高考物理压轴题和高中物理初赛难题汇集一

合集下载

历年高考物理压轴题精选(一)详细解答

历年高考物理压轴题精选(一)详细解答

历年高考物理压轴题精选 (一)一、力学2001年全国理综(江苏、安徽、福建卷)31.(28分)太阳现正处于主序星演化阶段。

它主要是由电子和H 11、He 42等原子核组成。

维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 42+释放的核能,这些核能最后转化为辐射能。

根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。

为了简化,假定目前太阳全部由电子和H 11核组成。

(1)为了研究太阳演化进程,需知道目前太阳的质量M 。

已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。

试估算目前太阳的质量M 。

(2)已知质子质量m p =1.6726×10-27kg ,He 42质量m α=6.6458×10-27kg ,电子质量m e =0.9×10-30 kg ,光速c =3×108 m/s 。

求每发生一次题中所述的核聚变反应所释放的核能。

(3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。

试估算太阳继续保持在主序星阶段还有多少年的寿命。

(估算结果只要求一位有效数字。

)参考解答:(1)估算太阳的质量M设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知①地球表面处的重力加速度2R mGg ② 由①、②式联立解得③以题给数值代入,得M =2×1030 kg ④(2)根据质量亏损和质能公式,该核反应每发生一次释放的核能为 △E =(4m p +2m e -m α)c 2 ⑤ 代入数值,解得△E =4.2×10-12 J ⑥(3)根据题给假定,在太阳继续保持在主序星阶段的时间内,发生题中所述的核聚变反应的次数为pm MN 4=×10% ⑦ 因此,太阳总共辐射出的能量为 E =N ·△E设太阳辐射是各向同性的,则每秒内太阳向外放出的辐射能为 ε=4πr 2w ⑧ 所以太阳继续保持在主序星的时间为εEt =⑨由以上各式解得以题给数据代入,并以年为单位,可得 t =1×1010 年=1 百亿年 ⑩评分标准:本题28分,其中第(1)问14分,第(2)问7分。

高中物理力学压轴题及解析

高中物理力学压轴题及解析

高中物理力学压轴题及解析高中物理力学是高中阶段物理课程的重要组成部分,压轴题往往考察学生对力学知识的综合运用能力。

本文将针对高中物理力学压轴题,给出详细的题目及解析,帮助同学们巩固力学知识,提高解题能力。

一、高中物理力学压轴题题目:一质量为m的小车,在水平地面上受到一恒力F作用,从静止开始加速运动。

已知小车所受阻力与速度成正比,比例系数为k。

求小车在力F作用下的加速度a与速度v的关系。

二、解析1.首先,根据题目描述,小车受到的合力F合= F - kv,其中F为恒力,kv为阻力。

2.根据牛顿第二定律,合力等于质量乘以加速度,即F合= ma。

3.将合力表达式代入牛顿第二定律,得到ma = F - kv。

4.整理得到加速度a的表达式:a = (F - kv) / m。

5.由于小车从静止开始加速,可以使用初速度为0的匀加速直线运动公式v = at,将加速度a代入,得到v = (F - kv)t / m。

6.进一步整理得到速度v与时间t的关系:v = (F/m)t - (k/m)t^2。

7.由于要求速度v与加速度a的关系,可以将v对a求导,得到dv/da = (F/m) - 2(k/m)t。

8.令dv/da = 0,求得极值点,即t = F / (2km)。

将此值代入v的表达式,得到v = F^2 / (4km)。

9.因此,小车在力F作用下的加速度a与速度v的关系为:a = F / m - 2k/m * v。

三、总结通过对本题的解析,我们可以发现,解决这类力学压轴题的关键在于熟练运用牛顿第二定律、运动学公式,以及掌握阻力与速度成正比的关系。

此外,同学们在解题过程中要注意合理运用数学知识,如求导、求极值等,以提高解题速度和准确度。

注意:本文所提供的题目及解析仅供参考,实际考试题目可能有所不同。

动力学与运动学综合问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

动力学与运动学综合问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题01 动力学与运动学综合问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 结合牛顿定律与运动学公式考察经典多过程运动模型 (1)热点题型二 动力学图像的理解与应用 (3)热点题型三 结合新情景考察动力学观点 (4)类型一 以生产生活问题为情境构建多过程多运动问题考动力学观点 (4)类型二 以问题探索情景构建物理模型考动力学观点 (4)类型三 以科研背景为题材构建物理模型考动力学观点 (5)三.压轴题速练 (5)一,考向分析1.本专题是动力学方法的典型题型,包括动力学两类基本问题和应用动力学方法解决多运动过程问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2023年高考对于动力学的考察仍然是照顾点。

2.通过本专题的复习,可以培养同学们的审题能力,分析和推理能力。

提高学生关键物理素养.3.用到的相关知识有:匀变速直线运动规律,受力分析、牛顿运动定律等。

牛顿第二定律对于整个高中物理的串联作用起到至关重要的效果,是提高学生关键物理素养的重要知识点,因此在近几年的高考命题中动力学问题一直都是以压轴题的形式存在,其中包括对与高种常见的几种运动形式,以及对于图像问题的考察等,所以要求考生了解题型的知识点及要领,对于常考的模型要求有充分的认知。

二.题型及要领归纳热点题型一 结合牛顿定律与运动学公式考察经典多过程运动模型多过程问题的处理(1)不同过程之间衔接的关键物理量是不同过程之间的衔接速度。

(2)用好四个公式:v =v 0+at ,x =v 0t +12at 2,v 2-v 20=2ax ,x =v +v 02t 。

(3)充分借助v -t 图像,图像反映物体运动过程经历的不同阶段,可获得的重要信息有加速度(斜率)、位移(面积)和速度。

①多过程v -t 图像“上凸”模型,如图所示。

特点:全程初、末速度为零,匀加速直线运动过程和匀减速过程平均速度相等。

速度与时间关系公式:v =a 1t 1,v =a 2t 2得a 1a 2=t 2t 1速度与位移关系公式:v 2=2a 1x 1,v 2=2a 2x 2得a 1a 2=x 2x 1平均速度与位移关系公式:x 1=vt 12,x 2=vt 22得t 1t 2=x 1x 2①多过程v -t 图像“下凹”模型,如图所示。

高考物理难题集锦含答案

高考物理难题集锦含答案

高考物理难题集锦(一)含答案(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高考物理难题集锦(一)1、如图所示,在直角坐标系x O y平面的第Ⅱ象限内有半径为R的圆O1分别与x轴、y轴相切于C(-R,0)、D(0,R)两点,圆O1内存在垂直于x O y平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的粒子A(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求:(1)OG之间的距离;(2)该匀强电场的电场强度E;(3)若另有一个与A的质量和电荷量相同、速率也相同的粒子A′,从C点沿与x轴负方向成30°角的方向射入磁场,则粒子A′再次回到x轴上某点时,该点的坐标值为多少?2、如图所示,光滑绝缘水平面的上方空间被竖直的分界面MN分隔成两部分,左侧空间有一水平向右的匀强电场,场强大小,右侧空间有长为R=的绝缘轻绳,绳的一端固定于O点,另一端拴一个质量为m小球B在竖直面内沿顺时针方向做圆周运动,运动到最低点时速度大小v B=10m/s(小球B在最低点时与地面接触但无弹力)。

在MN左侧水平面上有一质量也为m,带电量为的小球A,某时刻在距MN平面L位置由静止释放,恰能与运动到最低点的B球发生正碰,并瞬间粘合成一个整体C。

(取g=10m/s2)(1)如果L=,求整体C运动到最高点时的速率。

(结果保留1位小数)(2)在(1)条件下,整体C在最高点时受到细绳的拉力是小球B重力的多少倍(结果取整数)(3)若碰后瞬间在MN的右侧空间立即加上一水平向左的匀强电场,场强大小,当L满足什么条件时,整体C可在竖直面内做完整的圆周运动。

(结果保留1位小数)3、如右图甲所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab以一定的初速度向右匀速运动,棒的右侧存在一个垂直纸面向里,大小为B的匀强磁场。

各高考物理压轴题精编附有祥解36道

各高考物理压轴题精编附有祥解36道

各省市高考物理压轴题精编(附有祥解)1、如图所示,一质量为 M 长为I 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A , m 〈 M 现以地面为参照系,给A 和B以大小相等、方向相反的初速度 (如图5),使A 开始向左运动、 开始向右运动,但最后 A 刚好没有滑离L 板。

以地面为参照系。

(1) 若已知A 和B 的初速度大小为v o ,求它们最后的速度的大小和 方向。

(2) 若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。

解法1:(1)AM m 、亠亠亠 解得: v v o , 方向向右 M m(2) A 在B 板的右端时初速度向左,而到达程中必经历向左作减速运动直到速度为零,B 板左端时的末速度向右,可见 A 在运动过 再向右作加速运动直到速度为 V 的两个阶段。

设l i 为A 开始运动到速度变为零过程中向左运动的路程,本题第(2)问的解法有很多种,上述解法 2只需运用三条独立方程即可解得结果,显然是比较简捷的解法。

2、如图所示,长木板 A 右边固定一个挡板,包括挡板在内的总质量为 光滑的水平面上,小木块 B 质量为M ,从A 的左端开始以初度。

设此速度为v , A 和B 的初速度的大小为 V o ,则由动量守恒可得:Mv 0 mv 0 (M m)v过程中向右运动的路程,L 为A 从开始运动到刚到达 B 的最左端的过程中 B 运动的路程,如 A 与B之间的滑动摩擦力为f ,则由功能关系可知: 1 2 Mv 2 2 图6所示。

设 对于 对于Afl l 12 fL mv 0 2 1 2 2mv o fl 21 2mv2由几何关系 (I 1 I 2) 由①、②、 ③、④、⑤式解得 解法2: 对木块A 和木板 fl 〔(M m)v 2 2由①③⑦式即可解得结果ml4MB 组成的系统,由能量守恒定律得:1 2 -(M m)v 2 ⑦2M m l11l4Ml iB 吕風化h ---------- 1---------------------- 尹ffl 5刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速I 2为A 从速度为零增加到速度为 V 的1? _________n1 -------------- 1 1 1 1 1 1 111 - _ 1h1.5M ,静止在故在某一段时间里 B 运动方向是向左的条件是2V p 15g2V 0I 3 -⑧20g3、光滑水平面上放有如图所示的用绝缘材料料成的型滑板,(平面部分足够长)速度V o 在A 上滑动,滑到右端与挡板发生碰撞, 已知碰撞过程时间极短,碰后木块B 恰好滑到A 的左端停止,已知 B 与A 间的动摩擦因数为,B 在A 板上单程滑行长度为I ,求:…3v 0 (1) 若-,在B 与挡板碰撞后的运动过程中,摩擦力对木板A 做正功还是负160g功?做多少功?(2) 讨论A 和B 在整个运动过程中,是否有可能在某一段时间里运动方向是向左的, 如果不可能,说明理由;如果可能,求出发生这种情况的条件。

2023重庆高考物理压轴题

2023重庆高考物理压轴题

2023重庆高考物理压轴题
2023重庆高考物理压轴题指的是在2023年重庆高考物理试卷中作为最后一道题的压轴题目。

这类题目通常难度较大,旨在测试学生的综合运用能力和解题技巧。

以下是2023重庆高考物理压轴题示例:
示例1:一质量为m的物体以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为0.1g,物体在斜面上上升的最大高度为h,则在这个过程中物体的()
A、重力势能增加了0.1mgh
B、动能减少了0.1mgh
C、机械能损失了0.1mgh
D、克服摩擦力做功0.1mgh
示例2:一质量为m的物体在光滑水平面上以速度v做匀速圆周运动。

若在物体运动的过程中轻绳突然绷断,下列关于物体运动状态的描述正确的是()
A.物体的线速度仍为v
B.物体的线速度保持不变
C.物体的角速度减小
D.物体的角速度不变
总结:2023重庆高考物理压轴题指的是在2023年重庆高考物理试卷中作为最后一道题的压轴题目。

这类题目难度较大,旨在测试学生的综合运用能力和解题技巧。

通过示例题的练习,学生可以更好地了解这类题目的特点,提高解题能力。

高中物理经典高考难题集锦(解析版)

高中物理经典高考难题集锦(解析版)

高中物理经典高考难题集锦(解析版)本文档收集了高中物理经典的高考难题,同时提供了详细的解析,帮助学生提高解题能力和应对高考。

题目一题目描述:一个小球自动上坡,它的重力做功与摩擦力做的功之和等于零。

求小球的加速度是多少?解析:我们知道,重力做功与摩擦力做的功之和等于零,说明小球的动能没有增加,也没有减少。

因此,小球的加速度为零,即小球保持匀速上坡。

题目二题目描述:一辆汽车以20 m/s的速度行驶,在制动的过程中,制动力为3500 N,制动距离为50 m。

汽车的质量是多少?解析:根据牛顿第二定律,制动力等于质量乘以加速度。

由于速度从20 m/s减小到零,汽车在制动过程中减速度为20 m/s。

将制动力和减速度代入公式可得:3500 = 质量 × (-20)解得质量为175 kg。

题目三题目描述:一根绳子贴在重力平衡两边的墙壁上,绳子的长度为5 m。

如果绳子的线密度为0.1 kg/m,那么绳子的质量是多少?解析:绳子的质量可以通过线密度乘以长度来计算。

将线密度0.1 kg/m和长度5 m代入计算公式可得:质量 = 0.1 × 5 = 0.5 kg。

题目四题目描述:一枚小球从高度为20 m的位置自由下落,求小球下落2秒后的速度是多少?解析:小球自由下落的加速度为9.8 m/s^2,根据速度与时间的关系公式v = u + at,将初始速度u设为0,加速度a设为9.8 m/s^2,时间t设为2 s,代入公式可得:v = 0 + 9.8 × 2 = 19.6 m/s。

题目五题目描述:一台电梯上行,在上升过程中,电梯门意外打开,此时电梯的加速度是多少?解析:电梯上行时,会受到重力的阻力。

当电梯上升过程中,电梯门打开,意味着接触到外界空气,会受到空气阻力。

所以此时电梯的加速度受到重力和空气阻力的共同作用,而具体数值需要具体情况具体分析。

以上是部分高中物理经典的高考难题及其解析,希望对学生们的物理学习有所帮助。

高考物理压轴题集及详解(63道精选题)

高考物理压轴题集及详解(63道精选题)

1、(20分)如图1所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向2、(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?3、(10分)如图17,为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)4、有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m c =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。

高考物理压轴题集(含答案)

高考物理压轴题集(含答案)

1、如图 12 所示, PR 是一块长为L=4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于 PR 的匀强电场 E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0. 1 kg,带电量为 q=0 . 5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点, PC=L/4 ,物体与平板间的动摩擦因数为μ =0. 4,取 g=10m/s2,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和 v2(3)磁感应强度 B 的大小( 4)电场强度 E 的大小和方向解:( 1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且: mg=qBv2①(2)离开电场后,按动能定理,有:-μmg L =0- 1 mv2②由①式得: v2=2 2 m/s4 22(3)代入前式①求得: B= T2(4)由于电荷由P 运动到 C 点做匀加速运动,可知电场强度方向水平向右,且:( Eq-μmg)L 12 22mv1 -0 ③进入电磁场后做匀速运动,故有:Eq=μ( qBv1+mg)④由以上③④两式得:v1 4 2 m/sE 2.4 N/C2、如图 2— 14 所示,光滑水平桌面上有长 L=2m 的木板 C,质量 mc=5kg ,在其正中央并排放着两个小滑块 A 和 B, mA=1kg , mB=4kg ,开始时三物都静止.在 A、 B 间有少量塑胶炸药,爆炸后 A 以速度 6m/ s 水平向左运动, A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块 A 、 B 都与挡板碰撞后, C 的速度是多大 ?(2)到 A 、B 都与挡板碰撞为止, C 的位移为多少 ?解:( 1) A 、 B、 C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后, C 的速度为零,即v C 0( 2)炸药爆炸时有mA vA mB v B解得 v B 1.5m / s又 m A s A m B s B当 s A=1 m 时 s B= 0.25m,即当Ls B0.75m A、C 相撞时 B 与 C 右板相距s2、m A v A(m A m C )v 解得 v = 1m/s,方向向左A C 相撞时有:而 v B= 1.5m/s,方向向右,两者相距0.75m,故到 A, B 都与挡板碰撞为止,C 的位sv0.3 m19.移为 s Cv v B第1页共38页3、为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为 F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为 F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)解:固定时示数为 F 1,对小球 F 1 =mgsin θ①整体下滑:( M+m ) sin θ-μ(M+m)gcosθ=(M+m)a ②下滑时,对小球: mgsin θ-F 2 =ma ③F2tan θ由式①、式②、式③得μ=F14、有一倾角为θ的斜面,其底端固定一挡板M,另有三个木块A 、 B 和 C,它们的质量分别为 m A =m B =m , m C =3 m,它们与斜面间的动摩擦因数都相同.其中木块 A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示 .开始时,木块 A 静止在 P 处,弹簧处于自然伸长状态.木块 B 在 Q 点以初速度v 0向下运动, P、Q 间的距离为L. 已知木块 B 在下滑过程中做匀速直线运动,与木块 A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块 B 向上运动恰好能回到Q 点.若木块 A 静止于 P 点,木块 C 从Q点开始以初速度2 v0向下运动,经历同样过程,最后木块3C 停在斜面上的R 点,求 P、 R 间的距离 L′的大小。

(完整版)高考物理压轴题和高中物理初赛难题汇集一

(完整版)高考物理压轴题和高中物理初赛难题汇集一

高考物理压轴题和高中物理初赛难题汇集-11. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = —GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验。

设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2=G)(2h R Mm+。

卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =—G)(2h R Mm+同步卫星在轨道上正常运行时有 G 2rMm =m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机时卫星的动能为E k x ,则E k x = E 2 - E p —21 32ωGM +G hR Mm+2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。

(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y 解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。

高考物理压轴题集

高考物理压轴题集

高考物理压轴题集(精选)(共58页)-本页仅作为预览文档封面,使用时请删除本页-1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA =1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?(2)到A、B都与挡板碰撞为止,C的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少(斜面体固定在地面上)图124有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。

高考物理压轴选择题压轴题Microsoft Word 文档 (1)

高考物理压轴选择题压轴题Microsoft Word 文档 (1)

1.如图所示,边长为L 的正方形abcd 区域内有场强大小为E 的匀强电场,电场方向与正方形的一条边平行(图中未画出)。

一质量为m 、电荷量为+q 的粒子由ad 边中点,以垂直该边的速度v 进入该正方形区域,若不计粒子的重力,则该粒子再次从该正方形区域射出时,具有的动能可能是AC21A. 2mv 211B.22mv EqL -211C.23mv EqL + 212D. 23mv EqL +2.如图示,一个内壁光滑的绝缘细直管竖直放置。

在管子的底部固定一电荷量为Q (Q >0)的点电荷。

在距离底部点电荷为2h 的管口A 处,有一电荷量为q (q >0)、质量为m 的点电荷由静止释放,在距离底部点电荷为1h 的B 处速度恰好为零。

现让一个电荷量为q 、质量为m 3的点电荷仍在A 处由静止释放,已知静电力常量为k ,重力加速度为g ,则该点电荷( D ) A .运动到B 处的速度仍为零 B .在下落过程中加速度逐渐减小C .速度最大处与底部点电荷距离为kQqmgD .运动到B 处的过程中重力所做的功大于点电荷动能的增加量3.如图所示,竖直平面内光滑圆弧形管道OMC 半径为R ,它与水平管道CD 恰好相切.水平面内的等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷,各自所带电荷量为q ,现把质量为m 、带电荷量为+Q 的小球(小球直径略小于管道内径)由圆弧形管道的最高点M 处静止释放,不计+Q 对原电场的影响以及带电量的损失,取无穷远处为零电势,静电力常量为k ,重力加速度为g ,则( )A . D 点的电势为零B . 小球在管道中运动时,机械能守恒C .小球对圆弧形管道最低点C 处的压力大小为3mg+kD .小球对圆弧形管道最低点C 处的压力大小为考点: 电势差与电场强度的关系;机械能守恒定律;电势.h 2AB h 1专题:电场力与电势的性质专题.分析:图中ABC水水平面,在在A、B两顶点上放置一对等量异种电荷,则管道处于中垂面上,是等势面,根据机械能守恒定律和牛顿第二定律列式分析.解答:解:A、在A、B两顶点上放置一对等量异种电荷,直线CD是中垂线,是等势面,与无穷远处的电势相等,故D点的电势为零,故A正确;B、在A、B两顶点上放置一对等量异种电荷,管道处于等势面上,故小球运动过程中只有重力做功,机械能守恒,故B正确;C、D、对从M到C过程,根据机械能守恒定律,有:mgR=①在C点,电场力大小为:F=+=垂直CD向外;重力和弹力的竖直分力提供向心力,故:弹力的水平分力:N x=F=故弹力:N==故C错误,D正确;故选:ABD.4..(6分)在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定的初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.由此可见()A.小球在水平方向上的分运动是匀速运动B.小球从A到C的过程中,重力和电场力做功相同C.小球从A到B与从B到C的速度变化量相同D.小球从A到B的时间是小球从B到C的运动时间的2倍考点:带电粒子在匀强电场中的运动.专题:恒定电流专题.分析:小球先做平抛运动,进入电场中做匀变速曲线运动,其逆过程是类平抛运动.两个过程都运用的分解法研究,水平方向都做匀速直线运动,根据位移公式x=vt,可分析时间关系;再研究竖直方向,由牛顿第二定律和运动学位移公式结合列式,求解电场力的大小.根据△v=at研究速度变化量的关系.解答:解:A、小球受力为竖直方向,故水平方向的分运动为匀速运动,A正确;CD 、带电小球从A 到C ,设在进入电场前后两个运动过程水平分位移分别为x 1和x 2,竖直分位移分别为y 1和y 2,经历的时间为分别为t 1和t 2.在电场中的加速度为a . 则:从A 到B 过程小球做平抛运动则有: x 1=v 0t 1; 从B 到C 过程,有:x 2=v 0t 2; 由题意有:x 1=2x 2;则得:t 1=2t 2;即小球从A 到B 是从B 到C 运动时间的2倍. 又 y 1=gt 12,将小球在电场中的运动看成沿相反方向的类平抛运动,则有: y 2=at 22根据几何知识有:y 1:y 2=x 1:x 2; 解得:a=2g ;根据牛顿第二定律得:F ﹣mg=ma=2mg , 解得:F=3mg由于轨迹向上弯曲,加速度方向必定向上,合力向上,说明电场力方向向上,所以小球带负电. 根据速度变化量△v=at ,则得:AB 过程速度变化量大小为△v 1=gt 1=2gt 2;BC 过程速度变化量大小为△v 2=at 2=2gt 2;所以小球从A 到B 与从B 到C 的速度变化量大小相等.故CD 正确;B 、由前面分析知F=3mg ,而AB=2BC ,则电场力做功与重力做功不相同,故B 错误; 故选:ACD .5.如图所示,A 、B 、C 、D 位于同一半径r 的竖直圆上,且CD AB ⊥,在C 点有一固定点电荷,电荷量为Q -,现从A 点将一质量为m ,电荷量为q -的带点小球由静止释放,该小球沿光滑绝缘轨道ADB 运动到D 点时速度为gr 4,规定电场中B 点的电势为零。

史上最难高考物理压轴题

史上最难高考物理压轴题

史上最难高考物理压轴题一、在一密闭容器中,装有一定质量的理想气体,现对气体进行等容加热,使其温度升高,则气体分子的平均动能将如何变化?A. 减小B. 不变C. 增大D. 无法确定(答案)C二、一物体在水平面上做匀速直线运动,现突然给物体施加一与运动方向相同的恒力,则物体的运动状态将如何变化?A. 继续做匀速直线运动B. 做匀加速直线运动C. 做匀减速直线运动D. 做曲线运动(答案)B三、一轻质弹簧竖直放置,下端固定在地面上,上端放一重物,重物在弹簧的作用下处于静止状态。

现给重物一个向下的初速度,使重物开始上下振动。

在振动过程中,重物加速度为零的位置是?A. 重物运动到最高点时B. 重物运动到最低点时C. 重物运动到平衡位置时D. 无法确定(答案)C四、在电场中,一带电粒子仅在电场力作用下从某点由静止开始运动,则该粒子在运动过程中,其电势能的变化情况是?A. 一直增大B. 一直减小C. 先增大后减小D. 先减小后增大(答案)B五、一物体在恒力作用下做曲线运动,其速度方向与力的方向的夹角将如何变化?A. 一直增大B. 一直减小C. 保持不变D. 可能增大也可能减小(答案)D六、在磁感应强度为B的匀强磁场中,一通电导线与磁场方向垂直放置,当导线中的电流强度为I时,导线所受的安培力大小为F。

若将电流强度增大为2I,其他条件不变,则导线所受的安培力大小将变为?A. F/2B. FC. 2FD. 4F(答案)C七、一物体在水平面上做匀变速直线运动,其加速度方向与速度方向相反,当加速度逐渐减小时,物体的速度将如何变化?A. 逐渐增大B. 逐渐减小C. 先增大后减小D. 先减小后增大(答案)B八、在光的双缝干涉实验中,若将双缝的间距增大,则干涉条纹的间距将如何变化?A. 增大B. 减小C. 不变D. 无法确定(答案)B。

高中物理压轴题专题训练

高中物理压轴题专题训练

以下是一些高中物理压轴题的专题训练题目,涵盖了力学、电磁学、光学等多个领域。

这些题目旨在帮助学生提高解题能力,加深对物理概念的理解。

**力学部分**1. **质点运动**:一质点从静止开始,以恒定的加速度 \(a\) 沿直线运动,经过时间 \(t\) 后,质点的速度和位移分别是多少?2. **动量守恒**:两个质量分别为 \(m_1\) 和 \(m_2\) 的小球在光滑水平面上发生完全非弹性碰撞,求碰撞后两球的速度。

3. **万有引力**:两个质量分别为 \(M\) 和 \(m\) 的天体,相距 \(R\),求它们之间的万有引力。

**电磁学部分**4. **电场强度**:一电荷量为\(q\) 的点电荷位于电场中某点,受到的电场力为 \(F\),求该点的电场强度。

5. **洛伦兹力**:一带电粒子在磁场中运动,速度为 \(v\),与磁场方向的夹角为 \(\theta\),求粒子受到的洛伦兹力。

6. **电磁感应**:一导线在磁场中做切割磁感线运动,速度为\(v\),导线的长度为 \(L\),与磁场方向的夹角为 \(\theta\),求导线中产生的感应电动势。

**光学部分**7. **光的折射**:一束光从空气射入水中,入射角为\(\alpha\),求折射角 \(\beta\)。

8. **光的干涉**:两束相干光在屏幕上产生干涉条纹,相邻条纹间的距离为 \(d\),求光源的波长。

9. **光的衍射**:一束单色光通过一个小孔,在光屏上形成衍射图样,求中央亮纹的宽度。

这些题目涵盖了高中物理的主要知识点,通过专题训练,学生可以更加深入地理解物理概念和原理,提高解题技巧和思维能力。

同时,这些题目也可以作为备考高中物理竞赛或高考的辅助材料,帮助学生提高应试能力。

全国超难变态高考物理压轴题

全国超难变态高考物理压轴题

全国超难变态高考物理压轴题最近,一道题目在中国的高考物理试卷上引起了广泛的讨论。

这道题目被称为“全国超难变态高考物理压轴题”,因为它需要高考生具备相当高的物理知识水平才能解答出来。

这道题目是这样的:一个球从1米高度落下,每次落地后反弹回高度的一半再落下。

求此球在第10次落地时一共经过了多少米,达到了多高?题目很简单,但是解法并不容易。

下面我将详细地讲解如何解决这个问题。

第一步,理解题意。

题目是在描述一个球的运动。

球从1米高度落下,每次反弹回高度的一半再落下。

问球在第10次落地时一共经过了多少米,达到了多高?第二步,进行分析。

我们可以把球的运动轨迹画成一个等比数列。

第一项为1米,公比为1/2。

这个等比数列的前10项就是球在第1次到第10次落地的行程,也就是球每次落地前所走的路程。

直接使用等比数列的求和公式可以计算出球的总路程。

第三步,计算总路程。

根据等比数列的求和公式,球在第1次到第10次落地前所走的路程为:S = a1(1-q^n)/(1-q)其中a1是等比数列的第一项,q是公比,n是项数。

代入题目中的数据,我们就可以得到球在前10次落地前所走的路程为:S = 1(1-(1/2)^10)/(1-1/2)S ≈ 1.998米第四步,计算最高点。

球最高点的高度是在第9次落地后达到的,因此我们需要计算出第9次落地后球反弹到的高度,也就是最高点的高度。

我们可以使用递推公式来计算出第9次落地后球反弹到的高度:hn = hn+1/2其中hn表示第n次落地后球反弹到的高度。

代入数据得到:h10 = h9/2h9 = h8/2h8 = h7/2h7 = h6/2h6 = h5/2h5 = h4/2h4 = h3/2h3 = h2/2h2 = h1/2h1 = 1因此,球在第10次落地后达到的最高点的高度为:h10 = h9/2h10 ≈ 0.098米综上所述,这道题目虽然简单,但是要求考生具备相当高的物理知识水平才能解答出来。

物理高考压轴题总结归纳

物理高考压轴题总结归纳

物理高考压轴题总结归纳物理是高中学习中的一门重要学科,对于学生来说,掌握好物理知识对于高考来说至关重要。

高考压轴题则是考查学生综合应用物理知识的能力和水平的题目。

本文将针对物理高考压轴题进行总结归纳,帮助同学们更好地备战高考。

一、热学部分1. 热传递:这类题目常见于高考,通过给出物体的温度、面积、热导率等信息,考察学生对热传递规律的理解。

解题时,需要运用热传导的基本公式,如热传导方程、热阻和热导率的关系等。

2. 热力学循环:这类题目考察学生对热力学循环的理解。

常见题型有卡诺循环和汽车内燃机等。

解题时需要熟悉热力学循环的特点和计算公式,灵活运用热力学的原理进行分析。

二、光学部分1. 光的反射和折射:这类题目考察学生对光的反射和折射规律的掌握。

常见的题型有平面镜和透明介质的折射等。

解题时需要熟悉光的反射和折射的定律,并能够应用到实际情况中。

2. 光的干涉和衍射:这类题目考察学生对光的干涉和衍射现象的理解。

常见的题型有等厚干涉和衍射格等。

解题时需要熟悉干涉和衍射的理论知识,能够利用波的原理进行分析,捕捉到问题的关键点。

三、电磁部分1. 电路分析:这类题目考察学生对电路分析的能力。

常见的题型有串并联电路的等效电阻、电压和电流的计算等。

解题时需要熟悉电路分析的基本方法和定律,善于转化为简单的电路,便于计算和理解。

2. 电磁感应:这类题目考察学生对电磁感应现象的理解。

常见的题型有电磁感应定律的应用和发电机的工作原理等。

解题时需要熟悉电磁感应的基本规律,并能够应用到具体的实际问题中。

四、力学部分1. 牛顿定律:这类题目考察学生对牛顿定律的掌握。

常见的题型有平衡条件的判断、物体所受合力和加速度的计算等。

解题时需要熟悉牛顿定律的应用,并能够确定合适的参考系。

2. 动量和能量守恒:这类题目考察学生对动量和能量守恒定律的理解。

常见的题型有碰撞问题和物体的机械能转化等。

解题时需要熟悉动量和能量守恒的原理,并能够应用到实际情况中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理压轴题和高中物理初赛难题汇集-11. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 =G)(2h R Mm+。

卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有 G2rMm=m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -2132ωGM +GhR Mm+ 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。

(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。

当物体匀速上行时力F '取最小。

由平衡条件0sin cos ='--'=f G F F x θθ 0cos sin =-'-'=θθG F N F y且有N f '='μ联立上三式求解得 N F 100='3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m ·s -2.由于受到空气阻力的作用,在一年时间,人造卫星的高度要下降△H =0.50km .已知物体在密度为ρ的流体中以速度v 运动时受到的阻力F 可表示为F =21ρACv2,式中A 是物体的最大横截面积,C 是拖曳系数,与物体的形状有关.当卫星在高空中运行时,可以认为卫星的拖曳系数C =l ,取卫星的最大横截面积A =6.0m2.已知地球的半径为R0=6400km .试由以上数据估算卫星所在处的大气密度. 解:设一年前、后卫星的速度分别为1v 、2v ,根据万有引力定律和牛顿第二定律有21211MmG m R R =v ⑴22222MmG m R R =v⑵式中G 为万有引力恒量,M 为地球的质量,1R和2R 分别为一年前、后卫星的轨道半径,即10R R H=+ ⑶20R R H H=+-∆⑷卫星在一年时间动能的增量22k 211122E m m ∆=-v v⑸由⑴、⑵、⑸三式得k 21111()2E GMm R R ∆=-⑹由⑶、⑷、⑹式可知,k 0E ∆>,表示在这过程中卫星的动能是增加的。

在这过程中卫星引力势能的增量P 2111()E GMm R R ∆=--⑺P 0E ∆<,表示在这过程中卫星引力势能是减小的。

卫星机械能的增量k PE E E ∆=∆+∆⑻由⑹、⑺、⑻式得21111()2E GMm R R ∆=--⑼0E ∆<,表示在这过程中卫星的机械能是减少的。

由⑶、⑷式可知,因1R 、2R 非常接近,利用12R R H -=∆ ⑽2121R R R ≈⑾⑼式可表示为2112GMmE HR ∆=-∆⑿卫星机械能减少是因为克服空气阻力做了功。

卫星在沿半径为R 的轨道运行一周过程中空气作用于卫星的阻力做的功212W F R ACR πρπ=-⨯=-v ⒀根据万有引力定律和牛顿运动定律有22MmG m R R =v ⒁由⒀、⒁式得1W ACGMρπ=-⒂⒂式表明卫星在绕轨道运行一周过程中空气阻力做的功是一恒量,与轨道半径无关。

卫星绕半径为R 的轨道运行一周经历的时间2R T π=v⒃由⒁、⒃式得2T π= ⒄由于在一年时间轨道半径变化不大,可以认为T 是恒量,且2T R π=⒅以τ表示一年时间,有73600s 36524 3.1510s τ=⨯⨯=⨯⒆卫星在一年时间做圆周运动的次数n T τ=⒇在一年时间卫星克服空气阻力做的功1W nW = (21)由功能关系有W E =∆(22)由⒂⒅⒇(21)(22)各式并利用21M Gg R =得ρ=(23)代入有关数据得1331.5410kg m ρ--=⨯⋅(24)4、如图(甲)所示,弯曲部分AB 和CD 是两个半径相等的四分之一圆弧,中间的BC 段是竖直的薄壁细圆管(细圆管径略大于小球的直径),细圆管分别与上、下圆弧轨道相切连接,BC 段的长度L 可作伸缩调节。

下圆弧轨道与地面相切,其中D 、A 分别是上、下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面。

一小球多次以某一速度从A 点水平进入轨道而从D 点水平飞出。

今在A 、D 两点各放一个压力传感器,测试小球对轨道A 、D 两点的压力,计算出压力差△F 。

改变BC 间距离L ,重复上述实验,最后绘得△F -L 的图线如图(乙)所示。

(不计一切摩擦阻力,g 取10m/s 2)(1)某一次调节后D 点离地高度为0.8m 。

小球从D 点飞出,落地点与D 点水平距离为2.4m ,求小球过D 点时速度大小。

(2)求小球的质量和弯曲圆弧轨道的半径大小。

解析:(1)小球在竖直方向做自由落体运动,221gt H D =水平方向做匀速直线运动 t V X D = 得:s m gH xtx V DD62===(2)设轨道半径为r ,A 到D 过程机械能守恒:)2(212122L r mg mv mv D A ++= 在A 点:rV m mg F A A 2=-在D 点:rV m mg F D D 2=+由以上三式得:rL mgmg F F F D A 26+=-=∆ 由图象纵截距得:6mg =12 得m =0.2kg 由L =0.5m 时 △F =17N 代入得:r =0.4m5 、如图所示,在光滑的水平地面上,质量为M=3.0kg 的长木板A 的左端,叠放着一个质量为m=1.0kg 的小物块B (可视为质点),处于静止状态,小物块与木板之间的动摩擦因数μ=0.30。

在木板A 的左端正上方,用长为R =0.8m 的不可伸长的轻绳将质量为m =1.0kg 的小球C 悬于固定点O 点。

现将小球C 拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O 点的正下方时,小球C 与B 发生碰撞且无机械能损失,空气阻力不计,取g =10m/s 2,求:(1)小球C 与小物块B 碰撞前瞬间轻绳对小球的拉力; (2)木板长度L 至少为多大时,小物块才不会滑出木板。

解析:(1)静止释放后小球做自由落体运动到a ,轻绳被拉紧时与水平方向成30︒角,再绕O 点向下做圆周运动,由机械能守恒定律得2021mv mgR =轻绳被拉紧瞬间,沿绳方向的速度变为0,沿圆周切线方向的速度为θcos 0v v a =小球由a 点运动到最低点b 点过程中机械能守恒()2221sin 121ba mv mgR mv =-+θ 设小球在最低点受到轻绳的拉力为F ,则Rv m mg F b2=-联立解得355.3==mg F N(2)小球与B 碰撞过程中动量和机械能守恒,则21mv mv mv b +=22212212121mv mv mv b += 解得 v 1=0,v 2=v b =25gR(碰撞后小球与B 交换速度) B 在木板A 上滑动,系统动量守恒,设B 滑到木板A 最右端时速度为v ,则()v M m mv +=2B 在木板A 上滑动的过程中,系统减小的机械能转化为能,由能量守恒定律得()2222121v M m mv mgL +-=μ联立解得()2252⎪⎪⎭⎫ ⎝⎛+=gR M m g ML μ 代入数据解得L =2.5m6、如图所示,一根跨越一固定的水平光滑细杆的柔软、不可伸长的轻绳,两端各系一个质量相等的小球A 和B ,球A 刚好接触地面,球B 被拉到与细杆同样高度的水平位置,当球B 到细杆的距离为L 时,绳刚好拉直.在绳被拉直时释放球B ,使球B 从静止开始向下摆动.求球A 刚要离开地面时球B 与其初始位置的高度差.解析:设球A 刚要离开地面时联接球B 的绳与其初始位置的夹角为θ,如图所示,这里球B 的速度为v ,绳对球B 的拉力为T ,根据牛顿第二定律和能量守恒,有2sin T mg ml θ-=v①21sin 2m mgl θ=v②当A 球刚要离开地面时,有T mg =③以h 表示所求高度差,有sin h l θ=④由①②③④解得13h l= ⑤7 (20分)如图所示,在高为h 的平台上,距边缘为L 处有一质量为M 的静止木块(木块的尺度比L 小得多),一颗质量为m 的子弹以初速度v0射入木块中未穿出,木块恰好运动到平台边缘未落下,若将子弹的速度增大为原来的两倍而子弹仍未穿出,求木块的落地点距平台边缘的水平距离,设子弹打入木块的时间极短。

解析:设子弹以v 0射入时,木块的初速度为v 1,根据动量守恒定律有 mv 0=(m+M) v 1 ① 根据动能定理有 μ(m+M )gL=21(m+M )v 12 ② 设子弹以2v 0射入时,木块的初速度为v 2,末速度为v 3,根据动量守恒定律有 m2v 0=(m+M) v 2 ③ 根据动能定理有 μ(m+M )gL=21(m+M )v 22-21(m+M )v 32 ④ 设木块落地点距平台边缘的距离为x,由平抛运动规律有 X= v 3gh2 ⑤ 由①②③④⑤联立解得 x=ghm M mv 608、如图所示为某种弹射装置的示意图,光滑的水平导轨MN 右端N 处与水平传送带理想连接,传送带长度L=4.0m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3.0m/s 匀速传动。

相关文档
最新文档