离散时间信号与离散时间系统

合集下载

自动控制原理离散系统知识点总结

自动控制原理离散系统知识点总结

自动控制原理离散系统知识点总结自动控制原理中的离散系统是指在时间域和数值范围上都是离散的系统。

在离散系统中,信号是以离散时间点的形式传递和处理的。

本文将对自动控制原理离散系统的知识点进行总结,包括离散系统的概念、离散信号与离散系统的数学表示、离散系统的稳定性分析与设计等。

一、离散系统的概念与特点离散系统是指系统输入、输出和状态在时间上都是以离散的方式存在的系统。

与连续系统相比,离散系统具有以下特点:1. 离散时间:离散系统的输入、输出和状态是在离散时间点上采样得到的,而不是连续的时间信号。

2. 离散数值:离散系统的输入、输出和状态都是以离散数值的形式存在的,而不是连续的模拟数值。

二、离散信号与离散系统的数学表示离散信号是指在离散时间点上采样得到的信号。

离散系统可以通过离散信号的输入与输出之间的关系进行描述。

常见的离散系统数学表示方法有差分方程和离散时间传递函数。

1. 差分方程表示:差分方程是通过离散时间点上的输入信号和输出信号之间的关系来描述离散系统的。

差分方程可以是线性的或非线性的,可以是时不变的或时变的。

2. 离散时间传递函数表示:离散时间传递函数描述了离散系统输入与输出之间的关系,类似于连续时间传递函数。

离散时间传递函数可以通过Z变换得到。

三、离散系统的稳定性分析与设计离散系统的稳定性是指系统的输出在有限时间内收敛到有限范围内,而不是无限增长或震荡。

离散系统的稳定性分析与设计是自动控制原理中的重要内容。

1. 稳定性分析:离散系统的稳定性可以通过判断系统的极点位置来进行分析。

若系统的所有极点都位于单位圆内,则系统是稳定的;若存在至少一个极点位于单位圆外,则系统是不稳定的。

2. 稳定性设计:若离散系统不稳定,可以通过调整系统的参数或设计控制器来实现稳定性。

常见的稳定性设计方法包括PID控制器调整、根轨迹设计等。

四、离散系统的性能指标与优化离散系统的性能指标与优化是指通过调整控制器参数或控制策略,使离散系统的性能得到优化。

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍离散时间信号和系统理论是信号与系统理论领域的重要分支,用于描述和分析在离散时间点上的信号及其相应的系统行为。

离散时间信号是在离散时间集合上定义的函数,通常由离散采样得到。

离散时间系统则是对输入离散时间信号进行操作和处理得到输出信号的过程。

离散时间信号是时间的一个离散序列,可以通过对连续时间信号进行采样得到。

最常见的离散时间信号是离散时间单位脉冲信号,其在一个时间点的值为1,其他时间点的值为0。

其他常见的离散时间信号包括阶跃信号、正弦信号、方波信号等。

每个离散时间信号都有其特定的频谱和幅度特性。

离散时间系统是对离散时间信号进行处理和操作的载体。

离散时间系统可以是线性系统或非线性系统。

线性系统可以通过线性时不变(LTI)系统模型来描述,即系统的输入和输出之间存在线性时不变关系。

LTI系统可以用巴特沃斯(Bartow)方程式或其它传输方程式来表示,并可以通过离散时间卷积来分析系统的响应。

非线性系统则不满足线性性质的要求,其描述和分析方法更为复杂。

离散时间信号和系统理论的基本概念包括线性性、时不变性、因果性和稳定性等。

线性性要求系统对输入信号的加法性和乘法性具有反应;时不变性要求系统的性质不随时间变化而改变;因果性要求系统的响应仅依赖于过去和当前的输入信号;稳定性要求系统的输出有界且有限。

离散时间信号和系统的分析方法包括时域分析和频域分析。

时域分析主要关注信号和系统在时间域上的行为,如脉冲响应、单位样本响应、单位阶跃响应等;频域分析则关注信号和系统在频域上的特性,如频谱分析、频率响应等。

离散时间信号和系统在实际应用中有广泛的应用。

例如,它们可以用于数字音频处理、数字图像处理、通信系统、控制系统等领域中。

在这些应用中,离散时间信号和系统的理论方法可以帮助我们分析和设计系统,优化信号处理算法,并提高系统的性能。

总而言之,离散时间信号和系统理论是信号与系统理论中重要的一部分,用于描述和分析离散时间信号和系统的特性。

第一章 离散时间信号与系统

第一章 离散时间信号与系统

k =−∞
∑ δ (k )
n
u (n )
1
1
1
1 L n
-1
0
1
2
3
单位阶跃序列示意图
3. 矩形序列
• 矩形序列又称门函数序列,定义如下:
1 (0 ≤ n ≤ N −1) Rn (n) = 0 (n < 0 orn ≥ N) = u(n) −u(n − n0 )
R (n )
k
1
1
1
1
卷积和计算的步骤
•置换: z(n) →z(m) •翻转:x(m) ,z(m) →z(-m) 翻转: • 移位:z(-m) → z(n-m) 移位: •相乘:z(n-m) • x(m) (m值相同) 相乘: 相加: =∑ • 相加:y(n) =∑{z(n-m) • x(m)}
图解法举例
• 设两离散信号如图,求卷积和
四、用单位抽样序列表示 任意序列
• 任意序列都可以表示成单位抽样序列的加 ∞ 权和。 x(n) = ∑ x(m)δ (n − m)
m = −∞
x ( n) x(n)δ (n − m) = 0
m=n 其他
五、序列的能量
• 序列的能量为:序列各序列值的平方和:

E=
n = −∞
∑ x ( n)
L
-1 0 1 2 k −1 k n
矩形序列示意图
4. 斜变序列
单位斜变序列R(n)可以看成是单位斜变信号 R(t)的抽样信号,如下图所示,表示为:
n R (n) = nu ( n) = 0
n
0
n<0
R (n) 2 1
3
L n -1 0 1 2 3

离散时间信号与系统

离散时间信号与系统

若要
2
2 若要 为有理数(N/k),则: T0 2 N NT k T
为整数,T0应为T的整数倍;
kT 0
即N个抽样间隔应等于连续正弦信号的k 个周期.
25
四、序列的能量 x(n)的能量定义为序列各样本的平方和,即:
E
n


x ( n)
2
26
1.3
连续时间信号的采样
采样器可以看成是一个电子开关,开关每隔T秒闭
合一次,(理想采样闭合时间无穷短,实际采样闭
合时间τ秒,)对输入信号进行采样。
采样过程可以看成脉冲调幅, xa(t)为调制信号,被 调脉冲载波是周期为T的周期性脉冲串。当脉冲宽 度为τ时,实际采样,τ→0时,理想采样。
29
实际采样:
T
p(t)为脉冲 序列 …
n
a为实数,当
a 1时, 收敛 a 1时, 发散
17
5.复指数序列 complex exponent sequence
① 实、虚部
x(n) Ae
( j ) n
x(n) Ae jn
为数字域频率。
② 极坐标
x(n) Ae jn | x(n) | e j arg[ x ( n)]
X a ( j) xa (t )e


jt
dt
33
s (t )
n
(t nT )
s (t ) Ak e jk s t


周期函数
利用傅立叶级数展开,可得:
k
s=2/T,s称为采样角频率 fs=1/T,fs为采样频率
1 T2 其中: Ak T s (t )e jk s t dt T 2 1 T2 T (t nT )e jk s t dt T 2 n 1 T2 1 jk s t T (t )e dt 2 T T

数字信号处理第一章离散时间信号和离散时间

数字信号处理第一章离散时间信号和离散时间

离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系

根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)

y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号

第1章 离散时间信号和系统

第1章 离散时间信号和系统

第1章 思考题参考解答1.变化规律已知的信号称之为确定信号,反之,变化规律不确定的信号称之为随机信号。

以固定常数周期变化的信号称之为周期信号,否则称之为非周期信号。

函数随时间连续变化的信号称之为连续时间信号,也称之为模拟信号。

自变量取离散值变化的信号称之为离散时间信号。

离散信号幅值按照一定精度要求量化后所得信号称之为数字信号。

2.对于最高频率为f c 的非周期信号,选取f s =2f c 可以从采样点恢复原来的连续信号。

而对于最高频率为f c 的非周期信号,选取f s =2f c 一般不能从采样点恢复原来的连续信号的周期信号,通常采用远高于2f c 的采样频率才能从采样点恢复原来的周期连续信号。

3.被采样信号如果含有折叠频率以上的高频成分,或者含有干扰噪声,这些频率成分将不满足采样恢复定理的条件,必然产生频率混叠,导致无法恢复被采样信号。

4.线性时不变系统的单位脉冲响应h (n )满足n <0,h (n )=0,则系统是因果的。

若∞<=∑∞-∞=P n h n |)(|,则系统是稳定的。

5.ω表示数字角频率,Ω表示模拟角频率。

ω=ΩT (T 表示采样周期)。

6.不一定。

只有当周期信号的采样序列满足x (n )= x (n +N )时,才构成一个周期序列。

7.常系数差分方程描述的系统若满足叠加原理,则一定是线性时不变系统。

否则,常系数差分方程描述的系统不是线性时不变系统。

8.该说法错误。

需要增加采样和量化两道工序。

9.受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统不一定找得到。

因此,数字信号处理系统的分析方法是先对采样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长效应所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

10、只有当系统是线性时不变时,有y (n )= h (n )*x (n )。

11、时域采样在频域产生周期延拓效应。

12.输入信号x a (t )先通过一个前置低通模拟滤波器限制其最高频率在一定数值之内,使其满足采样频率定理的条件。

离散时间信号与离散系统

离散时间信号与离散系统

三、离散信号的基本运算
1.加减运算(对应样点值相加减)
如 (n) U (n) U (n 1)
函数
U (n) (n k)
k 0
2.相乘(除)运算(对应样点值相乘除)
如 因果信号(序列)f (n)U (n) — — — n 0 才有非零值
离散信号与系统的时域分析
反因果信号 f (n)U (n 1) ――― n 0 才有非零值
n -m n -m
0
m
注意: (1)f (n) 1与 (n) 区别
(2) (t) 与 (n) 区别
离散信号与系统的时域分析
n
函数
2. 单位阶跃序列
1, n 0 U (n) 0, n 0
位移
U
(n
m)
1, 0,
nm nm
注意与 U(t) 区别
3.矩形序列
1, GN (n) 0,
0 n N 1 其他
离散信号与系统的时域分析
U(n)
1
仿真
源码
0 12 GN(n) 1
0 1 N-1 N
n
函数1
函数2
仿真
n
源码
仿真 源码
以上三种序列关系
(1)U
(n)
(nk)=n Nhomakorabea(k
)
k 0
k
t
U (t) ( )d
证明:
(n k) (n) (n 1) (n 2) ...
k 0
k
n
(k
(1 2
n),
f
(2n)
f
(n)
解:f (n) {10
n0,1,2,3 其他
1
12 3
函数

第1章 离散时间信号与系统

第1章 离散时间信号与系统
m
h ( m) x ( n m)
m

m
a
n
u ( m) u ( n m)
am ,
m 0
对于 n 0,,
1 a n 1 u ( n) 1 a
28
第1章 离散时间信号与系统
离散卷积运算服从交换律、结合律和分配律。即
x(n) * h(n) h(n) * x(n)
2n, n 1 3 则 x ( n) y ( n) n 1 2, 2 ( n 1) n 1, n 0
如图1.1.8所示。
15
第1章 离散时间信号与系统
图1.1.8 两序列相加
16
第1章 离散时间信号与系统
4. 积
两序列之积是指它们同序号(n)的序列值逐项对应相 乘得到的一个新序列。
图1.1.9 例1.1.5的两个序列
18
第1章 离散时间信号与系统
1.1.3 序列的周期性
如果对所有n存在一个最小的正整数N,使x(n)满足
x(n) x(n N )
(1.1.8)
则称序列x(n)是周期序列,其周期为N。 下面讨论正弦序列的周期性 由于 则
x n Asin 0n
这时正弦序列就是周期序列,其周期满足 N (N,K必 须为整数)。具体可分以下三种情况:
0
2 k
(1)当 N 2 为整数时,只要k =1,N 就为最小正整 0 2 。 数,故正弦序列的周期即为 N
0
2
(2)当 2 不是整数,而是一个有理数时, k值逐步增 0 2 加,其取值使 N k 为最小整数,这就是正弦序列的 2 N 周期。此时 k ,其中k,N是互为素数的整数,

数字信号处理-第2章第1讲 离散时间信号和离散时间系统

数字信号处理-第2章第1讲 离散时间信号和离散时间系统

当a>1时 当-1<a<0时 当a< -1时
2.2 常用序列
5、正弦序列
x(n) Asin(n )
x(n) xa (t) tnT Asin(nT ) T / fs 2 f / fs 单位rad, 单位rad / s
6、复指数序列
一阶后向差分: y(n) y(n) y(n 1) 二阶后向差分: 2 y(n) y(n) y(n 1)
y(n) 2 y(n 1) y(n 2) 用延时算子:Dy(n) y(n 1) y(n) y(n) Dy(n) (1 D) y(n) 1 D 2 y(n) y(n) y(n 1) (1 D) y(n) (1 D)Dy(n) (1 D)2 y(n)
卷积和
卷积和的定义
1. 交换律 2. 结合律

y(n) x(k)h(n k) x(n) h(n) k

y(n) h(n)x(n k) h(n) x(n) k
y(n) [x(n) h1(n)]*h2(n)
[x(n) h2(n)]*h1(n) x(n) [h1(n)*h2(n)]
线性非移变系统稳定的充要条件是满足绝对可 和的条件:

S h(n) n
证明:
(1)充分性
当 x(n) M得


y(n) h(k)x(n k) h(k) x(n k)
k
k

M h(k) 得证 k
(2)必要性
x(n) e( j)n
数字频率又叫归一化频率
x(n) en cos(n) jen sin(n)

数字信号处理_笔记

数字信号处理_笔记
T[x(n)]的自变量为 x(n) ,而 y(n) 的自变量为 n 。
T[x(n)]侧重点在于 x(n) , x(n) 变为 x(n k) ,则将 x(n k) 替换为 x(n)* 带入原式。
而 y(n) 的侧重点在 n 。举例说明:有T[x(n)] g(n)x(n) 则:T[x(n k)] g(n)x(n k)
0 w 2 是偶对成的,相位响应 arg[H (e jw )] 是奇对称的。
当输入为复指数序列 e jw0n 时,对应输出为 y(n) e jw0n H (e jw0 ) 。
另外,输入为正弦序列时,也可以先将其转换为复指数序列,再根据此方法求得输出。 对于不绝对可和的序列,如周期序列,其傅里叶变换可用冲激函数的形式表示出来。 具体解法:先求傅里叶级数,将原式变换为复指数形式,再求其离散傅里叶变换。 ??? 复指数序列与正弦序列的关系:
Y (e jw )
1
X (e jw ) H (e jw )
1
X (e j )H (e j(w ) )d
2
2
五:帕斯维尔(Parseval)定理
知识点:散时间傅里叶变换与模拟信号傅里叶变换之间的关系 ???查资料,比较多就不写了
频谱进行周期延拓,乘以系数乘以 1 T
混叠现象:当采样频率小于信号最大频率的两倍时,对连续时间信号采样后的离散时间信号 的频谱将会重叠,重叠部分的频率成分的幅值与原信号不同。原信号不是带限信号,混叠现 象一定存在。解决措施:采样频率应该足够高,如实际工程应用中,采样频率应为输入信号 最大频率的 3-5 倍。
但是, y(n k) g(n k)x(n k) ,既有T[x(n k)] y(n k) 。所以,系统不具有移不
变性。 线性非移变系统:既满足叠加原理,又,满足非移变条件的系统。 线性非移变系统输入为单位取样序列时,输出为单位取样响应。该系统的输出

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍

离散时间信号和系统理论知识介绍离散时间信号和系统是数字信号处理领域中的重要分支,其研究对象是以离散时间为变量的信号和系统。

在离散时间信号和系统理论中,信号的变量只在离散时间点上取值,而系统对信号的处理也是在离散时间点上进行的。

离散时间信号和系统的研究为数字信号处理提供了理论基础和工具。

离散时间信号可以表示为x(n),其中n是一个整数,代表信号的时间变量。

离散时间信号可以是有限长度的序列,也可以是无限长度的序列。

离散时间信号的幅度可以是实数或复数,表示信号在不同时间点上的取值。

离散时间信号可以用图形表示,横轴表示时间变量n,纵轴表示信号的幅度。

离散时间信号有几个重要的性质。

1. 周期性:如果对于某个正整数N,有x(n) = x(n+N),那么离散时间信号是周期性的,其最小周期是N。

2. 偶对称性:如果对于任意的n,有x(n) = x(-n),那么离散时间信号是偶对称的。

3. 奇对称性:如果对于任意的n,有x(n) = -x(-n),那么离散时间信号是奇对称的。

4. 单位冲激响应:单位冲激响应是一个离散时间信号h(n),在n=0时为1,其他时间点为0。

单位冲激响应在离散时间系统中起着重要的作用,可以用来表示系统对单位冲激信号的响应。

离散时间系统是对离散时间信号进行处理的数学模型。

离散时间系统可以是线性系统或非线性系统。

线性系统具有叠加性和比例性质,即对于系统的输入信号x1(n)和x2(n),系统的输出信号y1(n)和y2(n),有以下关系:1. 叠加性:系统对输入信号的响应是可叠加的,即y(n) = y1(n) + y2(n)。

2. 比例性:系统对输入信号的响应是可比例的,即y(n) =k1y1(n) = k2y2(n),其中k1和k2是常数。

离散时间系统可以用差分方程表示:y(n) = a0x(n) + a1x(n-1) + ... + an-1x(1) + anx(0),其中ai是系统的系数。

离散时间系统的输入和输出信号也可以用离散时间卷积进行描述:y(n) = x(n) * h(n),其中*表示离散时间卷积运算,h(n)是系统的单位冲激响应。

离散时间信号和系统的频域分析

离散时间信号和系统的频域分析

离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。

频域分析是对信号与系统在频率域上的特性进行研究和分析。

对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。

在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。

频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。

离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。

DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。

DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。

频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。

除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。

DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。

DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。

DFT的结果是一个离散的频域信号,也称为频谱。

DFT通常使用快速傅里叶变换(FFT)算法来快速计算。

离散时间系统的频域分析主要是通过系统的频率响应函数来实现。

频率响应函数是系统在不同频率上对信号的响应情况的描述。

对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。

频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。

频域分析在离散时间信号与系统中有着广泛的应用。

首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。

其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。

此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。

2019-北京邮电大学《数字信号处理》门爱东-dsp02-离散时间系统和离散信号的变换-PPT文档资料-文档资料

2019-北京邮电大学《数字信号处理》门爱东-dsp02-离散时间系统和离散信号的变换-PPT文档资料-文档资料

北 京
过取样(Oversampling)
邮 电 大
过取样就是用远高于奈奎斯特频率的频率去采样,K×fs/2 好处:

简化了抗混叠滤波器设计;
信 息 与
过采样、噪声成形(Noise Shaping) 、数字滤波和抽取(丢点 Decimator)是 ADC 降低噪声,并产生高分辨率输出的重要方法。
11
2. 1.1 取样和取样定理:频域分析

京 邮 电 大
p (t)1ejn st T n
且 ej st 2( s)


息 与 通 信
P()2Tn (ns)
其中
2 s T
工 程 学 院
X ˆa()21Xa()P()T 1Xa()n (ns)

京 邮
取样函数定义为:
电 大 学 信 息
p(t)1com b(t)(tnT)
T
T n ------ T :取样间隔
与 通 信
则:

xˆa(t) xa(t)p(t) xa(t)(t nT)

n


学 院
xa(nT)(t nT)

n

体 中 心 门 爱
若 xa(t) 是一带限函数
邮 电 大 学 信 息 与

Xa()


Xa(),

0,
s
2
s
2
通 信
只要取样频率足够高,当满足以下条件时
工 程 学 院
s
max 2
---------(奈奎斯特定理)

媒 体 中 心

第一章 离散时间信号和系统

第一章 离散时间信号和系统
N 1 运动平均系统 : y ( n) x(n k ) M N 1 k M

30
一、线性时不变系统
1.线性系统
y1 ( n) T [ x1 ( n)]
y2 ( n) T [ x2 ( n)]
(1)可加性 (2)奇次性
y1 (n) y2 (n) T [ x1 (n) x2 (n)]
u( n) ( n m )
m 0
(n)
1
0 u(n)
1
0 1
n

n
22
(3). 矩形序列
1, 0 n N 1 R N ( n) 0 , 其他n
RN (n) 和 (n) 、 (n) 的关系为: u
RN (n)
RN (n) u(n) u(n N )
取和
11
例1 - 1 - 2 已知x(n) h(n) 1 , 3,求x(n) h(n)。 2, n 0
x(m)
解:
(1)翻褶 (2) 移位、相乘、累加
n<0, y(n)=0 n=0, y(n)=1 n=1, y(n)=1•2+2•1=4 n=2, y(n)=1•3+2•2+ 1•3 =10
(n 1) 2 (n) (n 2) 0.5 (n 3) 1.5 (n 4) 28

1.2 离散时间系统
29
离散时间系统定义: 离散时间系统是将输入序列变换成输出序列的一种运算。
x(n)
T[.]
y(n)
y(n)=T[x(n)]
例如 理想时延系统 : y ( n) x( n n0 )
2

离散时间信号与系统

离散时间信号与系统

离散时间信号与系统离散时间信号与系统是数字信号处理领域中的重要概念。

离散时间信号是在离散时间点上取值的信号,而离散时间系统则是对离散时间信号进行处理或操作的系统。

在本文中,我们将详细探讨离散时间信号与系统的基本概念、特性和应用。

一、离散时间信号的定义和表示离散时间信号是在离散时间点上取值的信号,通常用序列表示。

离散时间序列可以用数学公式或图形方式表示。

其中,数学公式表示常用的形式是$x[n]$,而图形表示则可以通过绘制离散时间序列的点来展示。

离散时间信号可以分为有限长序列和无限长序列。

有限长序列在某一区间上有值,而在其他区间有值或为零。

无限长序列在整个时间轴上有值,通常会满足某些性质,如周期性或衰减性。

二、离散时间系统的定义和分类离散时间系统是对离散时间信号进行处理或操作的系统。

离散时间系统可以通过输入输出关系来定义。

输入为离散时间信号,输出为对输入信号进行处理或操作后得到的信号。

离散时间系统可以分为线性系统和非线性系统、时不变系统和时变系统、因果系统和非因果系统、稳定系统和非稳定系统等不同类别。

不同类别的系统具有不同的特性和性质,对信号的处理方式也会有所不同。

三、离散时间信号与系统的特性离散时间信号与系统具有许多特性。

其中一些重要的特性包括时域特性、频域特性和稳定性。

时域特性描述了信号或系统在时间上的行为,频域特性描述了信号或系统在频率上的行为,而稳定性则描述了系统的输出是否受到输入的限制。

离散时间信号的时域特性可以通过序列的幅值、相位和频率来描述。

离散时间系统的时域特性可以通过系统的冲激响应、单位样值响应和单位阶跃响应来描述。

频域特性则可以通过离散时间信号和系统的傅里叶变换来描述。

四、离散时间信号与系统的应用离散时间信号与系统在数字信号处理中有广泛的应用。

其中一些常见的应用包括音频处理、图像处理、通信系统和控制系统等。

在音频处理中,离散时间信号与系统用于音频信号的录制、编码和解码。

它可以通过滤波和均衡等方式改善音频信号的质量。

第1章离散时间信号与系统

第1章离散时间信号与系统
正弦序列:x(n) sin(n0 ) 中ω0是正弦包络的频率, 不是序列的频率;序列的周期性应根据如下方法判断。
2 (a)若: N ,N为整数,则序列的最小周期为N
0
(b)若: 2 N S L ,N为有理数但不是整数,L、S 0
为整数,则序列的最小周期为S。
2 0 N , 不是有理数,则序列是非周期性的 (c)若:
所以 x(n) 的周期N是 N1 , N2的最小公倍数30
(2) 1 2 1 , N1 8 ; 4 14
2

4
, N2
2 8; 4
13
N1/N2是无理数,所以x(n)是非周期的。
n0 n0
u(n-n0),n0>0

-1

0 1
(a)
2
3
n
… … -1
u(-n0-n),n0>0

0 1 (b) n0
… …
n
… … 图1.1.2
-n0

-1
… 0 1 …
n
思考: u(n+n0),n0>0; 的图形。
4
(c)
单位脉冲序列与单位阶跃序列的相互关系:
(n) u (n) u (n 1)
u(n) (n) (n 1) (n 2) (n m)
m 0
5
(3)矩形序列 (Rectangle sequence)
1, RN (n) 0,
0 n N 1 n 0, n N
RN ( n )
1

0 1
-3 -2 -1
第1章 离散时间信号与系统

北京邮电大学《数字信号处理》门爱东-dsp02-离散时间系统和离散信号的变换-PPT精品文档159页

北京邮电大学《数字信号处理》门爱东-dsp02-离散时间系统和离散信号的变换-PPT精品文档159页

12
2. 1.1 取样和取样定理:频域分析


X a( )


1
Xˆ a ( )
1 T
s 2T
大 学
m
m


0 m
m
Ω
-Ω s s
0 s Ωs
Ω

2
2
通 信
连续信号的频谱和取样信号的频谱 s

max 2
程 学 院
然而,当
s
Digital Signal Processing, Men Aidong, Multimedia Technology Centre, BUPT
8
2. 1.1 取样和取样定理:时域分析

京 邮
取样函数定义为:
电 大 学 信 息
p(t)1com b(t)(tnT)
T
T n ------ T :取样间隔
通 信 工 程 学
则映射到频域为:
X ˆa( )21 Xa( )P( )

多 因 p(t) 是周期为 T 的函数,可以展开成级数和的形式:

体 中 心 门


p(t)
(tnT)
aejn st m
n
n
其中
2 s T


Digital Signal Processing, Men Aidong, Multimedia Technology Centre, BUPT






门 爱
-B2 -B1
0
B1
B2

Digital Signal Processing, Men Aidong, Multimedia Technology Centre, BUPT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§7-1 概述一、 离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。

二、 连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、 离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。

例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、 典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ下图表示了)(n k -δ的波形。

连续信号离散信号 数字信号 取样量化这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。

例如:)()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。

2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。

用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。

4、 单边正弦序列:)()cos(0k k A εφω+(a) 0.9a = (d) 0.9a =-(b) 1a = (e) 1a =-(c) 1.1a = (f) 1.1a =-双边正弦序列:)cos(0φω+k A五、 离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

2、 乘法:)()()(21k f k f k f ⋅=3、 标量乘法:)()(1k f a k f ⋅=4、 移序:)()(1n k f k f -=当n>0时,信号向右移(后移)——>称为减序;当n<0时,信号向左移(前移)——>称为增序。

离散信号的移序计算相当于连续时间信号的时间平移计算。

六、 线性移不变离散时间系统1、 线性离散时间系统系统的激励和响应之间满足齐次性和叠加性关系的离散时间系统。

)()()()(22112211k r a k r a k e a k e a +⇔+ 2、 移不变离散时间系统系统的激励和响应之间满足移不变关系的离散时间系统。

)()(n k r n k e -⇔- 3、 线性移不变离散时间系统同时满足线性和移不变性的系统。

七、 离散时间系统的描述方法:见§7-3。

§7-2 抽样信号与抽样定理离散信号可以通过对连续信号抽样得到;连续信号可以通过抽样转化为离散信号,从而可以用离散时间系统进行处理。

但是,这牵涉到两个问题:1) 怎样进行抽样?2) 如何抽样才能不损失原来信号中的信息?一、 抽样器及其数学模型抽样是通过一定的装置(等间隔地)抽取原来连续信号中的很小的一段。

其等效电路它也可以用一个开关信号相乘的数学模型来表示,其中的开关函数为:∑+∞-∞=-=k kT t G t s )()(τ当0→τ时,开关函数近似为:∑+∞-∞=→→→⋅=-=k T t kT t t s )(lim )(lim )(lim 000δτδττττ 可见,开关函数近似成为一个幅度为无穷小的周期性冲激序列。

这个“无穷小”会给我们分析带来不便,所以一般直接用幅度为1的周期性冲激序列代替它,即: ∑+∞-∞==-=k T t kT t t s )()()(δδ 这样,抽样以后的信号为: ∑∑∑∞+-∞=∞+-∞=+∞-∞=-=-=-=⋅=k k k s kT t kT f kT t t f kT t t f t s t f t f )()()()()()()()()(δδδ 显然,抽样以后的信号只与原来的信号在某些离散的时间点上的值有关。

二、 抽样定理显然,利用原来的信号在某些离散的时间点上的值构成的信号,是否会损失信息?或者,在何条件下,可以用抽样后的信号,不失真地还原出原来的信号?1、 抽样信号的频谱:∑+∞-∞=-=k s kT t t f t f )()()(δ∑∑∑∞+-∞=∞+-∞=+∞-∞=-=-=⎥⎦⎤⎢⎣⎡-=k s k s sk s s s k j F T k j F k j F j F )(*)(1)(*)(2)(*)(21)(ωωδωωωδωπωωωδωωπω 其中T s πω2=,称为抽样(角)频率;T 称为抽样(取样)周期。

可见,抽样后信号的谱是抽样以前的谱按抽样(角)频率周期化的结果。

如果原来信号最大频率分量为的谱m ω,抽样频率m s ωω2>,则周期化后的各个频谱不会相互重叠。

将抽样信号通过一个截止频率为2/s ω、增益为T 的ILPF ,可以不失真地还原原来的信号。

此低通滤波器的冲激响应: ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=222)(t Sa t Sa Tt h c c s ωωπω则 ∑+∞-∞=⎥⎦⎤⎢⎣⎡-=n s nT t Sa nT f t f 2)()()(ω这个定理称为Nyquist 抽样定理,或Shannon 抽样定理。

它说明模拟信号可以有条件地由其无数个离散点上的数值恢复出,也就是说在m s ωω2>时,用信号的一些离散的时间点上的数值来代替这个信号可以不损失任何信息。

能够完全不失真地还原信号所需要的最小的抽样频率ms ωω2=称为Nyquist 抽样频率,或Shannon 抽样频率。

f(kT),然后再构成抽样信号。

工程上的采样就是指测量到kT 时刻f(t)的值。

● 在构成抽样信号时,不可能产生冲激信号,这时候可以用任意的周期性脉冲信号代替,其结果不变。

● 恢复信号时,ILPF 是不可能实现的,只能用其它的LPF ,所以抽m ω● 如果原来的信号是一个带限信号,则Nyquist 抽样定理还可以做适(a ) 原信号()f t (b) 原信号的频谱()F j ω(c )单位冲激序列()T t δ (d )单位冲激序列的频谱()s s ωωδω(2s T πω=)(e)1()()()()s T f t f t f t t δδτ== (f) ()f t δ的频谱抽样信号经过非理想低通滤波器当修改。

● 抽样也是一个线性处理过程,它满足齐次性和叠加性。

这是我们通过它达到用离散时间系统处理连续信号的基础。

● 通过抽样可以将连续信号转化为离散数字信号,从而可以用数字信号处理系统进行处理,达到模拟信号处理无法达到的效果。

§7-3 离散时间系统的描述离散时间系统的描述方法有三种:1) 数学模型——>差分方程2) 物理模型——>框图3) 系统函数——>Z.T.,在第八章中介绍。

一、 数学模型离散时间系统处理的信号是离散信号,信号只在某些不连续的时间点上存在,不存在微分,也就不可能用微分方程描述,只能用差分方程描述离散信号相邻的几个时间点之间的关系。

例7-3-1例7-3-1 著名的斐波纳奇(Fibonacci )数列问题。

假设每对大兔子每个月生一对小兔子,而每对小兔子一个月后长成大兔子,而且不会发生死亡。

在最初一个月内有一对大兔子,问第n 个月时一共有几对兔子。

这里,每一个月中兔子的对数就构成了一个离散的时间信号。

列出描述该问题的差分方程。

解:这里,我们用)(k y 表示第k 个月兔子的对数。

显然,第k 个月兔子无论大小,在第1+k 个月都会是大兔子,从而在第2+k 个月中生出)(k y 个小兔子;同时,因为假设兔子不会死亡,第1+k 月的)1(+k y 对兔子在第2+k 月中依然存在,使第2+k 月中大兔子的个数为)1(+k y 。

而第2+k 月中兔子的总个数)1(+k y 等于大兔子对数)1(+k y 与小兔子对数)(k y 之和,由此可以得到方程:)()1()2(k y k y k y ++=+ 这就是斐波纳奇(Fibonacci )数列问题的差分方程。

与微分方程一样,对于差分方程,我们一般将其中的未知的函数或序列放在方程等式的左边,而将激励函数或数列等放在等式的右边。

所以,可以将上式表示成:0)()1()2(=-+-+k y k y k y ● 差分方程与微分方程一样,也必须有初始条件。

如果已知y(0),则可以得到差分方程的解:)0()1()1(y a y +=,)1()1()1()1()2(2y a y a y +=+=,)0()1()2()1()3(3y a y a y +=+=,)0()1()(y a k y k +=● 差分方程也可以加激励:假设k 年从外地引入x(k)个人,则:)()()1()1(k x k y a k y ++=+。

例7-3-2 e(t)例7-3-2 一个空运控制系统,它用一台计算机每隔一秒钟计算一次某一飞机应有的高度)(k x ,另外用一雷达于以上计算同时对此飞机实测一次高度)(k y ,把应有高度)(k x 与一秒钟前的实测高度)1(-k y 相比较得一差值,飞机的高度将根据此差值为正或为负来改变。

设飞机改变高度的垂直速度正比于此差值,即)]1()([--=k y k x K v 米/秒。

求该问题的差分方程。

解:从第k-1秒到第k 秒这1秒钟内飞机升高为)1()()]1()([--=--k y k y k y k x K 经整理即得)()1()1()(k Kx k y K k y =--+这就是表示控制信号)(k x 与响应信号)(k y 之间关系的差分方程,它描写了这个离散时间(每隔1秒钟计算和实测一次)的空运控制系统的工作。

差分方程的一般形式:)()1(...)1()()()1(...)1()(011011k e b k e b m k e b m k e b k r a k r a n k r a n k r m m n ++++-+++=++++-+++--● 差分方程在形式上与微分方程相似,只不过微分计算变成了移序计算;● 差分方程也有阶,差分方程的阶定义为其中最大移序与最小移序之差;● 求解差分方程也必须有初始条件,初始条件的个数必须等于差分方程的阶数;● 与连续时间系统中的结论相似,线性移不变系统可以用一个常系数差分方程描述。

● 因为差分方程可以很方便地用计算机求其数值解,所以很多微分方程可以近似为差分方程求近似数值解。

相关文档
最新文档