圆的垂径定理及推论知识点与练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的垂径定理及其推论知识点与练习
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒
AC =⌒ AD ;⌒ BC =⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
若CE=DE ,AB
是直径,则⌒ AC =⌒ AD ;⌒ BC =⌒ BD
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC =⌒ AD ;⌒ BC =⌒ BD
③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
若⌒ AC =⌒
AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC =⌒ BD
④圆的两条平行弦所夹的弧相等。
若CD ∥FG ,CD 、FG 为弦,则⌒ FC =⌒ GD
特别提示:①垂径定理及其推论可概括为:
过圆心
垂直于弦
直径 平分弦 知二推三
平分弦所对的优弧
平分弦所对的劣弧
②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.
(3)垂径定理及推论的应用:
它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。
①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;
②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;
例:如图,在⊙O 中,弦AB 所对的劣弧为圆的31,
圆的半径为2cm ,求AB 的长。 解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由
题意得,∵⌒ AB = 3
1×360º=120º ∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =
2
1OA=1,∴AB=2AC=222OC AO =23 故AB 的长为23 练习
一、选择题
1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )
A 、CM=DM
B 、∠ACB=∠ADB
C 、AD=2B
D D 、∠BCD=∠BDC
G
A A
(1题图) (2题图) (3题)
2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )
A 、2.0m
B 、2.3m
C 、4.6m
D 、6.9m
3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为(
) A 、4cm B 、5cm C 、6cm D 、8cm
4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )
A 、1cm
B 、 cm
C 、 cm
D 、2cm
5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )
A 、∠COE=∠DOE
B 、CE=DE
C 、OE=BE
D 、⌒ BC =⌒
BD
(题5) (题6)
6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )
A 、9cm
B 、6cm
C 、3cm
D 、1cm 二、填空题
有 条相等的弧。
(题2) (题
3) 1、如图1中有 对全等的直角三角形;有 个等腰三角形;2、如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP :PB=1:5,则⊙O 的半径为 cm .
3、如图所示,⊙O 中,弦CD 交直径AB 于点P ,AB=12cm ,PA :PB=1:5,且∠BPD=30°,则CD= cm .
4、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。
5、已知圆的半径5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。
6、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为 ____。 题1 C D
A
O
B E
7、在半径为5cm的圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为_____ _。
8、在弓形ABC中,弦AB=24,高CD=6,则弓形所在圆的半径等于。
9、⊙O的直径为20,弦AB=8,P是弦AB上的一个动点,则OP的取值范围是。
10、在弓形ABC中,弦AB=24,高CD=6,则弓形所在圆的半径等于。
三、解答题
1、如图所示,在Rt△ABC中,∠C=900,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB和AD的长。
2、如图所示,P为弦AB上一点,CP⊥OP交⊙O于点C,AB=8,AP:PB=1:3,求PC的长。
3、如图所示,在Rt△ABC中,∠C=900,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB和AD的长。
题3
题1
题2