幅度的调制与解调 PPT
合集下载
调制与解调分析课件
![调制与解调分析课件](https://img.taocdn.com/s3/m/0a57a10c32687e21af45b307e87101f69e31fb35.png)
调制的作用与重要性
调制的作用
调制的作用是将低频信号转换为高频信号,以便于传输。通过调制,可以有效 地利用频谱资源,提高传输效率,同时也可以实现多路复用,提高通信系统的 容量。
调制的重要性
调制在通信系统中具有非常重要的作用。它是实现无线通信的关键技术之一, 可以有效地将信息传输到远方。同时,调制也是实现数字通信的基础,可以使 得数字信号在有限的频谱资源上实现高速传输。
调制的过程
调制的过程包括调制信号和载波信号两个部分。调制信号是包含信息的数据信号,载波信 号是高频的振荡信号。通过调制,将调制信号的特性改变,使其与载波信号同步,从而将 信息传输出去。
调制的分类
调制可以分为模拟调制和数字调制两种。模拟调制是指将连续变化的模拟信号转换为高频 信号,而数字调制则是将离散的数字信号转换为高频信号。
调相信号的解调
调相信号解调方法
鉴相法和相干解调法。鉴相法是通过将调相信号与本地载波信号相乘,再通过低通滤波器滤除高频分量,得到原 始相位信息。相干解调法则是通过与载波信号相乘,再通过低通滤波器滤除高频分量,得到原始基带信号。
调相信号解调原理
调相信号的解调是将已调相信号恢复成原始基带信号的过程。解调过程中,需要使用适当的解调方法,根据调制 信号的特性选择合适的解调电路。
调相信号的解调通常采用鉴相器解调法,通过 比较接收到的信号与本地载波信号的相位差来 恢复原始调制信号。
PM信号在传输过程中具有较好的相位保持能力 ,适用于需要精确相位控制的通信系统。
调相和调频的关系
调相和调频都是利用载波的参数变化 来传递信息,但它们所利用的参数不 同。调频利用的是载波的频率变化, 而调相利用的是载波的相位变化。
高效解调算法
研究更高效的解调算法, 如基于机器学习的解调方 法,以降低计算复杂度和 功耗。
幅度调制和解调.ppt
![幅度调制和解调.ppt](https://img.taocdn.com/s3/m/576bed0a6f1aff00bfd51e4f.png)
休息1 休息2
例3:画出语音信号的大致频谱图
•••••• 300
3400
f / Hz
例4:画出图像信号的大致频谱图
•••••• 0
6
f / MHz
休息1 休息2
第5章 振幅调制、解调及混频
5.1 概述 5.2 振幅调制原理及特性 5.3 振幅调制电 5.4 调幅信号的解调 5.5 混频器原理及电路
载 波 分(量 c ):不 含 传 输 信 息
上边频分量 c :含传输信息 下边频分量 c :含传输信息
调制信号
Ω
载波
调幅波
U
ωc
c
下边频
1 2 m aU c
1 2
m
a
U
c
上边频
ωc - Ω ωc +Ω
(2) 限带信号的调幅波
返回
uAMUc1
mnco s ntcosct
n
Uccosct
n
12mncos(c n)t 12mncos(c n)t
ucUccosct
UmaxUc(1ma)
Uc
返回
Umi nUc(1ma)
波形特点:
ma
1UmaxUmin 2 Uc
maa 11
(1)调幅波的振幅(包络)变化规律
与调制信号波形一致
(2) 调幅度ma反映了调幅的强弱程度
,
一般m值越可大以调看幅出越:深:m maa
0时 1时
未调幅 最大调(百 幅分之) 百
第5章 振幅调制、解调及混频
通信技术情书
我在时域 ,你在频域 需要经过傅立叶变换 才能发现你的美丽 我把爱的语言调制到高频 通过高频功率放大器 载波到你的频率 你说我的爱噪声太大 经过层层滤波 原来发现 那是在宇宙开始的时候 我发给你的爱的微波背景辐射
高频电子电路振幅调制和解调ppt
![高频电子电路振幅调制和解调ppt](https://img.taocdn.com/s3/m/a6a31f30773231126edb6f1aff00bed5b9f373f4.png)
集电极直流电源 Vcc 提供的功率: P PT VccIcoT
调制信号提供得平均功率:
Pc
P=ow
P
1 2
ma 2 PT
1 2
ma 2Vcc IcoT
平均输出功率:
1
POCW 2
1 2
I
R 2
cm1 p
d
(t
)
PoT
(1
1 2
ma2 )
Pcav
P=av
Poav
载波输出功率
PCT
(1
1 2
调幅度:
ma
2a2V a1
结论:
(1)调幅度得大小由调制信号电压振幅及调制器得特性曲线
所决定
(2)通常,a2<<a1因此用这种方法所得到得调幅度不大。
在平方律调幅中,管子工作于甲类非线性状态,效率低,只适用
于低电平调幅、
图 9、3、2 串联双二极管平衡调幅器简化电路
i1 a0 a1(V0 cos0t V cos Ωt) a2 (V0 cos0t V cos Ωt)2
3、 修正得移相滤波法 sin[(2 1) Ωt]
在单边带调幅与双边带调幅之间,有一种折衷方 式,即残留边带调幅。她传送被抑制边带得一部分,同 时又将被传送边带也抑制掉一部分。为了保证信号无失 真地传输,传送边带中被抑制部分与抑制边带中得被传 送部分应满足互补对称关系。
特点: 所占频带比单边带略宽一些; 她在ω0附近 得一定范围内具有两个边带,因此在调制信号(例如电 视信号)含有直流分量时,这种调制方式可以适用; 残
3、 检波得分类
检波
二极管检波器 器件
三极管检波器 小信号检波器
信号大小 大信号检波器 包络检波器
调制和解调技术课件
![调制和解调技术课件](https://img.taocdn.com/s3/m/f0d1c4b0bb0d4a7302768e9951e79b89680268d4.png)
率(bit/s/Hz),即提高频谱有效性。
•调制和解调技术
•3
3.2.1四相移相键控(QPSK)调制
QPSK技术应用广泛,是一种正交相移键控。图3-5为 传 统QPSK调制器框图.
图3-5 QPSK调制•调器制和解调技术
•4
其基本工作原理如下:
比特率为fb的输入单级二进制码流通过串/并(S/P)变转 换器转换成比特率为fs= fb /2的两个比特流(同相和正交码
•调制和解调技术
•9
一个未滤波QPSK信号的功率谱密度为
S(f)4CbT s2 i2 n (f(f fcf)c T)bTb2
(式3-1)
式中为通过电阻的归一化平均信号功率, Tb 1/ fb 为比特持续时间。
•调制和解调技术
•10
假定调制器中使用了具有升余弦函数均方根特性、滚降 系数为 (最佳特性时)的频谱成形滤波器,则很容易得到 QPSK信号滤波后的频谱,如图3-8所示。图3-8中曲线(a)是 未滤波QPSK频谱,曲线(b)是带幅度均衡器的滚降系数为α 的升余弦函数的幅度响应,曲线(c)是已滤波QPSK频谱只存 在加性高斯白噪声(AWGN),且无符号间干扰(ISI)时的幅度 响应。
•调制和解调技术
•14
同QPSK相比,包络起伏比较小(它的最大相变为1350) , 故有较好的输出谱特性。 π/4移位QPSK的信号元素可看成 是从两个彼此相移π/4的信号星座图中交替选样出来的。 π/4移位QPSK调制器框图示于图3-9。输入比特流经串/并
(S/P)变换器转换成两个并行流(ak,bk),并行流的符号率为
图3-14 GMSK调制器
•调制和解调技术
•27
LPF的脉冲响应函数为
h(t)exp2(t2 2T2)/T 2
•调制和解调技术
•3
3.2.1四相移相键控(QPSK)调制
QPSK技术应用广泛,是一种正交相移键控。图3-5为 传 统QPSK调制器框图.
图3-5 QPSK调制•调器制和解调技术
•4
其基本工作原理如下:
比特率为fb的输入单级二进制码流通过串/并(S/P)变转 换器转换成比特率为fs= fb /2的两个比特流(同相和正交码
•调制和解调技术
•9
一个未滤波QPSK信号的功率谱密度为
S(f)4CbT s2 i2 n (f(f fcf)c T)bTb2
(式3-1)
式中为通过电阻的归一化平均信号功率, Tb 1/ fb 为比特持续时间。
•调制和解调技术
•10
假定调制器中使用了具有升余弦函数均方根特性、滚降 系数为 (最佳特性时)的频谱成形滤波器,则很容易得到 QPSK信号滤波后的频谱,如图3-8所示。图3-8中曲线(a)是 未滤波QPSK频谱,曲线(b)是带幅度均衡器的滚降系数为α 的升余弦函数的幅度响应,曲线(c)是已滤波QPSK频谱只存 在加性高斯白噪声(AWGN),且无符号间干扰(ISI)时的幅度 响应。
•调制和解调技术
•14
同QPSK相比,包络起伏比较小(它的最大相变为1350) , 故有较好的输出谱特性。 π/4移位QPSK的信号元素可看成 是从两个彼此相移π/4的信号星座图中交替选样出来的。 π/4移位QPSK调制器框图示于图3-9。输入比特流经串/并
(S/P)变换器转换成两个并行流(ak,bk),并行流的符号率为
图3-14 GMSK调制器
•调制和解调技术
•27
LPF的脉冲响应函数为
h(t)exp2(t2 2T2)/T 2
通信原理知识调制与解调ppt(84张)
![通信原理知识调制与解调ppt(84张)](https://img.taocdn.com/s3/m/de811aaf59eef8c75ebfb390.png)
Ω)t
调制信号
Ω
载波
调幅波
通信原理知识调制与解调(PPT84页)
下边频
ω0
上边频
ω0-Ω ω0+Ω
通信原理知识调制与解调(PPT84页)
(2) 限带信号的调幅波
v AM (t) V0 1
n
mn
c
osΩnt
c os0t
V0 cos0t
n
1 2
mn
c os (0
Ωn )t
1 2
mn
从调幅波的频谱图可知,唯有它的上、下边带分量才实际地
反映调制信号的频谱结构,而载波分量仅是起到频谱搬移的作用, 不反映调制信号的变化规律。
通信原理知识调制与解调(PPT84页)
End
通信原理知识调制与解调(PPT84页)
三种振幅调制信号
电压 表达式
普通调幅波
V0 (1 ma cos Ωt ) cos0t
(2) 调幅度ma反映了调幅的强弱度
通信原理知识调制与解调(PPT84页)
通信原理知识调制与解调(PPT84页)
v V cos Ωt v0 V0 cos0t
ma 0 0 ma 1
maa 1
通信原理知识调制与解调(PPT84页)
通信原理知识调制与解调(PPT84页)
图 9.2.2 由非正弦波调制所得到的调幅波
m上
Vmax V0 V0
m下
V0
Vm in V0
通信原理知识调制与解调(PPT84页)
通信原理知识调制与解调(PPT84页)
2. 普通调幅波的频谱
(1)由单一频率信号调 幅
v AM (t) V0 (1 ma cosΩt) cos0t
第4章幅度调制与解调电路
![第4章幅度调制与解调电路](https://img.taocdn.com/s3/m/a1bf269751e2524de518964bcf84b9d528ea2cbe.png)
上一页 下一页 返回
4. 3幅度解调电路
4.负峰切割失真 为把检波器的输出电压藕合到下一级电路.需要有一个容量较大
的电容C与下级电路相连。下级电路的输入电阻作为检波器的负载.电 路如图4-23(a)所示。负峰切割失真指藕合电容公通过电阻R放电.对二 极管引入一个附加偏置电压.导致二极管截止而引入的失真。失真波 形如图4-23(b)、图4-23(c)所示。
可得实现普通调幅的电路模型如图4-4所示.关键在于用模拟乘法 器实现调制信号与载波的相乘。
上一页 下一页 返回
4.1概述
2.双边带调幅(DSB) 1)双边带调幅信号数学表达式
上一页 下一页 返回
4.1概述
2)双边带调幅信号波形与频谱 图4-5所示为双边带调幅信号的波形与频谱图。双边带信号的包
络仍然是随调制信号变化的.但它的包络已不能完全准确地反映低频 调制信号的变化规律。双边带信号在调制信号的负半周.已调波高频 与原载频反相;调制信号的正半周.已调波高频与原载频同相。也就是 双边带信号的高频相位在调制电压零交点处要突变180°
混频后.产生近似中频的组合频率.进入中放通带内形成干扰。 减小互调干扰的方法与抑制交叉调制干扰的措施相同。
上一页 返回
4. 5幅度调制和解调电路的制作、 调试及检测
4. 5. 1低电平振幅调制器(利用乘法器)
幅度调制就是载波的振幅受调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同.即振幅变化与调制信号的振幅成正 比。通常称高频信号为载波信号.低频信号为调制信号.调幅器即为产 生调幅信号的装置。
上一页 下一页 返回
4.1概述
3)调幅信号的功率分配 由式(4-3)知.普通调幅信号uAM(t)<C)在负载电阻RL上产生的功率
4. 3幅度解调电路
4.负峰切割失真 为把检波器的输出电压藕合到下一级电路.需要有一个容量较大
的电容C与下级电路相连。下级电路的输入电阻作为检波器的负载.电 路如图4-23(a)所示。负峰切割失真指藕合电容公通过电阻R放电.对二 极管引入一个附加偏置电压.导致二极管截止而引入的失真。失真波 形如图4-23(b)、图4-23(c)所示。
可得实现普通调幅的电路模型如图4-4所示.关键在于用模拟乘法 器实现调制信号与载波的相乘。
上一页 下一页 返回
4.1概述
2.双边带调幅(DSB) 1)双边带调幅信号数学表达式
上一页 下一页 返回
4.1概述
2)双边带调幅信号波形与频谱 图4-5所示为双边带调幅信号的波形与频谱图。双边带信号的包
络仍然是随调制信号变化的.但它的包络已不能完全准确地反映低频 调制信号的变化规律。双边带信号在调制信号的负半周.已调波高频 与原载频反相;调制信号的正半周.已调波高频与原载频同相。也就是 双边带信号的高频相位在调制电压零交点处要突变180°
混频后.产生近似中频的组合频率.进入中放通带内形成干扰。 减小互调干扰的方法与抑制交叉调制干扰的措施相同。
上一页 返回
4. 5幅度调制和解调电路的制作、 调试及检测
4. 5. 1低电平振幅调制器(利用乘法器)
幅度调制就是载波的振幅受调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同.即振幅变化与调制信号的振幅成正 比。通常称高频信号为载波信号.低频信号为调制信号.调幅器即为产 生调幅信号的装置。
上一页 下一页 返回
4.1概述
3)调幅信号的功率分配 由式(4-3)知.普通调幅信号uAM(t)<C)在负载电阻RL上产生的功率
《调制与解调》课件
![《调制与解调》课件](https://img.taocdn.com/s3/m/24f5fa63bdd126fff705cc1755270722192e59ea.png)
《调制与解调》PPT课件
调制与解调是通信领域中至关重要的概念。本课件将深入探讨调制与解调的 基本原理、应用场景以及未来发展方向。
概述
基本概念
深入理解调制与解调的本质,为后续内容打下基础。
作用和应用场景
探索调制与解调在通信领域中的广泛应用,并了解其对信息传输的重要作用。
模拟调制
模拟信号 vs 数字 信号
介绍脉冲幅度调制(PAM) 和脉冲编码调制(PCM)的 实现方式与应用场景。
QAM和FSK的原理 与示例
详细解释正交振幅调制 (QAM)和频移键控(FSK) 的原理,并通过示例进行 演示。
调制解调器
基本结构和原理
了解调制解调器的组成结 构以及其工作原理。
分类和应用场景
探索不同类型的调制解调 器及其在各个领域中的应 用。
性能参数和对比 分析
分析调制解调器的性能参 数,并进行与其他技术的 对比。
码型和误码率
码型的概念 和分类
介绍不同类型的码 型,并解释其在通 信中的作用。
ห้องสมุดไป่ตู้
误码率的定 义和计算方 法
详细描述误码率的 概念,并解释如何 进行计算。
循环码和纠 错码的原理 和应用场景
深入理解循环码和 纠错码的原理,并 探讨其在通信中的 应用。
比较模拟信号和数字信号 的特点,对两者之间的区 别进行详细解释。
原理和方法
深入研究模拟调制的基本 原理和常用的调制方法, 包括调幅调制和调频调制。
实例演示
通过具体案例演示AM(幅 度调制)和FM(频率调制) 的产生与分析。
数字调制
基本原理
探索数字调制的工作原理 以及其与模拟调制的差异。
PAM和PCM的实现
实例演示
调制与解调是通信领域中至关重要的概念。本课件将深入探讨调制与解调的 基本原理、应用场景以及未来发展方向。
概述
基本概念
深入理解调制与解调的本质,为后续内容打下基础。
作用和应用场景
探索调制与解调在通信领域中的广泛应用,并了解其对信息传输的重要作用。
模拟调制
模拟信号 vs 数字 信号
介绍脉冲幅度调制(PAM) 和脉冲编码调制(PCM)的 实现方式与应用场景。
QAM和FSK的原理 与示例
详细解释正交振幅调制 (QAM)和频移键控(FSK) 的原理,并通过示例进行 演示。
调制解调器
基本结构和原理
了解调制解调器的组成结 构以及其工作原理。
分类和应用场景
探索不同类型的调制解调 器及其在各个领域中的应 用。
性能参数和对比 分析
分析调制解调器的性能参 数,并进行与其他技术的 对比。
码型和误码率
码型的概念 和分类
介绍不同类型的码 型,并解释其在通 信中的作用。
ห้องสมุดไป่ตู้
误码率的定 义和计算方 法
详细描述误码率的 概念,并解释如何 进行计算。
循环码和纠 错码的原理 和应用场景
深入理解循环码和 纠错码的原理,并 探讨其在通信中的 应用。
比较模拟信号和数字信号 的特点,对两者之间的区 别进行详细解释。
原理和方法
深入研究模拟调制的基本 原理和常用的调制方法, 包括调幅调制和调频调制。
实例演示
通过具体案例演示AM(幅 度调制)和FM(频率调制) 的产生与分析。
数字调制
基本原理
探索数字调制的工作原理 以及其与模拟调制的差异。
PAM和PCM的实现
实例演示
第3章调制和解调ppt课件
![第3章调制和解调ppt课件](https://img.taocdn.com/s3/m/a0e5922926d3240c844769eae009581b6bd9bd8c.png)
3. 角度调制
调频信号带宽公式(卡森公式)
BFM=2(mf+1)fm=2(△f+fm) △f=mffm fm是基带信号的调制频率,△f是最大频偏,mf是调频指数
。Mf<<1,窄带调频(NBFM)BFM≈2fm;宽带调频(WBFM )非线性
与幅度调制相比,频率调制最突出的优势是具有较高 的抗噪声性能,但代价是占用比幅度调制更宽的带宽 。
2. DSB信号带宽与AM相同BDSB=BAM=2fH 3. 调制效率高 4. 应用场合少,调频立体声广播中的差信号调制,彩色电
视系统色差信号调制。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2. 幅度调制
单边带调制(SSB)
滤波法(理想高通,滤掉下边带,输出上边带;理想低通 ,滤掉上连带,输出下边带);相移法
特点与应用:
1. 对频谱资源有效利用 2. 节省功率
BSSB12BDSB,fH短波通信,频分复用系统
3. 带宽节省以增加复杂性为代价
4. 不能采用包络检波,采用相干解调。
传输。
设备的复杂度
非相干方式比相干方式简单 目前常用的是2DPSK方式和2FSK方式
相干2DPSK主要用于中速数据传输 非相干2FSK主要用于中、低速数据传输,尤其适用于随参信道。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1 克服了DSB信号占用频带宽的问题,以解决了SSB信号实现上的 难题。
2 fH<BVSB<2fH,调制效率100% 3 VSB比SSB所需求的带宽仅有很小的增加,但却换来了电路实现
调频信号带宽公式(卡森公式)
BFM=2(mf+1)fm=2(△f+fm) △f=mffm fm是基带信号的调制频率,△f是最大频偏,mf是调频指数
。Mf<<1,窄带调频(NBFM)BFM≈2fm;宽带调频(WBFM )非线性
与幅度调制相比,频率调制最突出的优势是具有较高 的抗噪声性能,但代价是占用比幅度调制更宽的带宽 。
2. DSB信号带宽与AM相同BDSB=BAM=2fH 3. 调制效率高 4. 应用场合少,调频立体声广播中的差信号调制,彩色电
视系统色差信号调制。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2. 幅度调制
单边带调制(SSB)
滤波法(理想高通,滤掉下边带,输出上边带;理想低通 ,滤掉上连带,输出下边带);相移法
特点与应用:
1. 对频谱资源有效利用 2. 节省功率
BSSB12BDSB,fH短波通信,频分复用系统
3. 带宽节省以增加复杂性为代价
4. 不能采用包络检波,采用相干解调。
传输。
设备的复杂度
非相干方式比相干方式简单 目前常用的是2DPSK方式和2FSK方式
相干2DPSK主要用于中速数据传输 非相干2FSK主要用于中、低速数据传输,尤其适用于随参信道。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1 克服了DSB信号占用频带宽的问题,以解决了SSB信号实现上的 难题。
2 fH<BVSB<2fH,调制效率100% 3 VSB比SSB所需求的带宽仅有很小的增加,但却换来了电路实现
《幅度调制及解调》PPT课件
![《幅度调制及解调》PPT课件](https://img.taocdn.com/s3/m/1e774d5d376baf1ffd4fad24.png)
人耳能听到的声音的频率范围大约在300Hz-3000Hz间,
通常把这一频率范围叫作音频。声波在空气中传播很慢,
约为340m/s,且衰减很快,传播距离近。
交变的电磁场可以利用天线向天空辐射。但要做到有效
的辐射,天线的尺寸应和电磁波的波长相比拟。音频的
波长在106~105m,要制造尺寸相当的天线显然是不可
vo
t
图 6.8平衡调制器输出的电压波形
普通调幅波的高频振荡是连续的,可是双边带调幅波在
调制信号极性变化时,它的高频振荡的相位要发生180的突
变,这是因为双边带波是由v0和v相乘而产生的。
精选PPT
19
6.4 幅度调制信号的解调
❖ 振幅解调(又称检波)是振幅调制的逆过程。它的作用是从已调制的高频 振荡中恢复出原来的调制信号。载波被抑制的已调波解调原理如图6.18 所示。
按照调制信号的种类,幅度调制可以分为模拟调 制和数字调制;按照调制原理的不同,幅度调制又 可以分为普通调幅、双边带调幅、单边带调幅和残 留边带调幅等。
精选PPT
8
❖ 6.2.1普通调幅
为简化分析,假定调制信号为简谐信号,即单频正弦波,
表达式为
u=Vcos,t载波即高频振荡信号
为 uc =Vccosct , c 。假设所有信号的初始相位都为零。
精选PPT
21
6.4.2 包络检波
以二极管(大信号)峰值包络检波器为例,它分为串联型 二极管包络检波电路和并联型二极管包络检波电路。串联型
二极管包络检波电路如图6.19所示。一般要求的输入信号大 于0.5V,所以称为大信号检波器。
RLC电路一是起高频滤波作用,二是作为检波器的负载,
在其两端输出已恢复的调制信号。故必须满足
第5章调制与解调共51讲160页课件
![第5章调制与解调共51讲160页课件](https://img.taocdn.com/s3/m/2c94966c66ec102de2bd960590c69ec3d4bbdb73.png)
18
残留边带调制是介于单边带调制与双边带调制之间的一种 调制方式,它既克服了DSB信号占用频带宽的问题,又解决 了单边带滤波器不易实现的难题。
在残留边带调制中,除了传送一个边带外,还保留了另外 一个边带的一部分。对于具有低频及直流分量的调制信号, 用滤波法实现单边带调制时所需要的过渡带无限陡的理想 滤波器,在残留边带调制中已不再需要,这就避免了实现上 的困难。
接将载频与调 制信号相乘
1 2
AUmUcm cos(c
)t
cos(c
)t
15
[优点] 发送功率利用率提高
uDSB Auuc AUm cos t Ucm cosct
1 2
AUmUcm cos(c
)t
cos(c
)t
[不足]
1) 存在180deg相位突变点; 2) 包络变化不反映调制信号 的变化;
41
失真原理 放电时常数过大,导致放电过慢形成。 解决办法
降低放电时常数, 使放电速率快于 包络下降速率 不失真条件
RC 1 ma2 ma
42
1)大信号包络检波 实用电路
Ri:为后级电路输入电阻,
此处作为检波负载。
CC:隔离Uo中的直流分量,
只让交流成份送至后级处理,
CC的容抗要求远小于Ri阻抗
u (t) Um cos t Um cos 2Ft 2F
又令载波信号
uC (t) Ucm cosct Ucm cos 2fc t c 2fc 调幅波振幅(包络) (与调制信号成比例)
U AM (t) Ucm kaUm cost
Ucm(1
ka
U m Ucm
c ost )
6
普通调幅波的表达式、功率与效率计算 三种调幅波的波形图、频谱图
残留边带调制是介于单边带调制与双边带调制之间的一种 调制方式,它既克服了DSB信号占用频带宽的问题,又解决 了单边带滤波器不易实现的难题。
在残留边带调制中,除了传送一个边带外,还保留了另外 一个边带的一部分。对于具有低频及直流分量的调制信号, 用滤波法实现单边带调制时所需要的过渡带无限陡的理想 滤波器,在残留边带调制中已不再需要,这就避免了实现上 的困难。
接将载频与调 制信号相乘
1 2
AUmUcm cos(c
)t
cos(c
)t
15
[优点] 发送功率利用率提高
uDSB Auuc AUm cos t Ucm cosct
1 2
AUmUcm cos(c
)t
cos(c
)t
[不足]
1) 存在180deg相位突变点; 2) 包络变化不反映调制信号 的变化;
41
失真原理 放电时常数过大,导致放电过慢形成。 解决办法
降低放电时常数, 使放电速率快于 包络下降速率 不失真条件
RC 1 ma2 ma
42
1)大信号包络检波 实用电路
Ri:为后级电路输入电阻,
此处作为检波负载。
CC:隔离Uo中的直流分量,
只让交流成份送至后级处理,
CC的容抗要求远小于Ri阻抗
u (t) Um cos t Um cos 2Ft 2F
又令载波信号
uC (t) Ucm cosct Ucm cos 2fc t c 2fc 调幅波振幅(包络) (与调制信号成比例)
U AM (t) Ucm kaUm cost
Ucm(1
ka
U m Ucm
c ost )
6
普通调幅波的表达式、功率与效率计算 三种调幅波的波形图、频谱图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
b
o
图 5放大器特性
三、幅值解调
幅值调制的解调过程是将已调制波恢复为低原频调制信号的过程。恢复原 波形包括有幅值和正负号两方面内容。实现这一过程有如下几种方法。
(1)整流检波解调
被测信号即调制信号在经行幅值调制前,先预加一直流偏置,使之不再具 有双向极性,然后再与高频载波相乘的已调制波。在调制时只需对已调制波作 整流和检波,最后再将所加直流偏置除去,就可以恢复原调制信号了。
R /R 0 S g0sinst
则电桥的输出电压信号成为
uy1Sg0sinst•U0sinct
令
4
K 1 SgU0 0
4 则
u y K sinst• sinc t
其时域波形如图(3)所示,显而易见,图中的已调制波的幅值是低频 调制信号sinωst 对于高频载波sinωct施加控制的结果。另外还需要给 予特别注意的是,低频调制信号处于不同符号时对于已调制波波形的 影响: sinωst处于正半周期时,已调制波与载波同相;而sinωst处于负半周
幅值调制在频域的变化过程可以用两种方法来解释。
(1)时域三角函数法。
已调制波的时域表达公式为
u y K sinst• sinc t
可以用平面三角函数的积化和差关系公式变为
u yK co s(c s)tco s(cs)t
2
这样可以根据调制信号(△R)、载波(u0)的频谱绘制出调制波(uy)的 频谱,如图4所示。由图可见:低频调制信号(△R)由于是一正弦波,所 以具有±ωs处两根频谱(双边频谱),如图4(a)所示载波同样是正弦波, 具有±ωc处两根频谱,如图4(b)所示。而已调波( uy )是两个余弦信号 相加,所以他们频谱在±(ωs-ωc)、 ±(ωs+ωc)处各有两根频谱如图4 (c)所示,也就是说经过调制,已调制波的频谱是在以载波频谱±ωc为中 心,以调制信号圆频率ωs为间隔对称的两套频谱,而其频谱线高度是△R与 u0幅值乘积的1/2。
•••••• 0
6
f / MHz
调制在时域上是用一个低频信号对一高频信号某一特征 参量进行的控制。低频信号称为调制信号,高频信号称为载 波,而调制出来的信号称为已调制波,所以调制的过程在时 域就是使载波的某一特征参量随调制信号的变化而变化的过 程。调制过程在频域上是一个移频的过程。
调制的类型有许多种。载波信号若用高频正(余)弦波, 可调制的特征参量是幅值、频率和相位,从而可形成幅值调 制、频率调制和相位调制等三种调制形式。频率调制和相位 调制在本质上都具有角度调制的特点,所以在具体处理上具 有共同的特点。
幅值调制的频移特点在工程技术上具有重要意义。例如,所测信号的频率 很低,而常用的电子放大器在低频段工作特性不佳(见图5(a)段)或容易混 入低频噪声信号(如工频干扰),“污染”被测信号,此时可采用幅值调制方 法,将所测信号频率移至放大器增益保持常值和不易受噪声干扰的频段上(见 图(5)b段),到放大后,在设法移回原处,恢复已放大的原测试信号。另外 在广播事业中,为了防止各电台的相互干扰和适于发射,必须将各电台的声频 信号移频至各自分配的高频、超高频频段上。
时,已调制波与载波反相。
假如调制信号波形不是一个正弦波,而是一个任意波,按上述方法求取的 已调制波波形的幅值随调制信号的幅值变化而变化;相位视调制信号的正负 而定。
0sinst
u0=U0sinct
u y K sins tU 0 sinc t
图3
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
幅度的调制与解调
幅度的调制与解调
一、概述 二、幅值调制 三、幅值解调 四、调制解调的应用
一、概述
时域特性:指的是信号的强度随着时间的变化特性。这些信号最 后都转换为随着时间而随机变化的电压或电流。例如通信中要处 理的各种信号:语音、数据、图像和视频等。
U/Vf tt源自s频域特性:描述信号的另一种表示方法。描述的是信号包 含哪些不同频率分量。
Cn
s s
Cn u0
c
C n uy
c
(a) (b)
cs cs
图4
(c)
(a)调制信号的频谱;(b)载波的频谱;(c)已调制波的频谱
(2)频域卷积法。幅值调制的过程在时域是调制信号与载波信号的相乘,根据傅 里叶变换的卷积性质,时域相乘的运算对于频域卷积的运算,所以已调制波的频 谱应是调制信号频谱与载波信号频谱卷积的结果。由于载波信号的频谱是两个位 置在±ωc处的δ函数,根据δ函数的卷积性质,任何函数与δ函数的卷积都应是这 一函数在δ函数发生处重新构图,也就是将原函数平移到δ所在的位置上。所以调 制信号频谱与载波信号频谱的卷积就是将调制信号频谱搬移至载波信号频谱即在 ±ωc处的两个δ函数处,其结果如图4(c)所示,结果与前述的三角函数法分析 结果完全相同。
交流电桥如图(2)所示,若其4个桥 臂仍为纯电阻,将其调整合适后达到平衡。
图1
图2
如果4个桥臂中任意阻值发生变化使电桥失衡,而电桥有电压输出为
1 R
uy=
u0
4 R0
激励电源电压现为高频正弦波
u0=U0sinct
即
uy=1RU0sinct
4 R0
假如△R也是一个正弦变化量(例如,用应变电阻测量一个正弦交变应力)
两种分析方法在本例中是难以区分优劣的,但如果调制信号不是正(余)弦 信号而是任意信号,使用三角函数法就难以解决。用频域卷积的方法就很容易解 决,只要将此函数的频谱原封不动地搬移到载波频谱±ωc所在处,就可以得到已 调波德频谱,所以频域卷积分析方法更具有普遍意义。
综上所述,幅值调制的过程在时域是调制信号与载波信号相乘的运算;在频域是 调制信号频谱与载波信号频谱卷积的运算,是一种频谱搬移的过程。
调制:用调制信号去控制载波信号的某一个参量的过程。
解调:调制的逆过程,即从已调波中不失真地恢复原有的低频 调制信号的过程
二、幅值调制
幅值调制是使载波信号的幅值随调制信号而线性变化,其调制信号、载波 及已调制波如图(1)所示。随意实现幅值调制的一条重要途径是实现调制波 与载波之间在时域内德乘法运算,这一过程可以用硬件、软件等多种途径来实 现。交流电桥是常用的幅值调节器。现就此例对幅值调制在时、频域内信号的 变化作一细致分析。