴<+< ,而514cos 2cos 31323ππθ⎛⎫+=->-= ⎪⎝⎭,故223ππθπ<+<,12sin 2313πθ⎛⎫∴+= ⎪⎝⎭cos2cos 233ππθθ⎡⎤⎛⎫∴=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 3333ππππθθ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭51123132132⎛⎫=-⨯+⨯ ⎪⎝⎭123526-=.18、(1)1a =,2b =;(2)见解析;(3)(2,)+∞.【解析】(1)根据函数奇偶性得()00f =,()()11f f -=-,解得,a b 的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为2k t >,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1) ()f x 在R 上是奇函数,∴()00f =,∴102a b -+=+,∴1a =,∴()1122x x f x b+-=+,∴()()11f f -=-,∴111214b b --=-++,∴2b =,∴()11222xx f x +-=+,经检验知:()()f x f x -=,∴1a =,2b =(2)由(1)可知,()()()21211221221x x x f x -++==-+++在R 上减函数.(3)()()2220f t t f k t -+-< 对于[]1,1t ∈-恒成立,()()222f t t f k t ∴-<--对于[]1,1t ∈-恒成立, ()f x 在R 上是奇函数,()()222f t t f t k ∴-<-对于[]1,1t ∈-恒成立,又 ()f x 在R 上是减函数,222t t t k ∴->-,即2k t >对于[]1,1t ∈-恒成立,而函数()2g x t =在[]1,1-上的最大值为2,2k ∴>,∴实数k 的取值范围为()2,+∞【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭.(2)(]{}1,23,4 .(3)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当5a =时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a 的取值范围进行求解即可;(3)根据条件得到11f t f t -+≤()(),恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由21log 50x >⎛⎫+ ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭(2)由f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0得log 2(1x +a )﹣log 2[(a ﹣4)x +2a ﹣5]=0即log 2(1x +a )=log 2[(a ﹣4)x +2a ﹣5],即1x+a =(a ﹣4)x +2a ﹣5>0,①则(a ﹣4)x 2+(a ﹣5)x ﹣1=0,即(x +1)[(a ﹣4)x ﹣1]=0,②,当a =4时,方程②的解为x =﹣1,代入①,成立当a =3时,方程②的解为x =﹣1,代入①,成立当a ≠4且a ≠3时,方程②的解为x =﹣1或x 14a =-,若x =﹣1是方程①的解,则1x +a =a ﹣1>0,即a >1,若x 14a =-是方程①的解,则1x+a =2a ﹣4>0,即a >2,则要使方程①有且仅有一个解,则1<a ≤2综上,若方程f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2,或a =3或a =4(3)函数f (x )在区间[t ,t +1]上单调递减,由题意得f (t )﹣f (t +1)≤1,即log 2(1t +a )﹣log 2(11t ++a )≤1,即1t +a ≤2(11t ++a ),即a ()12111t t t t t -≥-=++设1﹣t =r ,则0≤r 12≤,()()()2111232t r r t t r r r r -==+---+,当r =0时,232r r r =-+0,当0<r 12≤时,212323r r r r r =-++-,∵y =r 2r +在(0)上递减,∴r 219422r +≥+=,∴211229323332r r r r r =≤=-++--,∴实数a 的取值范围是a 23≥【一题多解】(3)还可采用:当120x x <<时,1211a a x x ++>,221211log log a a x x >⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,∞+上单调递减则函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭20、(1)2(2)934【解析】()1取BC 中点O,11B C 中点E,连结OE,OA,以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1B AD B --的正切值()2三棱锥11C ABB -的体积1111C ABB A BB C V V --=,由此能求出结果【详解】()1取BC 中点O ,11B C 中点E ,连结OE ,OA ,由正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC=以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,则13(,2B 3,0),(0,A 0,2,9(,2D 0,0),3(,2B 0,0),所以9(,2AD = 0,33)2-,13(,2AB = 3,332-,其中平面ABD 的法向量(0,n =1,0),设平面1ADB 的法向量(,m x = y ,)z ,则19330223333022m AD x z m AB x y z ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,取3z =,得(1,m =1,3),设二面角1B AD B --的平面角为θ,则1cos 5m n m n θ⋅==⋅,则12sin 155θ=-=,则sin tan 2cos θθθ==,所以二面角1B AD B --的正切值为2()2由(1)可得AO ⊥平面11BB C ,所以AO 是三棱锥11A BB C -的高,且332AO =,所以三棱锥11C ABB -的体积:11111111331933333224C ABB A BB C BB C V V AO S --==⨯⨯=⨯⨯⨯⨯= 【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题21、(1){}20log 3x x <<(2)1m >【解析】(1)由()1f x <,根据对数的单调性可得212x -<,然后解指数不等式即可.(2)由()()4log 4x f x m =-实数根,化为214x x m -=-有实根,令2x t =,22()210t t m ⋅-⋅+-=有正根即可,对称轴12t =,开口向上,只需0∆≥即可求解.【详解】(1)由()1f x <,即2log (21)1x -<,所以0212x <-<,123x <<,解得20log 3x <<所以不等式的解集为{}20log 3x x <<.(2)由()()4log 4x f x m =-实数根,即()()221log 21log 42x x m -=-有实数根,所以21x -=有实根,两边平方整理可得22(2)2210x x m ⋅-⋅+-=令2x t =,且1t >,由题意知22()210t t m ⋅-⋅+-=有大于1根即可,即22()21t t m ⋅-⋅+=,令2()2()21g t t t =⋅-⋅+,1t >,故()1g t >故1m >.故实数m 的取值范围1m >.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.22、(1)5(2)见解析.【解析】(1)利用同角三角函数基本关系式进行求解;(2)作差,分离参数,将问题转化为求函数的最值问题,再利用换元思想进行求解.试题解析:(1)依题意得10sin cos 5x x +=,222sin cos 2sin ·cos 5x x x x ∴++=,即32sin ·cos 5x x =-812sin ·cos 5x x ∴-=,即()2228sin cos 2sin ·cos sin cos 5x x x x x x +-=-=由32sin ·cos 05x x =-<,()0,x π∈,得,2x ππ⎛⎫∈ ⎪⎝⎭,sin 0,cos sin cos 0,x x x x ∴>∴-210sin cos ,5x x ∴-=(2)即不等式)1sin cos sin cos 22a b a x x x x a ≤⋅+++++对任意R x ∈恒成立,即)min1sin cos sin cos 22a b a x x x x a ⎡⎤≤⋅++++⎢⎥⎣⎦下求函数)1sin cos sin cos 22a y a x x x x a =⋅+++++的最小值令sin cos ,t x x =+则4t x π⎛⎫⎡=+∈ ⎪⎣⎝⎭且21sin cos .2t x x -⋅=令())1sin cos sin cos 22a m t y a x x x x a ==⋅+++++()2211122222a t a a t a a-=+++=+++()22221222,022a a t t t a a a a ⎛⎫⎛=+++=++≠ ⎪ ⎪ ⎝⎭⎝⎭1°当()201,a m t a⎡-<<<⎣即时在区间上单调递增,()()(min 1.m t m a a ∴==+2°当20a ≤-<,即1a ≥时,()2min 2.m t m a ⎛⎫=-= ⎪ ⎪⎝⎭3°当()(2101,min a m t m a a a <-≤≤-==+即时4°当()(2110,min .a m t m a a a ->-<<==+即时min 2111,0a y a a a a ≥⎧⎪∴=⎨+<≠⎪⎩,所以当1a ≥时,2b ≤;当0a <或0<1a <时,1.b a a ≤+。

浙江省高一上学期期末数学试题(解析版)

浙江省高一上学期期末数学试题(解析版)

一、单选题1.对于全集的子集,,若是的真子集,则下列集合中必为空集的是( ). U M N M N A .B .C .D .()U N M ⋂ð()U M N ð()()U U M N ⋂ððM N ⋂【答案】B【分析】根据题目给出的全集是,,是全集的子集,是的真子集画出集合图形,由图U M N M N 形表示出三个集合间的关系,从而看出是空集的选项.【详解】解:集合,,的关系如图, U M N由图形看出,只有是空集.()U N M I ð故选:B .【点睛】本题考查了交、并、补集的混合运算,是基础题.本题解题的关键在于根据题意,给出集合的图形表示法,数形结合解.2.下列命题为真命题的是( )A .B . 2,30x x ∀∈+<R 2,1x x ∀∈≥NC .D .5,1x x ∃∈<Z 2,5x x ∃∈=Q 【答案】C【分析】根据全称量词命题和特称量词命题的定义判断.【详解】对于A ,因为,所以,A 错误;20x ≥2,33x x ∀∈+≥R 对于B ,当时,,B 错误;0x =21x <对于C ,当时,,C 正确;0x =51<x由可得均为无理数,故D 错误,25x =x =3.若函数则( ) ()2220log 0x x x f x x x ⎧-=⎨>⎩,,,,…()2f f -=⎡⎤⎣⎦A .B .2C .D .32-3-【答案】D【分析】首先计算,再计算的值.()2f -()2f f -⎡⎤⎣⎦【详解】,. ()()22(2)228f -=--⨯-=()()228log 83f f f ⎡⎤-===⎣⎦故选:D.4.若函数为奇函数,且当时,,则( )()f x 0x >2()log f x x x =-(8)f -=A .B .C .5D .65-6-【答案】C【分析】根据奇函数的定义和对数运算求解.【详解】因为函数为奇函数,所以,()f x 2(8)(8)(log 88)5f f -=-=--=故选:C. 5.函数在上的大致图象为( ) ()2e e 1x xf x x --=+[]3,3-A . B .C .D .【答案】A【分析】由函数的奇偶性,可排除B ;由时,可排除选项CD ,可得出正确答案()21f >【详解】,所以函数是奇函数,排除选项B , ()()2e e 1x xf x f x x ---==-+()y f x =又,排除选项CD , ()22e e 215f --=>6.双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量(单位:),放电时间(单位:)与放电电流(单位:)之间关系的C A h ⋅t h I A 经验公式,其中为Peukert 常数.在电池容量不变的条件下,当放电电流n C I t =⋅32log 2n ==10A I 时,放电时间,则当放电电流时,放电时间为( )56h t =15A I =A .B .C .D . 28h 28.5h 29h 29.5h 【答案】A【分析】根据题意求出蓄电池的容量C ,再把代入,结合指数与对数的运算性质即可得解.15A I =【详解】由,得时,,即; 32log 2C I t =10I =56t =32log 21056C ⋅=时,;, 15I =32log 215C t =⋅3322log 2log 2105615t ∴⋅=⋅. 3322log 2log 2123156562565628322t --⎛⎫⎛⎫∴=⋅=⋅=⋅=⨯= ⎪ ⎪⎝⎭⎝⎭故选:A.二、多选题7.已知函数,若在上的值域是,则实数的可能取值为()cos 3f x x π⎛⎫=+ ⎪⎝⎭()f x []0,a 11,2⎡⎤-⎢⎥⎣⎦a ( )A .B .C .D . 3π23π43π53π【答案】BC【分析】根据已知求出的范围即可.a 【详解】,因为,所以 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭[]0,x a ∈,333a x πππ+⎡⎤+∈⎢⎥⎣⎦又因为的值域是,所以 ()f x 11,2⎡⎤-⎢⎥⎣⎦5,33a πππ⎡⎤∈⎢⎥⎣⎦+可知的取值范围是. a 24,33ππ⎡⎤⎢⎥⎣⎦故选:BC.三、单选题8.已知定义在上的函数,,其中函数满足且在上单调递R ()f x ()g x ()f x ()()f x f x -=[)0,∞+减,函数满足且在上单调递减,设函数()g x ()()11g x g x -=+()1,+∞,则对任意,均有( ) ()()()()()12F x f x g x f x g x ⎡⎤=++-⎣⎦x R ∈A .B . ()()11F x F x -≥+()()11F x F x -≤+C .D .()()2211F x F x -≥+()()2211F x F x -≤+【答案】C【分析】根据已知关系式和单调性可知为偶函数且在上单调递增,关于对称()f x (],0-∞()g x 1x =且在上单调递增;分段讨论可得解析式;分别在恒成立、恒(),1∞-()F x ()()f x g x ≤()()f x g x ≥成立和二者均存在的情况下,根据函数图象可确定函数值的大小关系,从而得到结果.【详解】 为偶函数()()f x f x -= ()f x \又在上单调递减 在上单调递增()f x [)0,∞+()f x \(],0-∞ 关于对称()()11g x g x -=+ ()g x ∴1x =又在上单调递减 在上单调递增()g x ()1,+∞()g x ∴(),1∞-当时, ()()f x g x ≥()()()()()()12F x f x g x f x g x f x =++-=⎡⎤⎣⎦当时, ()()f x g x ≤()()()()()()12F x f x g x g x f x g x =++-=⎡⎤⎣⎦①若恒成立,则,可知关于对称()()f x g x ≤()()F x g x =()F x 1x =又与关于对称;与关于对称1x -1x +1x =21x -21x +1x =,()()11F x F x ∴-=+()()2211F x F x -=+②若恒成立,则,可知关于轴对称()()f x g x ≥()()F x f x =()F x y 当时,;当时,11x x -≥+()()11F x F x -≤+11x x -≤+()()11F x F x -≥+可排除,A B 当,即时, 210x -≥201x ≤≤22011x x ≤-<+()()2211F x F x ∴-≥+当,即时,210x -≤21x ≥()()()222111F x F x F x -=-≥+若,则,可排除∴()()F x f x =()()2211F x F x -≥+D③若与均存在,则可得示意图如下:()()f x g x ≥()()f x g x ≤()Fx与关于对称且21x - 21x +1x =2211x x -≤+()()2211F x F x ∴-≥+综上所述: ()()2211F xF x -≥+故选 C 【点睛】本题考查函数性质的综合应用,涉及到函数奇偶性和单调性的关系、函数对称性的应用、分段函数图象的应用等知识;关键是能够通过分类讨论得到不同情况下函数的解析式,进而确定函数的大致图象,根据单调性和对称性得到函数值的大小关系.四、多选题9.下面命题正确的是( )A .若,则“”是“”的充要条件,R a b ∈22a b >ln ln a b >B .“”是“一元二次方程有一正一负两个实数根”的充要条件0ac <20ax bx c ++=C .设,则“”是“且”的充分不必要条件,R x y ∈4x y +>2x ≥2y ≥D .“”是“”的充分不必要条件 π03θ<<0sin θ<<【答案】BD【分析】AC 选项,可举出反例;B 选项,根据根的判别式及韦达定理得到,B 正确;D 选0ac <项,先得到充分性成立,再举出反例得到必要性不成立,D 正确.【详解】A 选项,若,满足,但无意义,故A 错误;1,0a b ==22a b >ln b B 选项,当时,即时,一元二次方程有一正一负两个实数2Δ400b ac c a⎧=->⎪⎨<⎪⎩0ac <20ax bx c ++=根,故“”是“一元二次方程有一正一负两个实数根”的充要条件,B 正确; 0ac <20ax bx c ++=C 选项,若,满足,但不满足且,故充分性不成立,C 错误;1,5x y ==4x y +>2x ≥2y ≥D 选项,时,因为在上单调递增,故,充分性成立, π03θ<<sin y x =π0,3⎛⎫ ⎪⎝⎭0sin θ<<当时,也满足,故必要性不成立,D 正确. 2ππ3θ<<0sin θ<<故选:BD10.已知,则( )tan 3α=A .B . sin α=3sin 25α=C . D . 4cos 25α=-π1tan 23α⎛⎫+=- ⎪⎝⎭【答案】BC 【分析】A 选项,利用同角三角函数关系,求出正弦值;BC 选项,利用倍角公式,化弦为切,代入求值;D 选项,利用诱导公式计算即可.【详解】A 选项,因为,所以,即, tan 3α=sin 3cos αα=sin cos 3αα=因为,所以,解得A 错误; 22sin cos 1αα+=210sin 19α=sin α=B 选项,,B 正确; 2222sin cos 2tan 63sin 22sin cos sin cos tan 1915ααααααααα=====+++C 选项,,C 正确; 22222222cos sin 1tan 194cos 2cos sin 915sin cos tan 1ααααααααα-+--=-====-++D 选项,,D 错误. πsin πcos 112tan π2sin tan 3cos 2αααααα⎛⎫+ ⎪⎛⎫⎝⎭+==== ⎪⎛⎫⎝⎭+ ⎪⎝⎭故选:BC11.已知函数的部分图象如图所示,则( ) ()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭A .的最小正周期为()f x πB .为偶函数 6f x π⎛⎫+ ⎪⎝⎭C .在区间内的最小值为1 ()f x 0,4⎡⎤⎢⎥⎣⎦πD .的图象关于直线对称 ()f x 23x π=-【答案】AC【分析】由图知,的最小正周期为,结论A 正确;()f x T π=求出,从而不是偶函数,结论B 错误; 2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭22sin 263f x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭因为,则在区间内的最小值为1,结论C 正确; (0)f =14f π⎛⎫= ⎪⎝⎭()f x 0,4⎡⎤⎢⎥⎣⎦π因为为的零点,不是最值点,结论D 错误. 23x π=-()f x 【详解】解:由图知,的最小正周期为,结论A 正确; ()f x 23471T πππ⎛⎫-= ⎪⎝⎭=⨯因为,,则.因为为在内的最小零点,则22T πω==2A =()2sin(2)f x x ϕ=+3x π=()f x (0,)+∞,得,所以,从而23πϕπ⨯+=3πϕ=2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭不是偶函数,结论B 错误; 22sin 22sin 26633f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦因为,,结合图像可得在区间内的(0)2sin 3f π==2sin 2cos 14233f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭()f x 0,4⎡⎤⎢⎥⎣⎦π最小值为1,结论C 正确;因为,则为的零点,不是最值点,结论D 错242sin 2sin()0333f ππππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭23x π=-()f x 误.故选:AC .12.已知函数若关于的方程恰有5个不()14sin ,012,1x x x f x x x π-<≤⎧=⎨+>⎩x ()()()2210f x m f x m ⎡⎤--+-=⎣⎦同的实数解,则下列说法正确的是( )A .时方程有两个不相等的实数解0m =B .时方程至少有3个不相等的实数解0m >C .时方程至少有3个不相等的实数解0m <D .若方程恰有5个不相等的实数解,则实数的取值集合为m ()3,1--【答案】ACD【分析】根据函数解析式,作出函数图象,利用函数与方程的关系,将问题转化为两个函数求交点问题,结合数形结合的思想,可得答案.【详解】作出函数的大致图象,如图所示,()f x令,则可化为, ()t f x =()()()2210f x m f x m ⎡⎤--+-=⎣⎦()()()221110t m t m t m t --+-=-+-=则或,则关于的方程的实数解等价于的图11t =21t m =-x ()()()2210f x m f x m ⎡⎤--+-=⎣⎦()t f x =象与直线,的交点个数,1=t t 2=t t 对于A ,当时,则,此时有两个不相等的实数解,故A 正确; 0m =121t t ==()()2210f x f x ⎡⎤-+=⎣⎦对于B ,时,取,则或,因为的值域为,故方程只有2个不相0m >2m =11t =21t =-()f x [)0,∞+等的实数解,故B 错误;对于C ,时,,与函数图象至少有1个交点,故C 正确;0m <211t m =->2y t =对于D ,若关于的方程恰有5个不同的实数解等价于的x ()()()2210f x m f x m ⎡⎤--+-=⎣⎦()t f x =图象与直线,的交点个数之和为5个,由图可得函数的图象与直线的交点1=t t 2=t t ()t f x =1=t t 个数为2,所以的图象与直线的交点个数为3个,即此时,解得()t f x =2=t t 214m <-<,故D 正确,3<1m -<-故选:ACD.【点睛】对于根据方程解的个数求参数的题目,常常利用函数与方程的关系,结合数形结合的思想,解决问题.五、填空题13.已知函数是定义域上的奇函数,则______. ()2sin 21x x a f x x +=+-=a 【答案】1【分析】根据奇函数的定义运算求解.【详解】∵函数是定义域上的奇函数, ()2sin ,021x x a f x x x +=+≠-则,即, ()()0f x f x +-=()22sin sin 02121x x x x a a x x --+++++-=--则,即, 212sin sin 02112x x x x a a x x ++⋅++-=--212102121x xx x a a a ++⋅-=-=--∴.1a =故答案为:1.14.已知,则________. π1sin 62α⎛⎫-= ⎪⎝⎭πcos 23α⎛⎫-= ⎪⎝⎭【答案】##120.5【分析】利用二倍角的余弦公式计算可得结果. 【详解】. 22πππ11cos 2cos 212sin 1236622ααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-⨯= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故答案为:.1215.已知,且,则的最小值为_________. 0,0a b >>1ab =112a b +【分析】由基本不等式即可求解.【详解】由得,所以,当且仅当 ,即1ab =1b a =11122b a b b +=+≥=12b b =b =等号,所以 112a b+16.已知函数有三个零点,且的图像关于直线对称,则32()32f x x x ax a =-+-+()y f x =x b =的取值范围为_______.a b +【答案】(),4-∞【分析】,则有即可求得,323()32(1)(3)(1)f x x x ax a x a x =-+-+=-+--(1)(1),f x f x -+=+1b =再由可得有2个根且都不等于32()|(1)(3)(1)||(1)(22)|,f x x a x x x x a =-+--=---+2220x x a --+=1,利用判别式可得,即可求解.3a <【详解】,323()32(1)(3)(1)f x x x ax a x a x =-+-+=-+--则,定义域为,3(1)(3)f x x a x +=+-R33(1)|()(3)()||(3)|(1),f x x a x x a x f x -+=-+-⋅-=+-=+所以的图像关于直线对称,所以,()y f x =1x =1b =32()|(1)(3)(1)||(1)(22)|,f x x a x x x x a =-+--=---+显然为函数的一个零点,1x =()f x 故有2个不相等的根,且都不等于1,2220x x a --+=所以解得, Δ44(2)030a a =-->⎧⎨-+≠⎩3a <所以,4a b +<故答案为:.(),4-∞六、解答题17.(1),求实数a 的取值范围;2,230x x ax a ∀∈++->R (2),求实数a 的取值范围.2,230x x ax a ∃∈++-<R 【答案】(1) ;(2) 或.26a <<2a <6a >【分析】根据二次函数和一元二次不等式的关系结合全称量词命题、特称量词命题的定义求解.【详解】(1)因为,2,230x x ax a ∀∈++->R 所以,即,24(23)0a a ∆=--<28120a a -+<解得.26a <<(2)因为,2,230x x ax a ∃∈++-<R 所以,即,24(23)0a a ∆=-->28120a a -+>解得或.2a <6a >18.已知函数且. 11()(0, 12x f x a a =+>-1)a ≠(1)讨论函数的奇偶性;()f x (2)当时,判断在的单调性并加以证明;01a <<()f x (0,)+∞(3)解关于的不等式.x ()(2)f x f x >【答案】(1)奇函数(2)增函数,证明见解析(3)当时,解集为,当时,解集为. 01a <<(),0∞-1a >()0,∞+【分析】(1)根据奇函数的定义证明; (2)根基单调性的定义证明; (3)利用单调性和奇偶性解不等式.【详解】(1)由可得,所以的定义域为,10x a -≠0x ≠()f x ()(),00,∞-+∞U 又因为, ()11111()122211x x x x x f x a a a a a =+==⋅-++--所以,1111()()11121221x x x x x x a f a a x f x a a a --+⋅++-=⋅==-⋅=----所以函数为奇函数.()f x (2)判断:在的单调递增,证明如下,()f x (0,)+∞1212,(0,),,x x x x ∀∈+∞<,()()2112121211()1111()()x x x x x x f f x f x a a x a a a a -=--=-=---因为,所以, 01a <<12,x x <21x x a a <且12121,1,10,10,x x x x a a a a <<-<-<所以所以, ()()21120,11x x x x a a a a -<--12()()f x f x <所以在的单调递增.()f x (0,)+∞(3)由(2)可知,当时,在的单调递增, 01a <<()f x (0,)+∞且函数为奇函数,所以在的单调递增, ()f x ()f x (),0∞-又因为同号,所以由可得解得, ,2x x ()(2)f x f x >2x x >0x <当时,以下先证明在的单调递减,1a >()f x (0,)+∞1212,(0,),,x x x x ∀∈+∞<,()()2112121211()1111()()x x x x x x f f x f x a a x a a a a -=--=-=---因为,所以, 1a >12,x x <21x x a a >且12121,1,10,10,x x x x a a a a >>->->所以所以, ()()21120,11x x x x a a a a ->--12()()f x f x >所以在的单调递减.()f x (0,)+∞且函数为奇函数,所以在的单调递减, ()f x ()f x (),0∞-又因为同号,所以由可得解得, ,2x x ()(2)f x f x >2x x <0x >综上,当时,解集为,当时,解集为.01a <<(),0∞-1a >()0,∞+19.已知函数,的图象关于对称,且.π()3sin()||2f x x ωϕϕ⎛⎫=+< ⎪⎝⎭()f x π3x =3(0)2f =-(1)求满足条件的最小正数及此时的解析式; ω()f x (2)若将问题(1)中的的图象向右平移个单位得到函数的图象,求在上的()f x π6()g x ()g x π2π,63⎡⎤⎢⎥⎣⎦值域.【答案】(1)最小正数为2,此时ωπ()3sin 26f x x ⎛⎫=- ⎪⎝⎭(2) 3,32⎡⎤-⎢⎥⎣⎦【分析】(1)根据得,由为对称轴可得,即可求解,3(0)2f =-π6ϕ=-π3x ==2+3,k k Z ω∈(2)根据平移可得,由余弦函数的性质即可求解值域.()π(3cos 26g f x x x -=-=【详解】(1)由得,由得,又的图象3(0)2f =-31()3sin sin 22f x ϕϕ==-⇒=-π||2ϕ<π6ϕ=-()f x 关于对称,所以,解得, π3x =ππππππ3sin 3π,Z 336362f k k ωω⎛⎫⎛⎫=-=±⇒-=+∈ ⎪ ⎪⎝⎭⎝⎭=2+3,k k Z ω∈当时,取到最小的正数2,此时0k =ωπ()3sin 26f x x ⎛⎫=- ⎪⎝⎭(2)的图象向右平移个单位得到函数,()f x π6()πππ(3sin 23cos 2636f g x x x x ⎛⎫-=--=- ⎪⎝⎭=当时,,,所以,π2π,63x ⎡⎤∈⎢⎥⎣⎦π4π2,33x ⎡⎤∈⎢⎥⎣⎦1cos 21,2x ⎡⎤∈-⎢⎥⎣⎦33cos 2,32x ⎡⎤-∈-⎢⎥⎣⎦故在上的值域为 ()g x π2π,63⎡⎤⎢⎥⎣⎦3,32⎡⎤-⎢⎥⎣⎦20.某小区要建一座八边形的休闲公园,它的主体造型的平面图是由两个相同的矩形和ABCD 构成的面积为的十字型地狱,计划在正方形上建一座花坛,造价为元EFGH 2200m MNPQ 4200/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为元/m 2,再在四个角上铺草210坪,造价为元/m 2.设总造价为元,AD 的长为.80S m x(1)试建立关于的函数;S x (2)当取何值时,最小,并求出这个最小值.x S【答案】(1),22400000380004000S x x =++0x <<(2)当时,最小,最小值为元 x =S 118000【分析】(1)设,根据面积得到,再计算总造价得到解析式.DQ ym =22004x y x -=(2)利用均值不等式计算得到最值.【详解】(1)设,则,所以, DQ y =24200x xy +=22004x y x -=所以,222240000042002104802380004000S x xy y x x =+⋅+⋅=++0x <<(2), 2240000038000400038000118000S x x =++≥+=当且仅当,即时,上式等号成立. 224000004000x x =x =所以当最小,最小值为元.x =S 11800021.如图,已知直线,是,之间的一定点,并且点到,的距离分别为,,12l l A A 1l 2l A 1l 2l 1h 2h B 是直线上的一动点,作,且使与直线交于点.设.2l AC AB ⊥AC 1l C ABD β∠=(1)写出面积关于角的函数解析式; ABC A S β()S β(2)求的最小值. ()S β【答案】(1),(2) ()120sin 22h h S πβββ⎛⎫=<< ⎪⎝⎭12h h【解析】(1)在直角三角形中运用三角函数求出的表达式,同理求出的表达式,运用直ADB AB AC 角三角形面积公式求出面积关于角的函数解析式.S β()S β(2)结合(1)中的面积关于角的函数解析式,运用求出三角函数最值,就可以求出面积的S β()S β最小值.【详解】(1)根据题可得,在直角三角形中, ,则,同理,在直角三角形ADB 2sin h ABβ=2sin h AB β=AEC中可得,则在直角三角形中, 1cos h AC β=ABC ()21122sin cos h h S AB AC βββ=⨯=即 ()211202sin cos sin 22h h h hS πβββββ⎛⎫==<< ⎪⎝⎭(2)由(1)得,要求的最小值,即求的最大值,()211202sin cos sin 22h h h hS πβββββ⎛⎫==<< ⎪⎝⎭()S βsin 2β即当时,的最大值为14πβ=sin 2β因此()12min 4S S h h πβ⎛⎫== ⎪⎝⎭【点睛】本题考查了运用三角函数模型来解决问题在解决问题中能熟练运用三角函数关系进行求值和化简,并能求出三角函数最值问题.熟练掌握各公式并灵活运用. 22.已知函数. 2()(),()ln f x x mx m g x x =-∈=-R (1)当时,解方程;1m =()()f x g x =(2)若对任意的都有恒成立,试求m 的取值范围;12,[1,1],x x ∈-()()122f x f x -≤(3)用min{m ,n }表示m ,n 中的最小者,设函数,讨论关于x 的1()min (),()(0)4h x f x g x x ⎧⎫=+>⎨⎬⎩⎭方程的实数解的个数. ()0h x =【答案】(1)1x =(2) 22⎡--+⎣(3)或时,有1个实数解, 1m <54m >()0h x =或时,有2个实数解; 1m =54m =()0h x =时,有3个实数解. 514m <<()0h x =【分析】(1)根据函数的单调性解方程; (2)讨论二次函数在给定区间的最值求解;(3)分类讨论,利用数形结合的思想,转化为讨论函数图象的交点个数.【详解】(1)当时,函数, 1m =2(),()ln f x x x g x x =-=-当时,, 01x <<2()(1)0,()ln 0f x x x x x g x x =-=-<=->此时方程无解,()()f x g x =当时,单调递增,单调递减, 1x ≥2()f x x x =-()ln g x x =-且单调递增,,(1)0f =(1)0g =所以此时方程有唯一的解为, ()()f x g x =1x =综上,方程的解为.()()f x g x =1x =(2)等价于,()()122f x f x -≤max min ()()2f x f x -≤的对称轴为, ()f x 2mx =若,即时,在上单调递增, 2m ≤-12m≤-()y f x =[]1,1-从而 max min ()(1)1,()(1)1,f x f m f x f m ==-=-=+所以,得与矛盾,舍去; 1(1)2m m --+≤1m ≥-2m ≤-若,即时, 22m -<<112m-<<在上单调递减,上单调递增,()y f x =1,2m ⎡⎫-⎪⎢⎣⎭,12m ⎡⎤⎢⎥⎣⎦故2min()(,24m m f x f ==-()()(){}max max 1,1,f x f f =-当时, 20m -<≤max ()(1)1,f x f m ==-则,解得2124m m -+≤22m -≤≤+所以,20m -≤≤当时, 02m <<max ()(1)1,f x f m =-=+则,解得2124m m ++≤22m --≤≤-+则, 02m <≤-+若,即时,在上单调递减, 2m ≥12m≥()y f x =[]1,1-从而 max min ()(1)1,()(1)1,f x f m f x f m =-=+==-所以得与矛盾,舍去.1(1)2,m m +--≤1m £2m ≥综上,的取值范围为.m 22⎡--+⎣(3)当时, ,则, (1,)x ∈+∞()ln 0g x x =-<()()0h x g x ≤<故在上没有实数解; ()0h x =(1,)+∞当时,. 1x =15(1),(1)044f mg +=-=若时,则则不是的实数解,54m >1(1)0,(1)0,4f h +<<1x =()0h x =若时,则,54m ≤()()()()()1110,1min 1,11044f h f g g ⎧⎫+≥∴=+==⎨⎬⎩⎭则是的实数解,1x =()0h x =当时,,故只需讨论在(0,1)的实数解的个数, 01x <<()ln 0g x x =->1()04f x +=则得,2104x mx -+=14m x x =+即问题等价于直线与函数图象的交点个数. y m =1,(0,1)4y x x x=+∈由于在单调递减,在上单调递增,1,4y x x =+10,2⎛⎫ ⎪⎝⎭1,12⎛⎫⎪⎝⎭结合在的图象可知, 1,4y x x=+()0,1当时,直线与函数图象没有交点,即没有实数解; 1m <y m =1,(0,1)4y x x x=+∈()0h x =当或时,在有1个实数解; 1m =54m ≥()0h x =()0,1当时,在有2个实数解; 514m <<()0h x =()0,1综上,或时,有1个实数解, 1m <54m >()0h x =或时,有2个实数解; 1m =54m =()0h x =时,有3个实数解. 514m <<()0h x =【点睛】关键点点睛:本题第二问解决的关键在于分类讨论二次函数在给定区间的单调性和最值,要结合对称轴与区间的位置关系;第三问解决的关键是在不同范1()min (),()(0)4h x f x g x x ⎧⎫=+>⎨⎬⎩⎭围内取得的不同的最小值,数形结合的思想分类讨论求解.。

高一数学上学期期末考试试卷含答案(共3套)

高一数学上学期期末考试试卷含答案(共3套)

高一级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面3. 已知集合,,则()A. B. C. D.4. 图中的直线的斜率分别是,则有()A. B. C. D.5. 设,,则()A. B. C. D.6. 方程在下面哪个区间内有实根()A. B. C. D.7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.11. 正四面体中,是棱的中点,是点在底面内的射影,则异面直线与所成角的余弦值为()A. B. C. D.12. 已知函数在闭区间上的值域为,则满足题意的有序实数对在坐标平面内所对应点组成图形为()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知两条平行直线分别过点,,且的距离为5,则直线的斜率是__________.15. 已知函数,若函数有3个零点,则实数的取值范围是__________.16. 如图,将一边为1的正方体沿相邻三个面的对角线截出一个棱锥,则三棱锥的内切球半径是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 求值或化简:(1);(2).18. 如图,正三角形的边长为6,,,点分别在边上,且,,相交于.(1)求点的坐标;(2)判断和是否垂直,并证明.19. 已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并证明你的结论;(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.20. 如图,在四棱锥中,底面,,,,为棱的中点.(1)求证:;(2)试判断与平面是否平行?并说明理由.21. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?22. 设,函数,其中.(1)求的最小值;(2)求使得等式成立的的取值范围.参考答案1【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一上学期期末考试数学试题一、单选题:本题共14小题,每小题5分,共70分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知全集,集合,则()A. B. C. D.2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查.已知在初中学生中随机抽取了100人,则在高中学生中抽取了()A.150人B.200人C.250人D.300人3.命题“”的否定是()A. B.C. D.4.方程组的解集是()A. B.C. D.5.某部门调查了200名学生每周的课外活动时间单位:,制成了如图所示的频率分布直方图,其中课外活动时间的范围是,并分成五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h的人数是()A.56B.80C.144D.1846.若实数a,b满足,则下列不等式成立的是()A. B. C. D.7.函数的零点所在的区间为()A. B. C. D.8.在同一个坐标系中,函数的部分图象可能是()A. B.C. D.9.下列函数中,既是奇函数,又在上单调递减的是()A. B. C. D.10.已知,则实数a,b,c的大小关系是()A. B. C. D.11.已知函数,则“”是“为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数,则不等式的解集为()A. B. C. D.13.科赫曲线是几何中最简单的分形.科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若,则称D为该图形的分形维数.那么科赫曲线的分形维数是()A. B. C.1 D.14.已知函数,若存在非零实数,使得成立,则实数a的取值范围是()A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上学期期末教学检测数学试题满分:150分 考试时间:120分钟第Ⅰ卷(选择题 满分60分)一、选择题(每小题5分,共60分)1.非空集合{}{}135,116X x a x a Y x x =+≤≤-=≤≤,使得()X X Y ⊆⋂成立的所有a 的集合是( )A. {}37a a ≤≤ B. {}07a a ≤≤ C.{}37a a <≤ D.{}7a a ≤ 2. 函数|12|log )(2-=xx f 的图象大致是( ) 3.将函数g()3sin 26x x π⎛⎫=+ ⎪⎝⎭图像上所有点向左平移6π个单位,再将各点横坐标缩短为 原来的12倍,得到函数()f x ,则( ) A .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 4.已知偶函数()2f x π+,当)2,2(ππ-∈x 时,13()sin f x x x =+,设(1),a f =b (2),f =(3)c f =,则( )A. a b c <<B. b c a <<C. c b a <<D. c a b << 5.下列函数中最小正周期为2π的是( ) A. sin4y x = B. sin cos()6y x x π=+C. sin(cos )y x =D. 42sin cos y x x =+6.已知P 是边长为2的正ABC ∆的边BC 上的动点,则()AP AB AC +( )A.最大值为8B.是定值6C.最小值为6D.是定值37.在平行四边形中,与交于点是线段的中点,的延长线与交于点,若,,则( )ABCD AC BD O E ,OD AE CD F AC a =BD b =AF =xy O 1A . xyO 1B .xyO 1C .x yO 1 D .A.B.C.D. 8.下列说法中:⑴若向量//a b ,则存在实数λ,使得a b λ=; ⑵非零向量,,,a b c d ,若满足()()d a c b a b c =-,则a d ⊥⑶与向量(1,2)a =,(2,1)b =夹角相等的单位向量2(,)22c = ⑷已知ABC ∆,若对任意t R ∈,,BA tBC AC -≥则ABC ∆一定为锐角三角形。

其中正确说法的序号是( )A .(1)(2)B .(1)(3)C . (2)(4)D . (2)9.已知()f x 是定义在R 上的不恒为零的函数,且对任意的,x y R ∈都满足()()()f x y x f y y f x ⋅=⋅+⋅,则()f x 是A .奇函数B .偶函数C .不是奇函数也不是偶函数D .既是奇函数又是偶函数10.已知(),0,αβπ∈且11tan(),tan 27αββ-==-,则2αβ-=( ) A .4π B .54π C .34π- D .74π-11.函数1()122x x f x +⎧⎪=⎨-⎪⎩(01)(1)x x ≤<≥,设0a b >≥,若()()f a f b =,()b f a ⋅的取值范围是( ) A .1(0,]4B .3,24⎡⎫⎪⎢⎣⎭C .()0,2D . 33,42⎡⎫⎪⎢⎣⎭12.在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+,若12OP <,则OA 的取值范围是( ) A. B.⎝⎦ C.⎝ D .⎝ 第Ⅱ卷 (非选择题 满分90分)二、填空题(每小题5分,共20分)13. 已知一个扇形的周长是40,则扇形面积的最大值为 . 14. 函数()sin cos()6f x xx π=+-,若0a <,则方程()f x a =在[0,4]π内的所有实数根之和为 .1142a b +1233a b +1124a b +2133a b +15. 已知函数,不等式对任意实数x 恒成立,则()f x 的最小值是 .16. 定义在R 上的函数()f x 满足()()f x f x -=-,(1)(1)f x f x +=-,且x Î(-1,0)时,f (x )=2x +65则2(log 20)f = .三、解答题 (第17题10分,其余每题12分,共70分) 17.(10分) 集合(){}(){}2,1,,3,03A x y y xmx B x y y x x ==-+-==-≤≤.(1)当4m =时,求A B ⋂;(2)若A B ⋂是只有一个元素的集合,求实数m 的取值范围.18.(12分),a b 是两个不共线的非零向量,且||||1120a b a b ==且与夹角为.(1)记()1,,,3OA a OB tb OC a b ===+当实数t 为何值时,ACB ∠为钝角? (2)令[]()|sin |,0,2f x a b x x π=-∈,求()f x 的值域及单调递减区间.19.(12分)已知函数()25()3sin 2sin 122f x x x x x R πππ⎛⎫⎛⎫=--++-∈ ⎪⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值.20.已知A 、B 、C 是ABC ∆的三内角,向量)3,1(-=m ,)sin ,(cos A A n = ,且1=⋅n m. (1)求角A ; (2)若3sin cos 2sin 122-=-+BB B,求C tan .21.(12分)已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记),()(2R b a b ax x x f ∈++=|3042||)(|2-+≤x x x f)()(2)(x g x f x F +=(1)求函数)(x F 的定义域及其零点;(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围.22.(12分)已知函数()()12123,23x t x t f x f x --==⋅(12,,x R t t ∈为常数),函数()f x 定义为:对每一个给定的实数x ,()()()()()()112212(),f x f x f x f x f x f x f x ≤⎧=⎨>⎩(1) 求证:当12,t t 满足条件122log 3t t -≤时,对于x R ∈,1()=()f x f x ;(2) 设,a b 是两个实数,满足a b <,且()12,,t t a b ∈,若()()f a f b =,求函数()f x 在区间[],a b 上的单调递增区间的长度之和.(闭区间[],m n 的长度定义为n m -)高一学年上学期期末教学检测(数学)答案 一、选择题二、填空题13.100 14. 283π15. 16- 16. 2-三、解答题17.(I )(){}1,2(4分)(Ⅱ)m =3或m ≥103(6分)2111118.,(),03333121111//,,,;21222CA a ba tb CA CB CACB t t =-=-+-⋅<⎛⎫⎛⎫=∴-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:(1)由得t>-又时,的取值范围是[][]min max (2)(),0,2,sin 1,1,1sin sin 1();27311(),,.2626f xx x x x fx f x πππππ==∈∴∈-=-===∈⎣⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦当时,f(x)当时,f(x)的单调递增是,19. 解:2()cos )(2cos 1)2cos 22sin(2)6f x x x x x x x π=+-=+=+(1)最小正周期为π;最大值为2,最小值为-1(Ⅱ)解:由(1)可知00()2sin 26f x x π⎛⎫=+⎪⎝⎭又因为06()5f x=,所以03sin 265x π⎛⎫+= ⎪⎝⎭由0,42x ππ⎡⎤∈⎢⎥⎣⎦,得0272,636x πππ⎡⎤+∈⎢⎥⎣⎦04cos 265x π⎛⎫+==-⎪⎝⎭0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 20.(1)∵1=⋅n m∴1)sin ,(cos )3,1(=⋅-A A ,即1cos sin 3=-A A …3分1)6sin(2=-πA , 21)6sin(=-∴πA∵π<<A 0,6566πππ<-<-∴A ,∴66ππ=-A ,即3π=A . 6分(2)由题知:3sin cos 2sin 122-=-+BB B ,即:0cos 2cos sin sin 22=--B B B B , ∵0cos ≠B ,∴02tan tan 2=--B B ,∴2tan =B 或1tan -=B ; 10分而1tan -=B 使0sin cos 22=-B B ,故1tan -=B 应舍去,∴2tan =B ,∴)tan()](tan[tan B A B A C +-=+-=π=tan tan 1tan tan A B A B +-==-. 12分 21.(1)解:(1))()(2)(x g x f x F +=xx aa -++=11log )1(log 2(0>a 且1≠a )⎩⎨⎧>->+0101x x ,解得11<<-x ,所以函数)(x F 的定义域为)1,1(- … ……2分令)(x F 0=,则011log )1(log 2=-++xx aa ……(*)方程变为 )1(log )1(log 2x x a a -=+,x x -=+1)1(2,即032=+x x解得01=x ,32-=x …………………3分 经检验3-=x 是(*)的增根,所以方程(*)的解为0=x ,所以函数)(x F 的零点为0, …………………4分(2)∵函数11,1y x y x=+=-在定义域D 上是增函数 ∴①当1a >时, )()(2)(x g x f x F +=在定义域D 上是增函数②当01a <<时,函数)()(2)(x g x f x F +=在定义域D 上是减函数 6分问题等价于关于x 的方程2235()m m F x --=在区间)1,0[内仅有一解, ∴①当1a >时,由(2)知,函数F (x )在)1,0[上是增函数∴[)()0,F x ∈+∞∴只需22350m m --≥ 解得:1,m ≤-或52m ≥∴②当01a <<时,由(2)知,函数F (x )在)1,0[上是减函数∴(](),0F x ∈-∞ ∴只需22350m m --≤ 解得:512m -≤≤ 10分综上所述,当01a <<时:512m -≤≤;当1a >时,1,m ≤-或52m ≥(12分)22. 解:(1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于()()12f x f x ≤(对所有实数x )这又等价于12323x t x t --≤,即123log 2332x t x t ---≤=对所有实数x 均成立. (*)由于121212()()()x t x t x t x t t t x R ---≤---=-∈的最大值为12p p -, 故(*)等价于1232t t -≤,即123log 2t t -≤,所以当123log 2t t -≤时,Oy x(a ,f (a )(b ,f (b )图1Oyx(a ,f (a ))(b ,f (b ))(x 0,y 0)(t 2,2)(t 1,1)图2 1()()f x f x =(2)分两种情形讨论(i )当1232t t log -≤时,由(1)知1()()f x f x =(对所有实数[,]x a b ∈)则由()()f a fb =及1a t b <<易知12a bt +=, 再由111113,()3,t x x t x t f x x t --⎧<⎪=⎨≥⎪⎩的单调性可知,函数()f x 在区间[,]a b 上的单调增区间的长度为22a b b a b +--=(参见示意图1) (ii )1232t t log ->时,不妨设12,t t <,则213log 2t t ->,于是 当1x t ≤时,有1212()33()t xt x f x f x --=<<,从而1()()f x f x =; 当2x t ≥时,有312122122log 212()333333()x t t t x t t t x t x t f x f x --+----===>=从而 2()()f x f x = ; 当12t x t <<时,11()3x t f x -=,及22()23t xf x -=⋅,由方程12323x t t x --=⋅解得12()()f x f x 与图象交点的横坐标为 12031log 222t t x +=+ ⑴显然10221321[()log 2]2t x t t t t <=---<, 这表明0x 在1t 与2t 之间。

相关文档
最新文档