第六章 宏观残余应力的测定PPT课件
宏观应力的测定PPT课件
目录
• 宏观应力测定的基本概念 • 宏观应力测定的方法 • 宏观应力测定的实验操作 • 宏观应力测定的误差分析 • 宏观应力测定的注意事项 • 宏观应力测定的未来发展
01 宏观应力测定的基本概念
宏观应力的定义
宏观应力:在材料或结构的某一区域 内,由于外力或内力产生的应力状态。
宏观应力可以通过实验和计算方法进 行测定,以评估材料或结构的力学性 能和稳定性。
宏观应力通常是指材料或结构在整体 尺度上所受到的应力,而不是在微观 尺度上单个原子或分子的相互作用力。
宏观应力测定的目的和意义
01
评估材料或结构的强度和刚度
通过测定宏观应力,可以了解材料或结构在不同受力条件下的强度和刚
实验环境设置
确保实验室环境干净整洁, 避免外界因素对实验结果 产生干扰。
实验人员培训
实验操作人员需要经过专 业培训,熟悉实验原理、 操作流程和注意事项。
实验步骤
样品安装
按照规定的方法将待测样品安 装在夹具上,确保安装牢固、
稳定。
应力加载
通过应力测试机对样品施加应 力,控制加载速度和应力大小 ,观察并记录实验过程中的变 化。
机械工程
在机械工程领域,宏观应力测定 广泛应用于各种机械设备的设计、 制造、使用和维护过程中,如汽 车、航空航天、船舶、石油化工
等。
土木工程
在土木工程领域,宏观应力测定 广泛应用于桥梁、建筑、隧道等 大型工程的结构设计和安全评估
中。
材料科学
在材料科学领域,宏观应力测定 是研究材料力学性能的重要手段 之一,可以用于评估材料的强度、
03
04
实验操作前应了解实验原理和 操作步骤,确保实验过程准确
残余应力测量与消除方式的介绍课件
振动时效 30—60% 较好 10元/吨 一小时内 无污染 较好 可忽略不计 几乎任何工件 任何工序之间
残余应力测量与消除方式的介绍
4
2、振动时效的介绍
振动时效技术
振动时效技术,国外称之为“Vibrating Stress Relief”简称“VSR”,源自 于敲击时效,通过专业的振动时效设备,使被处理的工件产生共振,并通过 这种共振方式将一定的振动能量传递到工件的所有部位,使工件内部发生微 观的塑性变形,从而使工件内部的残余应力得以消除和均化,最终防止工件 在加工和使用过程中变形和开裂。
七、仪器的保养和维护。
残余应力测量与消除方式的介绍
11
2、振动时效的介绍
振动时效局限性
1.不能替代去应力目的以外的热处理 2.不能显著改变金相组织及机械性能(如强度,硬度) 3.不能用于校形 4.对于箱,板形工件时效噪音较大 5.工艺效果在很大程度上取决于工艺员的振动时效工艺理论水平和经验 6.不适宜于高压容器、残余应力较小的工件、大尺寸的薄板焊接件、薄壁铸件、大部分 冷加工件、弹性结构应力为主的工件、刚性过大或尺寸过小件(其中部分可用振动平台 来时效) 7.并非工件所有部位的时效效果都一致
残余应力测量与消除方式的介绍
6
2、振动时效的介绍
振动时效设备构成
残余应力测量与消除方式的介绍
7
2、振动时效的介绍
振动时效设备类型
直流振动时效 设备
高能振动时 效设备
定量振动时效 设备
➢液晶振动时效设备
➢智能频谱交流振动 时效设备
➢定量式多通道振动 时效系统
➢数码振动时效设备
➢液晶振动时效设备
➢定量式全自动振动 时效设备
工件的支撑及激振器和传感器的装夹。
宏观残余应力的测定(材料分析方法)
第六章宏观残余应力的测定一、物体内应力的产生与分类残余应力是一种内应力,内应力是指产生应力的各种因素不复存在时(如外加载荷去除、加工完成、温度已均匀、相变过程中止等),由于形变、体积变化不均匀而存留在构件内部并自身保持平衡的应力。
目前公认的内应力分类方法是1979年由德国的马克劳赫﹒E提出的,他将内应力按其平衡范围分为三类:):在物体宏观体积内存在并平衡的内应力,此类应力的释放,第一类内应力(σⅠ会使物体的宏观体积或形状发生变化。
第一类内应力又称“宏观应力”或“残余应力”。
宏观应力的衍射效应是使衍射线位移。
图1(书上6-2)是宏观残余应力产生的实例。
一框架与置于其中的梁在焊接前无应力,当将梁的两端焊接在框架上后,梁受热升温,而框架基本上处于室温,梁冷却时,其收缩受框架的限制而受拉伸应力,框架两侧则受中心梁收缩的作用而被压缩,上下横梁则在弯曲应力的作用之下。
图1 宏观残余应力的产生(a)焊接前、b)焊接后)):在数个晶粒的范围内存在并平衡的内应力,其衍射效应主要第二类内应力(σⅡ是引起线形的变化。
在某些情况下,如在经受变形的双相合金中,各相处于不同的应力状态时,这种在晶粒间平衡的应力同时引起衍射线位移。
图2(书上6-3)表明第二类应力的产生,拉伸载荷作用在多晶体材料上,晶粒A、B上的平行线表示它们的滑移面,显然A晶粒处于易滑移方位,当载荷应力超过临界切应力将发生塑性变形,而晶粒B仅发生弹性变形,载荷去除后,晶粒B的变形要恢复,但晶粒A只发生部分恢复,它阻碍B的弹性收缩使其处于被拉伸的状态,A本身则被压缩,这种在晶粒间相互平衡的应力在X射线检测的体积内总是拉压成对的出现,且大小因晶粒间方位差不同而异,故引起衍射线的宽化。
图2 第二类应力的产生):在若干原子范围内存在并平衡的应力,如各种晶体缺陷(空第三类内应力(σⅢ位、间隙原子、位错等)周围的应力场。
此类应力的存在使衍射强度降低。
通常把第二类和第三类应力称为“微观应力”。
宏观应力的测定
(12)
OA方向的应力和σ1、σ2、σ3关系为:
a1 2 1a2 2 2a3 2 3
因σ3=0, σψ=(sinψcosφ)2σ1+(sinψsinφ)2σ2 (13)
(4)
当ψ=900时,σψ变为σφ,于是: σφ = σ1 cos 2 φ + σ2 sin2φ (14)
(10)
将式(10)代入式(9)
可得:
( sin co s) 2 1 ( sin sin ) 2 2 ( 1 sin 2) 3(11)
1
1 E
[ 1 ( 2 3)]
2
1 E
[ 2 ( 1 3)]
3
1 E
[ 3 ( 1 2)]
(3)
将(3)式带入(11),且考虑垂直工件表面的应力 σ3=0:
a1 sin cos a2 sin sin a3 cos 1 sin2
6.3.2 单轴应力测定原理
例如:在拉应力σy作用下 下,试样沿y轴产生变形 ,某晶粒中(hkl)晶面 正好与拉伸方向垂直 无应力状态时,晶面 间距为d0,在应力σy 作用下d0扩展为d1.
y
d1 d0 d0
(5)
测量垂直于y轴的晶面的面间距难以 实现,而可以通过测量平行于y轴的应变, 间接推得y方向应变。
在z方向反射面的晶面间距变化△d=
❖
dn-d0,则: z
dn d0 d0
(6)
则εy= - εz /
y方向的应力为:
y Ey E(dnd0d0)(7)
❖而晶面间距的变化△d是通过测量
❖衍射线位移△ θ而得到。
6.2.3 平面应力测定原理
1.6宏观残余应力的测定
影响宏观应力测量精度的因素
衍射面的选定 原则:选择尽可能高的衍射角。 试样状态 原则:表面应尽量光洁,为减小表面曲率的影响, 选用尽量狭窄的光束。 晶粒度 原则:晶粒应细小,否则应使入射线摆动,以增加 参加衍射的晶粒数。
⑤大型零件不能测试;
⑥ 运动状态中的瞬时应力测试也有困难。
6.2 X射线宏观应力测定的基本原理
通过测定弹性应变量推算应力(σ=Eε)。
通过晶面间距的变化来表征应变(σ =Eε =E△d/d0)
晶面间距的变化与衍射角2θ的变化有关。 根据 2dsinθ =λ → △d/d=-cotθ · △θ 因此,只要知道试样表面上某个衍射方向上某个晶面 的衍射线位移量△θ,即可计算出晶面间距的变化量 △d/d,进一步通过胡克定律计算出该方向上的应力 数值。
不同种类的原子 移动、扩散和原 子重新排列使晶 格产生畸变
残余应力测定方法
测定宏观应力的方法可分为两类:
一类是应力松弛法,即用钻孔、开槽或剥层等 方法使应力松弛,用电阻应变片测量变形以计 算残余应力。这是一种破坏性的测试;
另一类是无损法,即利用应力敏感性的方法, 如超声、磁性、中子衍射、X射线衍射等。
名称
平衡范围
衍射效应
使谱线位移
产生原因
热处理、表面处 理、机加工等 晶格的弹性弯曲、 扭转或均匀压缩、 拉伸
宏观内 在物体内部相当大 应力 (众多晶粒)范围 内 微观内 晶粒、亚晶粒内部 应力
第三 类内 应力
使谱线宽化 超微观 位错线附近、析出 或衍射强度 内应力 相周围、晶界附近、 降低 复合材料界面等若 干个原子尺度范围 内
半高宽法
如图所示,适合峰形较明锐的衍射谱。
抛物线法
对于峰形漫散的衍射谱,将峰顶部位假定为抛物线 用测量的强度数据拟合,求最大强度Ip对应的衍射角 2θp 衍射峰位置。
XRD宏观残余应力测定1ppt课件
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
XRD宏观残余应力测定
报告人:林建平 导师:王献辉教授
主要内容
• 残余应力定义 • XRD测定原理 • 测定方法 • 残余应力计算软件的使用 • 测试方法的优缺点及用途
残余应力
定义:产生应力的各种外载荷(力、 温度等)去除后,在物体内依然存 在的应力 。
测定原理
残余应力 晶格畸变 晶面间距变化•来自计算软件的简介•
注意事项
• 表面状态:试样采用化学或电解抛光,不 采用机械抛光
• 晶粒度:大小在30μm左右最好,不大于 100μm
主要的优缺点及应用
• 优点:无损、可测表(界)面应力、可区分应 力类型、适用于块状试样
• 缺点:只对无粗晶和无织构的材料才有效、数 据的分散性强、不能测得动态瞬时应力
XRD衍射峰位置发生偏移 2dsinθ=Nλ
测量衍射峰偏移的多少 Δθ
计算残余应力的大小
晶面间距随应力变化示意图
测定方法
• 采用sin2ψ 法 • 计算公式为:
• 其中
(半高宽法)确定衍射角2θ
• 计算K值 • 计算M值(最小二乘法) • 计算应力σ=K.M
计算软件的简介
•
计算软件的简介
第6章宏观残余应力的测定
得到直线方程
2 i= 2 =0+ Msin2i
(6-15)
斜率M 满足偏差 vi 最小(见图6-11),按最小二乘法原则,其M 值为
M=
n (2 i sin2i ) - sin2i 2 i n sin4i - ( sin2i )2
按图中所示的衍射几何条
件,由0和 计算
= 0+ (90- )
此法适用于机械零件或大 型构件,多在专用的应力 测定仪上使用
21
第三节 宏观应力测定方法
一、同倾法
3) 晶面方位角 的选取
同倾法(固定 或0)选取晶面方位角的方式有两种 a. 0- 45法(两点法) 或0 选取0和45进行测定,由两个数
图6-3 第Ⅱ类内应力的产生
8
第一节 物体内应力的产生与分类
五、内应力的检测 残余应力是一种弹性应力,它与构件的疲劳性能、耐应
力腐蚀能力和尺寸稳定性等密切相关,残余应力检测对于工 艺控制、失效分析等具有重要意义,主要方法有 1) 应力松弛法 即用钻孔、开槽或薄层等方法使应力松驰,用
电阻应变片测量变形以计算残余应力,属于破坏性测试 2) 无损法 即用应力敏感性的方法,如超声、磁性、中子衍射、
3.656
4.049
3.6153 a 2.9504 c 4.6831 3.5238
CrK 211 CoK 310
CrK 311 MnK 311
CrK 222 CoK 420
CrK 311 CoK 400
CoK 114 CoK 211
CrK 311 CuK 420
2/()
156.8 161.4
149.6 154.8
《残余应力测量 》课件
通过对数据处理算法的优化,提高测量数据的处 理速度和准确性,从而提升测量准确度。
3
多参数测量融合
将多种参数测量结果进行融合,如表面形貌、材 料成分等,以更全面地反映材料的残余应力状态 。
THANKS
感谢观看
域产生残余应力。
对产品的影响
01
降低产品强度和疲 劳寿命
过大的残余应力可能导致产品在 使用过程中过早出现疲劳裂纹, 降低产品的疲劳寿命。
02
影响产品尺寸稳定 性
残余应力会导致产品在使用过程 中发生变形,影响产品的尺寸稳 定性。
03
引发应力腐蚀开裂
在某些腐蚀环境下,残余应力可 能会引发应力腐蚀开裂,对产品 的安全性能造成威胁。
光学干涉技术
利用光学干涉原理,通过测量材料表面的微小形变来推算残余应力 。
磁性测量技术
利用磁性材料的磁致伸缩效应,通过测量材料的磁致伸缩系数来反 演残余应力。
应用领域的拓展
航空航天领域
随着航空航天技术的不断发展,对飞机和航天器的结构健康监测要 求越来越高,残余应力测量技术将广泛应用于航空航天领域。
新能源领域
在新能源领域,如太阳能和风能等,需要对大型结构件进行残余应 力测量,以确保其安全性和稳定性。
汽车工业领域
汽车工业中,对汽车零部件的残余应力测量需求越来越大,以保障汽 车的安全性能和寿命。
测量准确度的提高
1 2
新型传感器技术
采用新型传感器技术,如高精度光纤传感器和纳 米压痕传感器等,以提高测量准确度和分辨率。
建筑领域
在建筑领域,残余应力的存在可能导致桥梁、高层建筑等结构出现裂纹、变形或破坏。
通过残余应力测量,可以评估结构的稳定性和安全性,为建筑物的维护和加固提供科学依据,确保建 筑物的长期使用安全。
残余应力测量与消除方式的介绍PPT共31页
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以ห้องสมุดไป่ตู้自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
残余应力测量与消除方式的 介绍
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
第六章材料中的残余应力材料的宏微观力学性能课件
用热作用对残余应力进行去除和调整
实际上,研究应力 松弛时,若弹性的初 期应力为 et ( e Et ) ,则Z时间后的松弛应
力 etz可按下法取得
。首先把试样放入炉 中加热到温度t。到温 度t开始先附加小应力 , A以后再把载荷慢慢 地附加上去。
图6.4 温度t时应力和应变的关系
用热作用对残余应力进行去除和调整
6.1 残余应力概论 6.2 残余应力的测试方法 6.3 残余应力对材料的力学性能的影响
6.1 残余应力概论
6.1.1 残余应力的产生 6.1.2 残余应力的调整与消除
•
残余应力的产生
1、残余应力的产生原理 2、残余应力的分类 3、残余应力产生的原因
1、残余应力的产生原理
定义
残余应力是在无外力的作用时,以平衡状态存在于物 体内部的应力。
e e Eet , et e Et
按照上式在温度t时的应力则为:
当温度上升若有塑性变形发生时,这时的应 力即为:
此应力在冷却到20℃时则成为如下形式(为 松弛后的常温应力值 ):
et e (Et / E20 )
etz ( e bz ) Et ez Et ez ( e bz ) E20 ez E20
用机械作用去除和调整残余应力
4 表面加工调整残余应力
对于进行了拉拔或轧制的棒或板,一 般在其外表面都要呈现出显著的拉伸 残余应力。为了消除这种应力,并赋 予表面以压缩残余应力,可进行挤光 加工、表面压延、喷丸处理、二次拉 拔等表面加工。
6.2 残余应力测量方法
残余应力测量方法
物理法或是物理化 学法
X射线衍射法 拉曼散射法
磁性法 超声波法 热评估法 电阻法 硬度法 固有应变方法 脆性涂料法 光学法 同位素法 化学浸蚀法
第六章 宏观应力测定
2
sin
2
3. M的测量方法 ⑴ 使X射线从几个不同的ψ角入射( ψ角已知), 并分别测取各自的2θψ (衍射角)。 注意:每次反射都是由与试样表面呈不同取向的同 种(hkl)面所产生的(如在无应力状态下, 各衍射角都相同,但有应力存在时,各方向 变形不同,故2θφ角也各不相同),因此 2θψ的变化反应了试样表面处于不同方位上 同种(hkl)晶面的面间距的改变。
衍射仪法残余应力测定时的测量几何关系
⑶ 测定 ψ = 45°时的应变(2θ45):
样品连同样品台顺时针转动45°,转动时与计 数器“脱钩”,即计数器保持不动;计数仍在2θ。 附近(与样品台)连动扫描,此时记录的衍射线是 样品中其法线与样品表面法线夹角ψ为45°的 (211)晶面所产生的(图),测出此时的衍射角
§6-2 X-ray测定宏观应力的基本原理
一 宏观应力测定的基本原理及思路
1 X-ray衍射法通过测量弹性应变求得应力值。 2 某方向上的应变可通过该方向上晶面间距的 变化来表征。 d ctg
d
3 无应力时,不同方位的同种晶面的面间距是 相等的,当存在应力时,不同晶粒的同族晶面 的面间距随晶面方位的不同发生有规律的变化。 4 可通过测量不同方位上面间距的变化来计算 应力——要求建立残余应力与空间某方位上的 应变之间的关系式。
⑵
作出2θψ -sin2 ψ的关系图。 将各点连成直线,求出斜率M,即可求出σφ。
当
M>0
M<0
材料表面为压应力
材料表面为拉应力
其中:NS——试样表面法线方向 NP——反射晶面的法线
§6-3
宏观应力的测定方法
M 2 (sin )
宏观残余应力的测定PPT课件
第16页/共31页
• 1、固定ψ法: • ① 衍射仪进行常规对称衍射,计数管与试样以2:1角速度转动,则衍射峰对应衍射
晶面‖试样面,即ψ =0。
• ② 试样绕衍射仪轴单独转动 ψ角,再进行2θ/θ扫描测量,衍射面法线与试样面法 线夹角即为转过的ψ角。
“固定ψ法”:
通过衍射几何条件的设置,
直接确定和改变衍射面ψ方
KM
第22页/共31页
固定ψ
• (2)sin2ψ法: • 2θφψ测量会有偶然误差,用两点法影响精度,可取几个ψ方位测量(n>4),如:
0º、15º、30º、45º。
• 由此得直线方程:
M
2 sin2
2i 2 0 M sin2 i
• 再用最小二乘方法,求出2θφψ-sin2ψ直线斜率M。 第23页/共31页
第8页/共31页
• 须将εφψ用衍射角θ表达,以得测定宏观应力实用
公式。
• 由布拉格方程微分式:
d cot 0 当Δλ=0
d
• 因无应力时d,衍射co角tθ≈0 (θ20, 2 0)
d
2
1 (2 2 0)
2
则
•
将
此式对
s
i
n 2 ψ 求c导ot,
得0
2
sin2
2 sin2
代入
a)同倾法,b)侧倾法
第15页/共31页
同倾法
• 同倾法衍射几何特点:测量方向平面和扫描平面重合。
• 测量方向平面:试样面法向 0N 与待测应力σφ构成平面。 • 扫描平面:入射线、衍射面法线(ON)及衍射线所在平面。
• 确定ψ方位的两种方式: 1)固定ψ法; 2)固定ψ0 法。
测量方向 平面
第六章 宏观残余应力测定
ε φψ = α1 ε 1 + α 2 ε 2 + α 3 ε 3
2 2 2
方向余弦
α1 = sinψ cos φ α 2 = sinψ sin φ α = cosψ 3
广义胡克定律
ε φψ
1 +ν 2 = σ φ sin ψ + ε 3 E
将等式左边对sin 求导得: 将等式左边对 2ψ求导得:
1
E dn − d E ∆d σ y = − εz = − =− γ γ d γ d E
只要求出△d/d,即可求出 只要求出△d/d,即可求出σy。 cotθ·△ 而△d/d = - cotθ·△θ; 通过X-ray衍射,求出该晶面对应衍射线 衍射, 即:通过 衍射 位移△ 即可 即可。 位移△θ即可。
建立三维坐标系如下图示 O-XYZ是主应力坐标系,分别代表主应力( σ1、 是主应力坐标系,分别代表主应力( 是主应力坐标系
和主应变( 的方向。 σ2、σ3)和主应变( ε1 、ε2 、 ε3 )的方向。
O-xyz是待测应力⌠及与其垂直的σy 、σz的方 - 是待测应力⌠ 是待测应力 向。
根据弹塑性力学原理,对于一个连续、 根据弹塑性力学原理,对于一个连续、 均质、各项同性的物体, 均质、各项同性的物体,任一方向上 的应变可表达为: 的应变可表达为:
单 轴 应 力 测 定 原 理
1. 应力 y的作用方向如上图示,假设某晶粒中 应力σ 的作用方向如上图示, (hkl)晶面垂直于拉伸方向 轴: )晶面垂直于拉伸方向Y轴 晶面间距 d0——无应力时 无应力时 dn´——有σy作用时 有 应变: 应变:
dn′ − d ∆d εy = = d d dn′ − d σ y = Eε y = E d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 物体内应力的产生与分类
残余应力是一种内应力,内应力是指 产生应力的各种因素不复存在时(如外加 载荷去除、加工完成、温度已均匀、相变 过程终止等),由于形变、体积变化不均 匀而存留在构件内部并自身保持平衡的应 力。目前公认的内应力分类方法是1979年 由德国的马克劳赫.E提出的,他将内应力 按其平衡的范围分为三类:
(1)第一类内应力(σ1):指在物体宏观体积内 存在并平衡的内应力。此类应力的释放,会使物 体的宏观体积或形状发生变化。又称“宏观应力” 或“残余应力”。宏观应力的衍射效应是使衍射 线位移。
(2)第二类内应力( σ2):指在数个晶粒的范围 内存在并平衡的内应力。其衍射效应是引起线形 的变化。
(3)第三类内应力( σ3):指在若干原子的范围 内存在并平衡的应力。如各种晶体缺陷(空位、 间隙原子、位错等)周围的应力场。此类应力的 存在使衍射线强度降低。
E 1
•
sin 2
(6-9)
式(6-9)即为待测应力σΦ与εΦΨ随方位Ψ变化率之间 得关系,是求测应力的基本关系式,同时表明,在一
定的平面应力状态下, εΦΨ随sin2Ψ呈线性关系。
x
x
E
E
(
y
z)
y
E
E
(
x
z)
z
z
E
E
(
x
y)
(6-5)
在平面应力条件下, σz=0, εz=ε3,则
x
x
E
E
y
3
E
(
x
y
)
(6-6)
根据6-5所示坐标系,将式(6- 6)代入式(6-4)中,得
1 E
sin
2
3
将 对 sin 2 求导
sin 2
1 E
(6-7) (6-8)
由上式得
(6-2)
将式(6-2)代入式(6-1)得:
(1 c2 o s 2 c2 o 3 s )s2 i n 3
当ψ=90°, εΦΨ=εx,即
(6-3)
x 1 cos2 2 sin2
所以
(x 3)sin2 3
(6-4)
在平面应力条件下, σz=0, εz=ε3,则
根据广义胡克定律:
N,Z(z) R
测量方向平面
σ3,ε3(σz,εz) N’ εΦΨ
P Ψ
(y) σy,εy
O
Φ X σ1,ε1
Y
σ2,ε2 Q
σΦ (σx), εx (x)
图6-5 宏观应力测定坐标系
图中O-XYZ是主应力坐标系,分别代表主应力(σ1, σ2,σ3)和主应变(ε1,ε2,ε3)的方向;
O-xyz是待测应力σΦ(σx)及其垂直的σy、 σz的方 向,σz与σ3平行,且均平行于试样表面法线ON; Φ是σΦ与σ1的夹角;
变:即εΦΨ = ⊿d/d0。显然,在面间距随方 位的变化率与作用应力之间存在一定的函
数关系。因此,建立待测残余应力σΦ与空 间某方位上的应变εΦΨ之间的关系式是解决 应力测量问题的关键。
本节所讨论的是在平面应力状态(或双
轴应力状态)假设下的测定。在物体的自 由表面,其法线方向的应力为零,当物体 内应力沿垂直于表面的方向变化梯度极小, 而X射线的穿透深度又很浅( ≈10μm数量级) 时,这种平面应力假设是合理的。为在此 条件下推导应力测定公式,需建立如图6- 5所示的坐标系。
本章将简单介绍X射线宏观应力测定的基本原 理和方法。
第二节 X射线宏观应力测定的基本原理
(一)单轴应力测定原理
(二)平面应力测量原理
1、一般原理
“测量方向平面”
(3)由ε3、εψ计算出σΦ。对于各向同性的弹性体, ε3、εψ是有相关性的,由弹性力学原理,有
31 Esi2n (6-9)
图6-2 宏观残余应力的产生 a)焊接前;b)焊接后
图6-3 第三类应力的产生
A晶粒处于易滑移方位,当载荷应力超过临界切应力时将要发 生塑性变形;晶粒B仅发生弹性变形,载荷去除后,晶粒B的 变形要恢复,但晶粒A只发生部分恢复,它阻碍B的弹性收缩 使其处于被拉伸的状态,A本身则被压缩。这种在晶粒间相互 平衡的应力在X射线检测的体积内总是拉压成对地出现,且大 小因晶粒间方位差不同而异,故引起衍射线的宽化。
宏观残余应力是一种弹性应力。测量它的方 法有很多种,一种是应力松弛法,即用钻孔、开 槽或剥层等方法使应力松弛,用电阻应变片测量 变形以计算残余应力,这是一种破坏性实验。
另一种是无损法,即利用应力敏感性的方法, 如超声、磁性、中子衍射、X射线衍射等。其中X 射线衍射法除是无损法之外,还具有快速、准确 可靠和能测量小区域应力的优点,又能区分三种 不同类别的应力,因而受到普遍的重视。
K
E (2 1
)cot
0
180
M 2 sin 2
KM
ψ
εФψ
试样表面法线 晶面法线
d
Ψ=0°,d小
d 拉应力σФ
d Ψ→90°,d→大
εФψ
图6-4 应力与不同方位同族晶面面间距的关系
可以认为,某方位面间距dΦΨ相对于无 应力时的变化( dΦΨ-d0)/d= ⊿d/d0,反 应了由应力所造成的面法线方向的弹性应
ON与σΦ构成的平面称“测量方向平面”, εΦΨ是此 平面上某方向上的应变,它与ON之间的夹角为Ψ。
根据弹性力学原理,对于一个连续、均质、
各向同性的物体来说,任一方向上的应变εΦΨ 可表达为:
121222323 (6-1)
式中α1,α2,α3是相对于O-XYZ坐标系的方向余弦
1 sin cos 2 sin sin 3 cos
通常把第二类和第三类应力称“微观应力”
上述三类残余应力往往是同时存在,互 相影响,互为因果的。一个晶粒内的第三类 内应力在不同的空间位置有着不同的水平, 它的波动幅度的平均值即表现为第二类内应 力;第二类内应力是在这个晶粒内部平衡着 的,相邻几个晶粒的第二类内应力的大小可 能会有较大差别,但各个晶粒上的第二类内 应力的平均值便体现为第一类内应力,即宏 观内应力。
这是残余应力测量的基础公式
2、sin2Ψ法基本原理
式(6-19)表明,2θΨ随sin2Ψ呈线性关 系,式中2θΨ单位为“弧度”,当选用“度” 为单位,式(6-19)改写为:
( 21E ) co0t180 s2i2 n (6-20)
式(6-12)即为在平面应力状态的假定下,宏 观应力测定的基本公式。令式(6-20)中