必修1 高一数学基础知识试题选.doc
人教版高一数学(必修1)基础知识试题选及答案
人教版高一数学(必修1)基础知识试题选及答案高一数学(必修1)基础知识试题选及答案一、选择题1. 下列数列中,等差数列是:A. 1, 3, 6, 10, 15B. 1, 2, 4, 7, 11C. 1, 4, 9, 16, 25D. 1, 3, 9, 27, 81答案:A2. 设等差数列的首项为a, 公差为d, 则该等差数列的第n项为:A. anB. a + (n-1)dC. a + ndD. a + (n+1)d答案:B3. 设等差数列的前n项和为Sn,则Sn的通项公式为:A. Sn = n(a + l)/2B. Sn = n(a + 2l)/2C. Sn = (a + l)n/2D. Sn = (a + 2l)n/2答案:A4. 已知等差数列的前n项和为Sn,公差为d,则该等差数列的第n 项可以表示为:A. Sn - Sn-1B. Sn - Sn+1C. Sn - Sn-dD. Sn - Sn+d答案:B5. 下列数列中,等比数列是:A. 2, 5, 8, 11, 14B. 4, 8, 16, 32, 64C. 1, 3, 6, 10, 15D. 1, 1, 2, 3, 5答案:B6. 设等比数列的首项为a, 公比为q, 则该等比数列的第n项为:A. a^nB. a + (n-1)qC. aq^nD. aq^(n-1)答案:C7. 设等比数列的前n项和为Sn,则该等比数列的第n项可以表示为:A. Sn - Sn-1B. Sn - Sn+1C. Sn/q - Sn/qdD. Snq - Snqd答案:A8. 如果在等比数列的前n项和中,n趋于无穷大,且公比小于1,则该等比数列的前n项和趋于:A. 1B. 0C. ∞D. 不存在答案:B二、解答题1. 将下列数列排列成由小到大的顺序:8, 5, 2, 9, 6答案:2, 5, 6, 8, 92. 求下列数列的前n项和:1, 3, 5, 7, ...答案:Sn = n^23. 求解下列方程:2x - 5 = 7答案:x = 64. 用配方法求解下列二次方程:x^2 - 5x + 6 = 0答案:x = 2, 35. 确定下列函数的定义域:f(x) = √(x + 4)答案:x ≥ -46. 求解下列不等式:2x - 5 > 7答案:x > 67. 已知点A(2, 1)和B(-3, 4),求线段AB的斜率。
高一数学必修1各章知识点总结练习题(K12教育文档)
高一数学必修1各章知识点总结练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修1各章知识点总结练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修1各章知识点总结练习题(word版可编辑修改)的全部内容。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R|x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1。
“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等"即:①任何一个集合是它本身的子集。
高一必修一基础练习题
高一必修一基础练习题一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 4C. -2D. 22. 已知集合A={1,2,3},B={2,3,4},求A∩B的结果:A. {1}B. {2,3}C. {4}D. {1,2,3}3. 直线y=2x+3与x轴的交点坐标是:A. (-3/2, 0)B. (0, 3)C. (3/2, 0)D. (0, -3)4. 函数y=log2(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. [0, +∞)D. (-∞, +∞)5. 已知等差数列的前三项和为12,第二项为4,求首项a1:A. 2B. 3C. 4D. 56. 根据题目所给信息,以下哪个选项是正确的:A. 选项AB. 选项BC. 选项CD. 选项D7. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 = a^2 + b^2D. (x-a)^2 + (y-b)^2 = a^2 + b^28. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x):A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3xD. x^2 - 3x + 29. 已知三角形ABC的三个内角分别为A、B、C,且A + B + C = π,求tan(A + C)的值:A. -tanBB. tanBC. 0D. 110. 以下哪个选项是正确的:A. 选项AB. 选项BC. 选项CD. 选项D二、填空题(每题2分,共20分)11. 函数f(x) = x^3的反导数是_________。
12. 集合{1,2,3}的补集(相对于自然数集)是_________。
13. 已知数列1, 1/2, 1/3, ...的通项公式是_________。
14. 函数y = sinx的周期是_________。
高中数学必修1基础练习题(附详细答案)
➢•高中数学必修一基础练习题班号姓名❖❖集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围.☯☯ 集合的补集运算1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7}, 则∁U (M ∪N )=( ) A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}2.已知全集U ={2,3,5},集合A ={2,|a -5|},若∁U A ={3},则a 的值为( ) A .0B .10C .0或10D .0或-103.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4}, 那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5}, B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 函数的概念1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集 合N 的函数关系的是( ) 2.f (x )=2x -x的定义域是( )A .(-∞,1]B .(0,1)∪(1,+∞)C .(-∞,0)∪(0,1]D .(0,+∞)3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}4.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1B .0C .-1D .25.函数y =x 2x 2+1(x ∈R )的值域是________.6.设f (x )=11-x,则f [f (x )]=________. 7.求下列函数的定义域:(1) f (x )=2x -1-3-x +1; (2) f (x )=4-x 2x +1.8.已知函数f (x )=x 21+x 2, (1)求f (2)+f (12),f (3)+f (13)的值; (2)求证f (x )+f (1x )是定值。
高一数学基础试题及答案
高一数学基础试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 5D. -52. 计算下列表达式的值:(3x^2 - 2x + 1) - (x^2 + 4x - 3)。
A. 2x^2 - 6x + 4B. 2x^2 - 6x - 2C. 2x^2 + 2x + 4D. 2x^2 + 2x - 23. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正C. 零D. 不确定4. 已知集合A = {x | x^2 - 5x + 6 = 0},求集合A的元素个数。
A. 0B. 1C. 2D. 35. 函数y = x^3 - 3x^2 + 2在x = 1处的导数是:A. 0B. 1C. -1D. 26. 计算下列极限:lim(x→0) (sin(x)/x)。
A. 0C. -1D. 27. 已知等比数列{an}的首项a1 = 2,公比q = 3,求a5的值。
A. 2B. 6C. 18D. 548. 计算下列定积分:∫(0 to 1) (2x + 1) dx。
A. 3/2B. 5/2C. 7/2D. 9/29. 已知向量a = (3, -2),b = (1, 2),求向量a与向量b的点积。
A. -1C. 1D. -710. 计算下列二项式展开式中x^2的系数:(x + 1)^4。
A. 6B. 4C. 10D. 15二、填空题(每题4分,共20分)11. 计算(2x - 3)^2的展开式,并求出x^2的系数。
12. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。
13. 计算下列二项式展开式的通项公式:(1 + x)^n。
14. 已知向量a = (4, 1),b = (2, -3),求向量a与向量b的叉积。
15. 计算下列极限:lim(x→∞) (x^2 - 3x + 2) / (2x^2 + 5x - 3)。
高中数学试卷必修一基础100题
高中数学试卷必修一基础50题一、单选题(共15题;共30分)1.已知函数y=sinx的定义域为值域为,则的值不可能是( )A. B. C. D.2.已知集合, ,则()A. B. C. D.3.设集合是锐角,,从集合到的映射是“求正弦值”,则与中元素相对应的中元素是()A. B. C. D.4.设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为( )A. (x-5)(x-4)B. (x-6)(x-5)C. (x-6)(5-x)D. (x-6)(7-x)5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A. a≤1B. a<1C. a≥2D. a>26.已知集合,,则()A. B. C. D.7.已知函数的定义域为,的定义域为()A. B. C. D.8.已知偶函数在区间上是增函数,如果,则x的取值范围是()A. B. C. D.9.二次函数图象的对称轴方程为()A. B. C. D.10.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A. y=﹣x3B. y=ln|x|C. y=cosxD. y=2﹣|x|11.函数f(x)=a x﹣1+2的图象恒过定点()A. (3,1)B. (0,2)C. (1,3)D. (0,1)12.集合,,若,则实数a的取值范围是()A. B. C. D.13.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A. 10个B. 9个C. 8个D. 4个14.已知,b=0.53,,则a,b,c三者的大小关系是()A. b<a<cB. c<a<bC. a<c<bD. a<b<c15.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}二、填空题(共20题;共21分)16.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为________.17.若二次函数的图象经过点,则代数式的值等于________.18.已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.19.已知函数f(x)=2x﹣3,x∈N且1≤x≤5,则函数的值域为________.20.设集合M={x|﹣1<x<1},N={x|0≤x<2},则M∪N=________.21.设函数在区间上的最大值为,则________.22.函数的定义域为________.23.若函数f(x)= 在(﹣1,+∞)上的值域为________.24.已知幂函数的图象过点,则的单调减区间为________.25.设函数f(x)=(x﹣4)0+ ,则函数f(x)的定义域为________.26.若f(x)=2x+2﹣x lga是奇函数,则实数a=________.27.已知函数是奇函数,则=________.28.已知全集U={﹣1,0,2,4},集合A={0,2},则________.29.函数的单调递增区间为________.30.已知函数f(x)=,则f[f(-2)]=________ ,f(x)的最小值是________.31.设函数,若,则________.32.计算:的结果是________ .33.函数的单调增区间为________.34.化简:+=________35.已知集合,,若存在非零整数k,满足,则________.三、解答题(共15题;共135分)36.设,求证:(1);(2).37.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.38.(1)计算:;(2)已知( ) ,求的值.39.已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.40.已知集合A={x|﹣3<x≤4},集合B={x|k+1≤x≤2k﹣1},且A∪B=A,试求k的取值范围.41.比较下列各题中两个值的大小.(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4.42.已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f()= .(1)求函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(x2﹣1)+f(x)<0.43.已知函数.(1)求函数的定义域;(2)是否存在实数a,使得为奇函数.44.已知全集U={x|﹣5≤x≤3},集合A={x|﹣5≤x<﹣1},B={x|﹣1≤x≤1}.(1)求A∩B,A∪B;(2)求(∁U A)∩(∁U B),(∁U A)∪(∁U B).45.设集合,.若,求的值46.设函数f(x)=ax2+(b﹣8)x﹣a﹣ab的两个零点分别是﹣3和2.(Ⅰ)求f(x);(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.47.已知全集,若集合,B={x|x-m<0} .(1)若,求;(2)若, 求实数的取值范围.48.已知集合,.(1)当m=4时,求,;(2)若,求实数m的取值范围.49.已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.(1)若A⊊B,求实数a的取值范围;(2)若B⊊A,求实数a的取值范围.50.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】D12.【答案】C13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】17.【答案】[ ,1]18.【答案】{2,4}19.【答案】;20.【答案】821.【答案】b<a<c22.【答案】23.【答案】24.【答案】25.【答案】26.【答案】27.【答案】028.【答案】{0,2,6,10}29.【答案】30.【答案】231.【答案】②③32.【答案】33.【答案】[2,5)34.【答案】35.【答案】三、解答题36.【答案】(1)解:(2)。
最新数学必修一基础知识练习题
必修1 高一数学基础知识试题选一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合P ⊂≠{4,7,8},且P 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( )(A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1) (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)36.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2]7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( ) (A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( ) (A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D) 121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =的定义域是 ( ) (A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是 ( ) (A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+二、填空题:13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
高一数学必修一第一章知识点与习题讲解资料.docx
B
A.
B.
C.
1
3
D.
1
1
3
解:简单列举两个集合的一些元素,
A
{ ,
3
1
}
,B
{ ,
3
1,
,0,
,1, ,
,
2
,
, , },
易知B
A,故答案选A.
2
2
2
2
2
2
2
另解 :由B
{ x |
2n
1
Z}
,易知B
A,故答案选A.
x
2
, n
【例3】若集合M
x | x2
x
6
0 , N
x | ax
1
0,且N
M,求实数a的值.
,B
{1,3,5,8},求CU( A
B),CU( A B),
( CUA) (CUB),( CUA)
(CUB),并比较它们的关系.
解:由A
B {1,2,3,4,5,8},则CU( A
B)
{6,7,9}
.
由A B
{5,8},则CU( A
B)
{1,2,3,4,6,7,9}
由CUA
{ 1,3,6,7,9}
,CUB
B组题2)
解:B
{1,4}.
当a
3
时,A
{3},则A
B
{1,3,4},A
B
;
当a
1时,A
{1,3},则A
B
{1,3,4},A
B
{1};
当a
4
时,A
{3,4},则A
B
{1,3,4},A
B
高一数学必修第一册综合测基础练习题
高一数学必修第一册综合基础练习题一、选择题:(本题共8小题。
每小题给出的四个备选项只有一项符合要求)1.已知集合{}1,0,1,2,3,4,5A =-,集合{}34B x x =-<<,则A B =( ) A .{}1,0,1,2,3- B .{}0,1,2,3 C .{}1,0,1,2- D .{}1,0,1,2,3,4-2.函数()()22log 1f x x =-的定义域是( )A .[)1,+∞ B .()1,-+∞ C .()(),11,-∞-+∞ D .()1,+∞3.化简cos16cos44cos74sin44︒︒-︒︒的值为( )A .2B .2-C .12D .12- 4.已知3log 2a =,5log 10.2b =,3log πc =,则a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >>C .c a b >>D .c b a >> 5.若函数()221f x x ax a =-+-在[]0,2上最小值为1-,则a =( )A .1或2B .1C .1或65D .2- 6.设定义在R 上的奇函数()f x 满足3()8(0)f x x x =->,则(2)0f x ->的解集为( ) A .(4,0)(2,)-+∞ B .0,24+∞()(,)C .-,04+∞∞()(,)D .(-4,4) 7.已知函数sin 2y x =的图象与函数cos 2y x m =+的图象没有公共点,则实数m 的值可以为( ) A .-1B .0C .1D .2 8.已知三个函数112()21,()1,()log (1)1x x f x x g x e h x x x --=+-=-=-+-的零点依次为,,a b c ,则,,a b c 的大小关系()A .a b c >>B .a c b >>C .c a b >>D .c b a >> 二、填空题:本题共4小题。
(完整)高一数学必修1第一章测试题及答案,推荐文档
高一第一章测试题一.选择题(本大题共 12 小题,第小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1. 设集合 AQ x,则( )A. ∅ ∉AB.∉ AC. ∈ AD .{ 2}⊆ A2、已知集合 A 到 B 的映射 f:x→y=2x+1,那么集合 A 中元素 2 在 B 中对应的元素是:A 、2B 、5C 、6D 、83. 设集合A = {x |1 < x < 2},B = {x | x < a }. 若 A ⊆ B , 则 a 的范围是()A . a ≥ 24. 函数 y B. a ≤ 1 的定义域是( )C. a ≥ 1D. a ≤ 21 1 11A . ( , +∞)B . [ , +∞)C . (-∞, )D . (-∞, ]2 22 25.全集 U ={0,1,3,5,6,8},集合 A ={ 1,5, 8 }, B ={2},则集合(C U A ) B = ()A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D . ∅ 6.已知集合 A = {x -1 ≤ x < 3}, B = {x 2 < x ≤ 5}, 则A B = ( )A. ( 2, 3 )B. [-1,5]C. (-1,5)D. (-1,5]7. 下列函数是奇函数的是( )A . y = x8. 化简:B . y = 2x 2 - 3(-4)2+=()1C . y = x2D . y = x 2 , x ∈[0,1]A . 4B . 2- 4C . 2- 4 或 4D . 4 - 29. 设集合 M2 x 2,Ny,给出下列四个图形,其中能表示以集合M 为定义域, N 为值域的函数关系的是( ) 10、已知 f (x )=g ( x )+2, 且 g(x)为奇函数,若 f (2)=3,则 f (-2)= 。
2 2 2x -1x ⎩}A 0B .-3C .1D .3⎧ 2 ⎪ 11、已知 f (x )=⎨ ⎪⎩x > 0x = 0 ,则 f [ f (-3)]等于x < 0 A 、0 B 、π C 、π2D 、912.已知函数 f是 R 上的增函数, A,1, B ,1是其图像上的两点,那么f二.填空题(本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上.)⎧ x + 5(x > 1) 13.已知 f (x ) = ⎨2x 2 +1(x ≤ 1) ,则 f [ f (1)] =.14.已知 f (x -1) = x 2 ,则 f (x ) =.15. 定义在 R 上的奇函数 f (x ) ,当 x > 0 时, f (x ) = 2 ;则奇函数 f (x ) 的值域是.16. 关于下列命题:①若函数 y = 2 x 的定义域是{ x | x ≤ 0},则它的值域是{y | y ≤ 1};② 若函数 y =1 的定义域是{x | x > 2},则它的值域是{y | y ≤1; x2③若函数 y = x 2 的值域是{y | 0 ≤ y ≤ 4},则它的定义域一定是{x | -2 ≤ x ≤ 2};④若函数 y = 2 x 的定义域是{y | y ≤ 4},则它的值域是{x | 0 < x ≤ 8}. 其中不正确的命题的序号是( 注:把你认为不正确的命题的序号都填上).0 (x ) < 1的解集是()A . (-3, 0)B . (0, 3)C . (-∞, -1]⋃[3, +∞)D . (-∞, 0]⋃ [1, +∞)(第 II 卷)三、解答题:本大题共 5 小题,共 70 分.题解答应写出文字说明,证明过程或演算步骤.17.设 A ={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数 a 的取值范围。
高中数学必修1基础练习题及答案解析
高中数学必修1基础练习题及答案解析一、选择题1.已知全集I={0,1,2},且满足CI ={2}的A、B 共有组数 A. B. C. D.11.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.ABB.BAC.A=BD.A∩B=?23.设A={x∈Z||x|≤2},B={y|y=x+1,x∈A},则B的元素个数是 A.5B.4C.D.2.若集合P={x|3 D.=的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元2-x素是 A. B.-C.-1 D.-3.已知f是一次函数,且2f-3f=5,2f-f=1,则f的解析式为 A.3x-B.3x+C.2x +D.2x-8.下列各组函数中,表示同一函数的是 A.f=1,g =xx2-4B.f=x+2,g=x-2D.f=x,g=2?x x≥0C.f=|x|,g=?-x x<02xx>09. f=?πx=0,则f{f[f]}等于0 x<0A.0B.πC.π2D.9x10.已知2lg=lgx+lgy,则的值为yA.1B.4C.1或41D. 或411.设x∈R,若a1 C.0 12.若定义在区间内的函数f=log2a满足f>0,则a的取值范围是1A.21?B.2D.二、填空题 13.若不等式x+ax+a-2>0的解集为R,则a可取值的集合为__________.214.函数yx+x+1 的定义域是______,值域为__ ____.2115.若不等式3x?2ax>x+1对一切实数x恒成立,则实数a的取值范围为______.3x?1??3?x?=?,则f值域为_____ _. 1?x??3?x??1,117.函数y=的值域是__________.2+118.方程log2+x+99=0的两个解的和是______.第Ⅱ卷一、选择题二、填空题三、解答题 19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求∩.20.已知f是定义在上的增函数,且满足f=f+f,f =1. 求证:f=3求不等式f-f>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.当每辆车的月租金定为3600元时,能租出多少辆车?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f=log12x-log1x+5,x∈[2,4],求f 的最大值及最小值.44a-23.已知函数f=是R上的增函数,求a的取值范围. a-2高一数学综合训练答案二、填空题13. ? 14. R [313+∞) 15. - 16. 18. -99三、解答题 19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求∩.∩={x|-1<x<1}20.已知f是定义在上的增函数,且满足f=f+f,f =1. 求证:f=3求不等式f-f>3的解集. 考查函数对应法则及单调性的应用. 由题意得f=f=f+f=f+f=f+f+f=3f 又∵f=1 ∴f=3不等式化为f>f+3∵f=∴f>f+f=f ∵f是上的增函数16?8?0∴?解得2 7x821.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.当每辆车的月租金定为3600元时,能租出多少辆车?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.当每辆车月租金为3600元时,未租出的车辆数为以这时租出了88辆.设每辆车的月租金定为x元,则公司月收益为 x-3000x-3000f=-×505050x212整理得:f=-+162x-2100=-+3070505050∴当x=4050时,f最大,最大值为f=307050 元22.已知函数f=log12x-log1x+5,x∈[2,4],求f 的最大值及最小值.443600-3000=12,所50考查函数最值及对数函数性质.令t=log1x ∵x∈[2,4],t=log1x在定义域递减有441log14 244412191∴f=t2-t+5=+,t∈[-1,-]242123∴当t=-时,f取最小值24当t=-1时,f取最大值7.a-23.已知函数f=是R上的增函数,求a的取值范围. a-2考查指数函数性质.f的定义域为R,设x1、x2∈R,且x1 ax?xx?x a-2a1xxx21a-2a?a由于a>0,且a≠1,∴1+1>0 ax1ax2x2∵f为增函数,则>0x22a?2?0?a?2?0于是有?x,或?xx1x122a?a?0?a?a?0解得a>或0 . . .必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷一、选择题:1.已知集合M??{4,7,8},且M中至多有一个偶数,则这样的集合共有3个个个个2.已知S={x|x=2n,n∈Z}, T={x|x=4k±1,k∈Z},则S??T T??SS≠T S=T23.已知集合P=y|y??x?2,x?R, Q=?y|y??x?2,x?R?,那么P?Q等 ??,{,} {1,2} ?y|y?2?4.不等式ax?ax?4?0的解集为R,则a的取值范围是16a0a116a0a05. 已知f=?2?x?5,则f的值为f36.函数y?x?4x?3,x?[0,3]的值域为[0,3] [-1,0] [-1,3] [0,2]7.函数y=x+b在上是减函数,则 k>21111 k? .k 28.若函数f=x+2x+2在区间a≤-a≥-3a≤ a≥39.函数y?a是指数函数,则a的取值范围是a?0,a?1 a?1 a? a?1或a?210.已知函数f?4?ax?12x的图象恒过定点p,则点p的坐标是11.函数y?的定义域是 [1,+?] [12.设a,b,c都是正数,且3a?4b?6c,则下列正确的是1122112212 1 C C ?a?b?a?bc?a?bc?a?b第Ⅱ卷二、填空题:13.已知在映射 f下的象是,则在f下的象是,原象是。
高中数学必修1基础练习题(附详细答案)
➢•高中数学必修一基础练习题班号姓名❖❖集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围. 集合的补集运算1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7}, 则∁U (M ∪N )=( ) A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}2.已知全集U ={2,3,5},集合A ={2,|a -5|},若∁U A ={3},则a 的值为( ) A .0B .10C .0或10D .0或-103.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4}, 那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5}, B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.函数的概念1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集 合N 的函数关系的是( ) 2.f (x )=2x -x的定义域是( )A .(-∞,1]B .(0,1)∪(1,+∞)C .(-∞,0)∪(0,1]D .(0,+∞)3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}4.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1B .0C .-1D .25.函数y =x 2x 2+1(x ∈R )的值域是________.6.设f (x )=11-x,则f [f (x )]=________. 7.求下列函数的定义域:(1) f (x )=2x -1-3-x +1; (2) f (x )=4-x 2x +1.8.已知函数f (x )=x 21+x 2, (1)求f (2)+f (12),f (3)+f (13)的值; (2)求证f (x )+f (1x )是定值。
高一数学基础知识试题选.doc
高一数学基础知识试题选一、选择题:(本大题共32小题,每小题3分,共96分)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A)3个 (B) 4个 (C) 5个 (D) 6个 2.在①1⊆{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④φ{0}上述四个关系中,错误的个数是( )(A)1个 (B)2个 (C)3个 (D)4个 3.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T4.已知集合}1|{≤=x x M ,}|{t x x P >=,若φ≠P M ,则实数t 应该满足的条件是( )(A)1>t ( B)1≥t ( C)1<t (D)1≤t5.在图中,U 表示全集,用A,B 表示出阴影部分,其中表示正确的是( )(A)A ∩B (B) A ∪B (C)(C U A)∩(C U B) (D)(C U A)∪(C U B) 6.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等于( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D){}|2y y ≤ 7.以下四个命题中互为等价命题是( )(1)当c>0时,若a>b,则ac>bc ;(2)当c>0时, 若ac>bc,则a>b ; (3)当c>0时,若a ≤b,则ac ≤bc ;(4)当c>0时,若ac ≤bc,则a ≤b ; (A)(1)与(4) (B)(1)与(4);(2)与(3) (C)(1)与(3);(2)与(4) (D)(2)与(3) 8.与202xx-≤+同解的不等式是( ) (A)x 2-4≤0 (B)4-x 2≤0 (C)4-x 2≤0且x ≠-2 (D)x 2-4≤0且x ≠-2 9.已知p:x 2≠y 2,q:x ≠y,则p 是q 的( )(A)充分不必要条件 (B)必要不充分条件©充要条件 (D)既不充分也不必要条件10.不等式042<-+ax ax 的解集为R ,则a 的取值范围是( ) (A)016<≤-a (B)16->a (C)016≤<-a (D)0<a 11.下列各图象中,哪一个不可能是函数 y=f(x)的图象 ( )12.函数()f x = ( )(A).[-2,2] (B)(2,2]- (C).(-∞,-2)∪(2,+∞) (D){-2,2} 13.已知A={a,b},B={-1,1}, f 是从A 到B 的映射,则这样的映射个数最多有 ( )个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1高一数学基础知识试题选
必修1高一数学基础知识试题选
说明:木试卷分第I卷和第II卷两部分.第I卷60分,第II卷60分,共120分,
答题时间90分钟.
第I卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.已知集合M {4,7,8},且吊中至多有一个偶数,则这样的集合共有()
(A)3 个(B) 4 个(C) 5 个(D) 6 个
2.已知S={x|x=2n,n£Z}, T={x|x=4k±l, k£Z),则 ()
(A)S T (B) T S (C)S^T (D)S=T
23. 2知集合 P二y y x 2,x R, Q二 y y x 2, x R ,那么 P Q 等()
(A) (0, 2) , (1, 1) (B) { (0, 2 ) , (1, 1) } (C) {1, 2} (D) y|y 2
4.不等式ax ax 4 0的解集为R,则a的取值范围是()
(A) 16 a 0 (B)a 16 (C) 16 a 0 (D)a 0
5.已知 f(x)= 2 x 5(x 6),则 f (3)的值为()
f (x 4) (x 6)
(A) 2 (B)5 (C)4 ( D)3
6.函数y x2 4x 3,x [0,3]的值域为()
(A) [0, 3] (B) [-1,0] (C) [-1,3] (D) [0, 2]
7.函数 y=(2k+l)x+b 在(-8,+8)上是减函数,则()(A)k>llll (B)k< (C)k> (D). k< 2222
28.若函数f(x)=x+2(a-l)x+2在区间(,4]内递减,那么实数a的取值范围为()
(A)aW-3 (B)a^-3 (C)aW5 (D)aN3
9.函数y (2a 3a 2)&是指数函数,则a的取值范围是()
(A) a 0,a 1 (B) a 1 (C) a ( D) a 1 或 a 22
10.已知函数f (x) 4 ax 12x的图象恒过定点p,则点p的坐标是()
(A) ( 1, 5 ) (B) ( 1, 4) (C) ( 0, 4) (D) ( 4, 0)
11.
/网(3刀-2)
函数 y 的定义域是()(A) [1,+ ] (B) ( (C) [ (D) ( 3, )3, 1]3, 1]
11.设a,b, c都是正数,旦3a 4b 6c,则下列正确的是()1122112212(A) 1 (B)
(0 (D) 2 第II卷(非选择题,共60分)
二、填空题:(每小题4分,共16分,答案填在横线上)
12.已知(x,y)在映射f下的象是(x-y, x+y),贝U (3, 5)在f下的象是,原象是。
13.已知函数f(x)的定义域为[0, 1],则f(x)的定义域为。
14.若loga<l,则a的取值范围是3
15.函数f(x)=logl(x-x)的单调递增区间是222
三、解答题:(本大题共44分,17—18题每题10分,19—20题12分)
217.对于函数 f x ax bx bl (a 0).
(I)当a 1, b 2时,求函数f(x)的零点;
(II)若对任意实数b,函数f(x)恒有两个相异的零点,求实数a的取值范围.
18.
J-F + 4x+5
求函数y
19.已知函数f(x)是定义域在R上的奇函数,且在区间(,0)±单调递减,
20.已知集合A
(1)若A B若
A B
求满足 f (x+2x-3) >f (-x-4x+5)的 x 的集合.
{x| x 3x 2 0}, B (x| x 2(a l)x (a 5) 0}, {2},求实数&的值;
A,求实数a的取值范围;
22222。