压力容器设计 开孔和开孔补强设计
压力容器开孔补强设计
内径Di≤1500mm时,开孔最大直径d≤
,且d≤520mm;
内径Di>1500mm时,开孔最大直径d≤
,且d≤1000mm。
*
中心处的锥壳内直径。
b. 凸形封头或球壳上开孔最大直径d≤
。
c. 锥壳(或锥形封头)上开孔最大直径d≤
,Di为开孔
d. 在椭圆形或碟形封头过渡部分开孔时,其孔的中心线宜垂直 于封头表面。
4.3.5 开孔和开孔补强设计
4.3.5 开孔和开孔补强设计
补强材料一般需与壳体材料相同,若补强材料许用应力小于壳体材料许用应力,则补强面积按壳体材料与补强材料许用应力之比而增加。若补强材料许用应力大于壳体材料许用应力,则所需补强面积不得减少。
要求:
孔周边会出现较大的局部应力,采用分析 设计标准中规定的方法和压力面积法等方 法进行分析计算。
表4-14 不另行补强的接管最小厚度 mm
6.0
5.0
4.0
3.5
89
76
65
57
48
45
38
32
25
接管公称外径
最小厚度
*
四、等面积补强计算
GB150对开孔最大直径的限制:
主要用于补强圈结构的补强计算。
基本原则:
使有效补强的金属面积,等于或大于开孔 所削弱的金属面积。
(1)允许开孔的范围
图4-37 (b)厚壁接管补强
高强度低合金钢制压力容器由于材料缺口敏感性较高,一般都采用该结构,但必须保证焊缝全熔透。
应用
4.3.5 开孔和开孔补强设计
*
过程设备设计
厚壁接管补强
开孔和开孔补强设计
过程设备设计
压力容器的开孔与补强
压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。
由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。
然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。
为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。
开孔是一种常见的预防压力容器事故的方法。
通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。
另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。
此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。
例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。
尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。
这时,可以采用补强的方法来保证容器的安全。
补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。
这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。
需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。
另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。
最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。
因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。
第十二章压力容器的开孔补强
m
23
(三)应力集中系数的计算
3.椭圆形封头开孔的应力集中系数 椭圆形封头开孔的应力集中系数可以近似的采 用上述球壳开孔接管的曲线,只要将椭圆中心处的 曲率半径折算为球的半径即可
Ri KDi
式中K为修正系数 Di为椭圆封头的内直径 Ri为折算为球壳的当量半径
13
(一)开孔的应力集中
1.平板开小孔的应力集中
σ
σθ
σθ
r
θ σθ σ
max=3σ
σγ
σ
a
r 0
图12-1 平板开小孔时应力集中
平板开孔的最大应力在孔边 孔边沿r=a处: 0,
2
处
2
max 3
14
一、开孔应力集中及应力集中系数
(一)开孔的应力集中 1.平板开小孔的应力集中
10
第二节 开孔及补强设计
一、开孔应力集中及应力集中系数
二、开孔补强设计的要求
三、等面积补强计算
11
一、开孔应力集中及应力集中系数
容器开孔接管后在应力分布与强度方面会带来下 列影响: 1. 开孔破坏了原有的应力分布并引起应力集中。 2. 接管处容器壳体与接管形成结构不连续应力。 3. 壳体与接管连接的拐角处因不等截面过渡而引 起应力集中。 上述三种因素均使开孔或开孔接管部位的 引力比壳体中的膜应力大,统称为开孔或接管 部位的应力集中。
1
第一节 总体设计问题概述
结果在开孔和接管处的局部地区,应力可能达到很大的数值 。这样高的局部应力,有时再加上接管上还受到其他外部载 荷(例如安装的附加弯短、热应力等)以及开孔结构在制造 过程中难兔产生的残余应力等,于是开孔附近往往就成为容 器的破坏源。因此必须对开孔处进行强度校核,如不能满足 强度要求,则必须进行补强。
容器的开孔补强
容器的开孔补强
一、开孔应力集中现象及其原因
由于各种工艺、结构、操作、维护检修等方面的要求,需要在压力容器上和封头上开孔或安装接 管。例如人孔、手孔、介质的出入口等。容器开孔之后,由于器壁金属的连续性受到破坏,在 孔边附近的局部地区,应力会急剧增加。这种局部的应力增长现象,称为“应力集中”。在应
力集中区城的最大应力值,称之为“应力峰值”。
容器的开孔补强
二、开孔补强设计Hale Waihona Puke 原则与补强结构1.补强设计原则
(1)等面积补强法的设计原则 (2)塑性失效补强原则
2.补强形式
目前采用的补强形式主要有:①内加强平齐接管;②外加强平齐接管;③对称加 强凸出接管;④密集补强
3.补强结构
(1)补强圈补强结构 (2)加强元件补强结构
(3)整体补强结构
4.等面积补强法的设计
(1)开孔有效补强范围的计算 (2)补强面积的计算
容器的开孔补强
环保设 备
压力容器的开孔与补强
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
开孔补强设计在压力容器设计中的运用
2016年12月开孔补强设计在压力容器设计中的运用黄集旭(温州新星设备安装有限公司,浙江温州325011)摘要:在压力容器设计中,开孔的目的是满足接管、检查和功能测试等的要求,而对开孔进行补强则是防止在该处产生应力集中危险因素,从而压力容器整体结构的安全。
在本案,笔者简要论述开孔补强设计在压力容器设计中的运用。
关键词:压力容器;补强圈补强;整体补强压力容器开孔后,会在开孔处产生局部性的边缘应力,因此需用补强圈、厚壁管和整锻件等进行补强,而若要维持压力容器的整体强度,则需补强由开孔外壁削弱的强度,注意在压力容器开孔补强中,应将开孔的数量、位置和容器的要求等考虑其中。
据此,本案分别从如下方面来浅析开孔补强设计在压力容器设计中的运用:1补强圈补强设计补强圈补强是一种局部补强形式,其具有焊缝小、结构简单等优点及其适用条件如下:补强圈厚度小于等于1.5δn、钢材的Rm小于540MPa,壳体厚度小于等于38mm,注意补强圈的用材应与壳体一致。
补强圈补强一般是将补强板焊在压力容器壁上,以增加该处的金属厚度及开孔边沿的强度。
但在这一过程中,建议注意如下事项:一是严控补强板的厚度,保证其小于等于压力容器开孔处厚度的1.5倍,否则会增大容器的不连续应力;二是用于补强板的钢材应具有良好的延展性和塑性,一般保证其在常温下的屈服强度ReL小于等于400MPa;三是焊缝采用全焊透结构,并在补强圈上开M10通孔,通过充气的方式来检验补强圈的焊透性;四是当压力容器使用环境的温差较大、氧化性和腐蚀性较强时及容器的载荷变化较大时,不易选取补强圈补强方式。
综上,鉴于补强金属处于开孔应力集中区及其补强效果较好,则建议用在高强度、低合金的钢容器中。
2厚壁接管补强设计在压力容器设计中,厚壁接管补强方式应用较为普遍。
针对厚壁接管补强,其首要步骤是选材,即以压力容器的使用条件及壳体材料为选材依据,注意其应与压力容器的壳体材料一致。
此外,在厚壁接管补强设计时,还应明确如下要点:一是不得选用强度比母材壳体大的接管材料,以免影响焊接效果;二是若选用强度比母材壳体小的接管材料,应增加接管的壁厚,以提高其补强效果,注意适当缩减接管的流通面积;三是为了减小加工误差,可选用锻件加工或无缝钢管,注意两种材料的使用条件有所区别,即当设计压力低及壁厚要求低时,选用无缝钢管,反之则选用锻件加工,从而满足压力容器开孔的补强要求。
开孔与开孔补强解读
A 0.5dop p
开孔率(开孔直径与平盖直径之比)大于0.5的 平盖,受力与法兰相近,故其开孔补强按法兰或反 向法兰计算。
有效补强范围:
两个方向的补强范围 (1)沿壳体经线方向的补强范围: B 2dop 是依据受均匀拉伸作用的开小孔大平板,孔 边局部应力集中的衰减范围确定的。 (2)沿接管轴线方向的补强范围:h d op nt 是依据圆柱壳在端部均布载荷作用时,柱壳 中局部环向薄膜应力的衰减范围确定的。
2.2分析法适用的范围
2.3不另行补强的最大开孔直径
3.,属于拉伸强度补偿。为保障内压壳体开 孔局部截面的拉伸强度,从补偿角度讲:壳 体由于开孔丧失的拉伸承载截面积应在孔边 有效补强范围内等面积地进行补偿,俗称等 面积补强。
等面积补强法对开孔边缘的二次应力的 安定性问题是通过限制开孔形状、长短径之 比和开孔范围(开孔率)间接加以考虑的, 使孔边的局部应力得到一定的控制。 等面积补强法对开孔边缘的峰值应力问 题未加考虑,为此不适用于疲劳容器的开孔 补强。
2. GB150.3-2011中开孔补强的计算包括等面 积法和分析法。 2.1适用范围:
3.2单个开孔补强的等面积法适用范围:
3.3补强的结构形式 1)补强圈补强
接管壁厚选用,特别是小接管的壁厚选 用常出现不合理的现象。 对于要求接管与壳体的焊接接头采用全 焊透的结构时,接管壁厚应取≥1/2壳体壁厚 或取接管壁厚≥6mm两者的较小值。 对于坡口熔敷金属量大的焊接接头,当 壳体壁厚大于16mm时接管壁厚应大于8mm; 当壳体壁厚较大(壁厚≥ 20mm)时,接管与 壳体的连接焊缝宜采用双面坡口。 对于低温压力容器,与壳体相焊的接管 壁厚应不小于5mm,其中DN≤50的短接管宜 采用锻造的厚壁管或异径管。
浅析压力容器常规设计规范中的开孔补强设计
浅析压力容器常规设计规范中的开孔补强设计压力容器常规设计规范中的开孔补强设计是为了提高容器的强度和稳定性,减小应力集中,避免开裂和变形等问题。
在设计过程中,需要考虑容器的功能和使用条件,合理确定开孔位置、大小和数量,并采取适当的补强措施。
开孔补强设计中的关键问题是如何确定开孔的位置和大小。
开孔的位置应尽量避免处于应力集中区域,如容器的角部、焊缝附近等。
开孔的大小则需要根据承受的载荷和应力水平来确定。
一般来说,开孔的面积不应超过容器壁的总面积的30%。
当开孔过大时,容器壁的强度和刚度会大大降低,容易导致变形和破裂。
在确定开孔位置和大小之后,可以考虑采取以下几种方式进行开孔补强设计:1.增加开孔的边缘钝化半径:开孔边缘的过渡半径越大,应力集中程度越小。
在常规设计中,一般要求开孔边缘的钝化半径为开孔直径的1.5倍。
2.添加补强环:在开孔边缘处添加环形补强,可以有效减小应力集中,提高强度和稳定性。
补强环的尺寸和数量需要根据开孔的大小和容器的使用条件来确定。
3.增加开孔区域的厚度:开孔附近可以增加壁厚,提高容器的强度和刚度,减小应力集中。
墙厚增加的大小需要根据应力分布和容器的使用条件来确定。
4.使用合适的补强片:在开孔的附近添加合适的补强片,可以提高容器的强度和稳定性。
补强片的材料和尺寸需要根据容器的使用条件和承载能力来确定。
5.考虑应力分配:在设计过程中需要考虑容器的应力分配情况,避免应力集中。
可以采用软件模拟和实验测试等方法来确定应力分布和开孔补强设计的有效性。
在进行开孔补强设计时,还需要考虑容器的材料特性、制造工艺和维修等问题。
同时,需要按照国家和行业的相关规范和标准进行设计,确保容器的安全可靠性。
总之,开孔补强设计是压力容器常规设计规范中的重要环节,对容器的强度、稳定性和可靠性起着至关重要的作用。
合理选择开孔位置和大小,采取合适的补强措施,能够有效减小应力集中,提高容器的安全性能。
2020年压力容器的开孔与补强
(情绪管理)压力容器的开孔和补强第13章压力容器的开孔和补强本章重点内容及对学生的要求:(1)回转壳体上开小孔造成的应力集中;(2)开孔补强的原则、补强结构和补强计算;(3)不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第壹节容器开孔附近的应力集中1、关联概念(1)容器开孔应力集中(Openingandstressconcentration)于压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔且安装接管,例如:人孔、手孔、进料和出料口等等。
容器开孔接管后于应力分布和强度方面会带来下列影响:◆开孔破坏了原有的应力分布且引起应力集中。
◆接管处容器壳体和接管形成结构不连续应力。
◆壳体和接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stressconcentrationfactor)常用应力集中系数Kt来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax,则弹性应力集中系数为:(1)压力容器设计中对于开孔问题研究的俩大方向是:✧研究开孔应力集中程度,估算K t值;✧于强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig.1Variationinstressinaplatecontainingacircularholeandsubjectedtouniformtension 设有壹个尺寸很大的巨型薄平板,开有壹个圆孔,其小圆孔的应力集中问题能够利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽于孔径的5倍之上,孔附近的应力分量为:(2)平板开孔的最大应力于孔边处,孔边沿处:应力集中系数:3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig.2Variationinstressinasphereshellcontainingacircularhole孔边处r=a,,应力集中系数4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳俩向薄膜应力,,如果开有小圆孔,则孔边附近任意点的受力为:(3)Fig.3Variationinstressinacylindricalshellcontainingacircularhole孔边处。
压力容器的开孔与补强
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中;(2) 开孔补强的原则、补强结构和补强计算;(3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax =t K (1) 压力容器设计中对于开孔问题研究的两大方向是:✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r 应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a r a r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
压力容器基础知识 - 开孔和补强
二、对容器开孔的限制 ◆ 当圆筒内径Di≤1500mm时,开孔最大直径d ≤Di/2, 且d ≤520mm;当圆筒内径Di>1500mm时,开孔最大直径 d ≤Di/3,且d ≤1000mm。 ◆ 凸形封头或球壳上开孔时,开孔最大直径d ≤Di/2。 ◆ 锥壳上开孔时,开孔最大直径d≤Di/3,Di为开孔中心 处锥壳内径。 ◆ 在椭圆形或碟形封头的过渡区开孔时,孔的中心线宜 垂直封头表面。
标准补强圈结构
◆ 补强圈结构的适用范围 A型适用于无疲劳、无低温及大的温度梯度的一类压力 容器,且要求设备内有较好的施焊条件。 B型适用于中压、低压及内部有腐蚀的工况,不适用于 高温、低温、大的温度梯度及承受疲劳载荷的设备。S 取管子名义壁厚的0.7倍,一般δn t=δn/2 (δn t为 接管名义厚度;δn为壳体名义厚度)。 C型适用于低温、介质有毒或有腐蚀性的操作工况,采 用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2; 当δn>16 mm时,δn t≥8mm。 D型适用于壳体内不具备施焊条件或进入设备施焊不便 的场合,采用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn>16 mm时,δn t≥8mm。 E型适用于储存有毒介质或腐蚀介质的容器,采用全焊 透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn >16 mm时,δn t≥8mm。 F型适用于中温、低温、中压容器及盛装腐蚀介质的容 器,要求当δn≤16 mm时,δn t≥δn/2,当δn>16 mm时,δn t≥8mm,且接管公称直径DN≤150 mm.
◆ 标准补强圈的选用
若需采用补强圈补强 ,可采用以下程序来选择标准补 强圈:
● 确定补强圈的尺寸; ● 由设备的工艺参数决定补强圈的结构; ● 补强圈材料取与被补强壳体材料相同。
压力容器开孔及补强设计
平板开椭圆孔的应力集中
1、几点结论
•在球壳上开圆孔的应力集中系数( )小于开
椭圆孔的应力集中系数(
)
•在圆柱壳上开圆孔时的应力集中系数(
)
•若要开设椭圆孔,则应使椭圆孔的长轴与壳体
轴线垂直此时(
)
压力容器开孔及补强设计
内压壳体开孔的应力集中
•由于开孔后多焊有不同厚度的接管,应力集中系 数比较复杂,采用理论计算和实验测定相结合的 办法。
•当 越大,即开孔直径越大时应力集中系数越高。 相反,减小孔径,增大壳壁厚度均可降低应力集 中系数。 •内伸式接管的应力集中系数较低,尤其是内伸接 管壁厚较厚时能有效地降低应力集中。
压力容器开孔及补强设计
内压壳体开孔的应力集中
过小或过大时上述曲 线均会有较大的误差
球壳带平齐式接管的应力集中系数
壳壁过厚,即 过 小时,应力沿壁厚分 布的不均匀性增大, 应力集中系数将明显 比图示值减小
(mm)
检查孔最少数 量
检查孔最小尺寸(mm)
人孔
手孔
备注
300-500 500-1000
>1000
手孔2个
人孔1个或手孔 2个(当容器无法
开人孔时)
人孔1个或手孔 2个(当容器无法
开人孔时)
Ф400或长 圆孔
400×250, 380×280
Ф400或长 圆孔
400×250, 380×280
Ф75或长 圆孔
•(2)两相邻开孔中心的距离(对曲面间距以弧长计算)应 不小于两孔直径之和的两倍;
•(3)接管公称外径小于或等于89mm;
•(4)接管最小壁厚满足下表3-9的要求。
接管公称 外径
25 32 38 45 48 57 65 76
浅谈压力容器的开孔补强设计
…
罐 年月 6 黼
C h 中 i n a 国 C 化工贸 h e m i c a l T 易 r a d e
浅 谈压 力 容器 的开 孔 补 强设 计
李1 溢 D J - 亚 I
( 北 京石 油化 工工程 有限公 司西 安分公 司 。陕西西 安 71 0 0 7 5)
提 出其适 用范 围为 :1 O ≤ ( D i + 2 T )I T≤5 0 0 ,且 d i /( Di + 2 T ) ≤0 . 8 。 而在 B 9的附 录 中又 指 出 ,对 于具 有 大开 孔 的薄 壁壳 体 ,按 压 力面 积 的 设计 只能满 足静 载荷 设计 要求 ,不能 满 足安 定性 要求 ;而按 B篇 设 计 的容器 应 当满 足安 定性 要求 ,即在 设计 寿命 内 ,允许 全幅 度 的压 力 循环 不超过 1 0 0 0 次 。但该 附录 并未给 出按压 力面 积法设 计不满 足安 定 性要 求 的容器 开孔 率 与壁厚 比之定 量数 值 。这 是 因为压 力面 积 法无 法
此 外 ,笔 者还 想补充 一种 不另行 补强 的情况 : 当设备 壳体 有 效厚 度 大于 等于 其 计算 厚 度的 2倍 时 ,壳 体开 孔 补 强 也是 可 以免 除计 算 的。此 种 方案 的 提 出是 用等 面积 补强 法 来推 导 出 来 的 ,大 多 出现 在操 作 条 件不 苛 刻的 换热 器 设计 当 中 ,此 时 为 了保证 设 备 的刚性 对壳 体 的最 小厚 度 进行 了 要求 ,而 此 最小 厚度 有 时会 大于 壳体 的 计算厚 度一 倍甚 至更 多。
重要 内容 。
具 体对 压力容 器 的开孔 补强 设计方 案主要 包括 以下 四种 :
浅析压力容器常规设计规范中的开孔补强设计
浅析压力容器常规设计规范中的开孔补强设计压力容器的开孔补强设计是压力容器设计的重要环节。
目前,国内压力容器按常规规范设计开孔补强时的常用标准主要有GB150—1998《钢制压力容器》(以下简称GB150)、HG2058-1998《钢制化工容器强度计算规定》(以下简称HG20582)及ASME 锅炉及压力容器规范第Ⅷ卷第一册《压力容器建造规则》(以下简称ASME). GB150是强制性国家标准,是设计的最低要求,超出GB150开孔范围时,可以采用HG20582计算并遵循HG20583—1998《钢制化工容器结构设计规定》(以下简称HG20583)规定结构进行设计。
压力容器开孔补强设计的方法有很多,如等面积法、压力面积法、安定性分析法、极限分析法、PVRC法、增量塑性理论方法及实验屈服法等等.鉴于软硬件条件的限制和从设计成本考虑,国内一般采用等面积法和压力面积法进行开孔补强设计,上面提及的设计规范就是采用这两种方法设计开孔补强的.1。
各规范开孔补强方法的理论基础GB150和ASME规范均采用等面积法进行开孔补强设计,而HG20582中的补强计算采用的是压力面积补强法。
压力面积法与等面积法的实质是一致的,都是从确保容器受载截面的一次平均应力(平均强度)在一倍许用应力水平的计算方法,都未计及开孔边缘的局部应力和峰值应力对开孔的作用,只是两种方法对壳体有效补强范围的确定上有所不同;在补强金属面积的配置上,压力面积法比等面积法更具有密集补强的特点,对缓和接管根部应力集中的作用较大。
2各规范开孔补强方法的适用范围比较GB150和ASME规范均适用于壳体上开圆形、椭圆形(或类似形状)或长圆形孔.GB150规定孔的短径与长径之比应不大于0。
5;而ASME规定当短径与长径之比小于0. 5时,应增强短径方向的补强。
各规范对开孔直径的相对大小均有限制:GB150适用于d /D t ≤0.5;HG20582适用于d /Dt ≤0.8;而ASME适用于d /D t ≤0。
压力容器的开孔与补强
压力容器的开孔与补强压力容器是一种用于贮存和运输高压气体、液体或者混合物的设备。
它们通常需要承受巨大的压力,在日常使用中,压力容器容易出现开孔和损伤的情况。
这种情况下,我们需要对压力容器进行修复和加固。
下面,我们将重点探讨压力容器的开孔与补强的相关知识。
1. 压力容器开孔的原因压力容器开孔的主要原因是意外撞击和磨损。
在使用过程中,如果受到了外力的冲击或者过度的磨损,压力容器的表面很容易出现开孔或者裂缝。
另外,压力容器还可能在制造和储存过程中出现缺陷,导致它们容易出现开孔和损伤。
2. 压力容器补强的方法常见的压力容器补强方法包括金属厚板贴补、涂覆材料和拉毛加固等。
(1) 金属厚板贴补:该方法是在压力容器的开孔处贴补一块同样厚度的金属板,然后使用焊接技术将其固定。
这种方法的优点是容易操作,效果比较显著,但是需要小心操作,否则可能会导致更严重的气体泄漏。
(2) 涂覆材料:这种方法是把一个薄的涂覆材料铺在压力容器的表面,在开孔处多涂几层。
涂覆材料通常是耐高温、抗腐蚀的特殊塑料或者橡胶材料。
该方法的优点是简单易行,不会对整个压力容器造成太大的影响。
(3) 拉毛加固:这种方法是在压力容器的开孔处用拉毛工具让金属拉伸,使其保持平整。
然后在开孔处焊接一块金属板,以加强其整体性能。
拉毛加固的优点是成本较低,对环境污染较小,适合于一些小型压力容器的修补。
3. 压力容器补强的预防措施在压力容器的设计与制造中,预防措施是非常重要的。
以下几点应该注意:(1) 在制造过程中确保压力容器表面光滑、整齐,不要有裂缝或者瑕疵。
(2) 在储存和运输时要轻拿轻放,防止碰撞和磨损。
(3) 在使用过程中,要对压力容器的外部结构进行定期检查,发现缺陷及时修复。
总之,压力容器是现代工业中必不可少的储存和运输设备。
在使用过程中,如果出现了开孔和损伤的情况,我们应该及时进行修复和加固,以确保其安全稳定运行。
同时,在设计、制造和储存过程中,也要注意预防措施,减少压力容器出现开孔和损伤的可能性。
浅谈压力容器开孔补强的方法及计算
浅谈压力容器开孔补强的方法及计算发布时间:2021-08-13T10:44:23.333Z 来源:《科学与技术》2021年4月10期作者:韩秋菊[导读] 本文论述了在压力容器的设计中,采用开孔补强的设计方法,由于开孔补强有很多种,本文对其中几种进行深入的分析比较。
浅谈压力容器开孔补强的方法及计算韩秋菊中石化上海工程有限公司上海 ?200120摘要:本文论述了在压力容器的设计中,采用开孔补强的设计方法,由于开孔补强有很多种,本文对其中几种进行深入的分析比较。
关键词:压力容器,开孔补强,计算1.引言随着工业化的发展,压力容器在化工行业越来越普遍,其安全性也越来越受到重视。
开孔补强计是压力容器设计中必不可少的一部分,压力容器开孔后,不仅整体强度削弱,而且还因为开孔造成的应力集中造成开孔边缘局部的高应力,在制造过程中,开孔部分不可避免的形成缺陷与残余应力,于是,开孔附近就往往成为容器的破坏源,因此,在压力容器设计中必须充分考虑开孔补强问题。
2.开孔补强常用的方法2.1等面积补强法等面积补强法是我国压力容器标准GB150中介绍的一种补强方法。
等面积补强法的原则是:在容器和接管连接处周围补强的截面积等于壳体因开孔所减少的截面积。
这种补强的方法是以双向受拉伸的无限大平板上开有小孔时孔边的应力集中作为理论基础的,即仅考虑壳体中存在的拉伸薄膜应力,且以补强壳体的一次应力强度作为设计准则,故对小直径的开孔安全可靠。
同时该方法比较安全可靠,使用简便,在中低压容器设计中较多采用,这也是我们平时设计中最为常见的一种补强方法。
2.2压力面积补强法压力面积补强法是西德AD压力容器规范中采用的补强方法,它的设计原理和等面积法补强方法相同,不同的是对于壳体补强有效范围规定不同。
压力面积补强法开孔率可达0.8,所以当开孔率超过等面积补强时,可以采用压力面积补强。
经过许多实例考证,由于此法计算结果与实际应力相差较大,所以在设计中此种补强方法并不常见。
浅谈常规压力容器的开孔补强设计
浅谈常规压力容器的开孔补强设计摘要:在压力容器上开孔,将会使压力容器的承压能力降低,在其设计工艺条件下会产生危险,因此压力容器开孔后需进行补强,本文介绍了压力容易开孔补强的两种方法和应注意的问题,并针对实例进行了计算演示。
关键词:压力容器补强开孔随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
开孔补强设计是压力容器设计中必不可少的一部分,标准和规范中虽然对设计和计算都作了较为详细的规定,但安全、经济、合理的设计仍是摆在我们面前的一个课题。
一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
按照GB150-1998《钢制压力容器》规定,在压力容器的设计过程中,应采用适当的开孔补强设计。
下面就对压力容器的开孔补强进行分析。
一、开孔补强方法的选择1.压力面积法压力面积是西德AD规范中采用的开孔补强方法,其开孔率可达0.8,较等面积法为大。
当开孔率超出等面积法适用范围时,常采用该法进行补强:压力面积法的意义如下。
式中,AP-为补强有效范围内的压力作用面积;Aσ-为补强有效范围内的壳体、接管、补强金属的截面积;P-设计压力;[σ]-材料许用应力公式(1)是以在壳体有效补强区域中的压力载荷与壳体的承载能力相平衡为基础的,即压力在壳体受压面积上形成的载荷与有效补强范围中的壳体、接管、补强材料的面积所具有的承载能力相平衡。
由式(1)的变形得出式(1a):式中左端项即压力在壳体受压面积上形成的载荷。
式中右端项为材料所具有的承载能力材料的承载能力,应大于压力引起的载荷,所以使用不等号相联接。
右端项中是由于采用“中径”公式的缘故。
2.等面积补强法等面积法是以拉伸的开孔大平板为计算模型的。
但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力,故该方法不能相适应。
补强计算时,在有效补强范围内的所有多余面积(即有效厚度提供的面积扣除壳体或接管本身强度所需的面积)均可作为补强面积。
压力容器的开孔与补强
压力容器的开孔与补强本章重点内容及对学生的要求:回转壳体上开小孔造成的应力集中;开孔补强的原则、补强结构和补强运算;不另行补强的要求;GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔邻近的应力集中1、 有关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列阻碍:开孔破坏了原有的应力分布并引起应力集中。
接管处容器壳体与接管形成结构不连续应力。
壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法运算出的最大应力为σmax ,则弹性应力集中系数为: σσmax =t K (1) 压力容器设计中关于开孔咨询题研究的两大方向是:研究开孔应力集中程度,估算Kt 值;在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and su bjected to uniform tension设有一个尺寸专门大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中咨询题能够利用弹性力学的方法进行求解。
承担单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔邻近的应力重量为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a ra r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处: σσστπθθθ3,0max 2===±=r 应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向平均拉伸应力作用时,孔边邻近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边邻近任意点的受力为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a r a r r (3) Fig. 3 Variation in stress in a cylindrical shell containing a circular h ole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
压力容器设计开孔和开孔补强设计
4.3.5 开孔和开孔补强设计
三、允许不另行补强的最大开孔直径
强度裕量
接管和壳体实际厚度大于强度需要的厚度 接管根部有填角焊缝 焊接接头系数小于1但开孔位置不在焊缝上等等
上述因素相当于对壳体进行了局部加强,降低了薄膜应力从 而也降低了开孔处的最大应力。因此,对于满足一定条件的 开孔接管,可以不予补强。
B=2d B=d+2δn+2δnt
(4-79)
式中 B—补强有效宽度,mm; δn—壳体开孔处的名义厚度,mm; δnt—接管名义厚度,mm。
浙江大学承压设备研究室20
4.3.5 开孔和开孔补强设计
内外侧有效高度: 按式(4-80)和式(4-81)计算,分别取式中较小值
外侧高度
h1 dnt
h1=接管实际外伸高度
应用:
高强度低合金钢制压力
容器由于材料缺口敏感 性较高,一般都采用该
结构,但必须保证焊缝 全熔透。
浙图江4大-3学7承(压b设)备研究室10
4.3.5 开孔和开孔补强设计
(3)整锻件补强
整体锻件
图4-37 (c)
浙江大学承压设备研究室11
4.3.5 开孔和开孔补强设计
结构: 将接管和部分壳体连同补强部分做成整体锻件,再与 壳体和接管焊接,见(c)图。
优点:长期实践经验,简单易 行,当开孔较大时,只要对其 开孔尺寸和形状等予以一定的 配套限制,在一般压力容器使 用条件下能够保证安全,因此 不少国家的容器设计规范主要 采用该方法,如ASME Ⅷ-1和 GB150等。
浙江大学承压设备研究室14
4.3.5 开孔和开孔补强设计
(2)极限分析补强 定义: 带有某种补强结构的接管与壳体发生塑性失效时的极 限压力和无接管时的壳体极限压力基本相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直径开孔容器等。
2020/4/22
12
4.3.5 开孔和开孔补强设计
二、开孔补强设计准则
开孔补强设计: 指采取适当增加壳体或接管厚度的方法将应 力集中系数减小到某一允许数值。
开孔补强设计准则
弹性失效设计准则——等面积补强法 塑性失效准则—极限分析法
2020/4/22
13
4.3.5 开孔和开孔补强设计
2020/4/22
16
四、等面积补强计算
主要用于补强圈结构的补强计算 GB150对开孔范围的要求:
(1)对开孔直径的限制
开孔部位
允许开孔孔径
筒体 凸形封头
Di≤1500mm:d≤ Di/2,且不大于520mm; Di>1500mm: d≤ Di/3,且不大于1000mm
d≤ Di/2
平板形封头
d≤ Di/2
2020/4/22
15
4.3.5 开孔和开孔补强设计
三、允许不另行补强的最大开孔直径
强度裕量
接管和壳体实际厚度大于强度需要的厚度 接管根部有填角焊缝 焊接接头系数小于1但开孔位置不在焊缝上等等
上述因素相当于对壳体进行了局部加强,降低了薄膜应力从 而也降低了开孔处的最大应力。因此,对于满足一定条件的 开孔接管,可以不予补强。
优点:
补强金属集中于开孔应力最大部位,能最有效地降低 应力集中系数;可采用对接焊缝,并使焊缝及其热影 响区离开最大应力点,抗疲劳性能好,疲劳寿命只降 低10~15%。
缺点: 锻件供应困难,制造成本较高。
应用: 重要压力容器,如核容器、材料屈服点在500MPa以
上的容器开孔及受低温、高温、疲劳载荷容器的大
缺点: 1)与壳体金属之间不能完全 贴合,传热效果差,在中温以 上使用时,存在较大热膨胀差, 在补强局部区域产生较大的热 应力; 2)与壳体采用搭接连接,难 以与壳体形成整体,抗疲劳性 能差。
2020/4/22
图4-37 (a) 8
4.3.5 开孔和开孔补强设计
应用: 一般使用在: 静载、常温、中低压、 材料的标准抗拉强度低于540MPa、 补强圈厚度小于或等于1.5δn、 壳体名义厚度δn不大38mm的场合。
4. 压力容器设计 CHAPTER Ⅳ
Design of Pressure Vessel
4.3 常规设计
4.3.5 开孔和开孔补强设计
2020/4/22
1
压力容器开孔
2020/4/22
2
压力容器开孔
2020/4/22
3
4.3.5 开孔和开孔补强设计
压力容器的轻型化 发展使其显得越加
严重!
开孔带来的问题
m
n
削弱器壁的强度 产生高的局部应力
m
n
2020/4/22
4
开孔接管根部应力集中的特点
• 应力集中的范围是很有限的 • d/D越大,应力集中越严重 • δ/D越小,应力集中越严重 • 增大接管壁厚,可减小应力集中 • 球壳上开孔的应力集中小于柱壳上开孔的应力集中
2020/4/22
5
应力集中对容器安全使用的影响
(1)等面积补强
定义:壳体因开孔被 削弱的承载面积,须 有补强材料在离孔边 一定距离范围内予以
等面积补偿。
问题:没有考虑开孔处应力集中的 影响,没有计入容器直径变化的影 响,补强后对不同接管会得到不同 的应力集中系数,即安全裕量不同, 因此有时显得富裕,有时显得不足。
原理:以双向受拉伸的无限 大平板上开有小孔时孔边的 应力集中作为理论基础的, 即仅考虑壳体中存在的拉伸 薄膜应力,且以补强壳体的 一次应力强度作为设计准则。 故对小直径的开孔安全可靠。
B=2d B=d+2δn+2δnt
(4-79)
2020/4/22
式中 B—补强有效宽度,mm; δn—壳体开孔处的名义厚度,mm; δnt—接管名义厚度,mm。
20
4.3.5 开孔和开孔补强设计
内外侧有效高度: 按式(4-80)和式(4-81)计算,分别取式中较小值
外侧高度
h1 dnt
应力集中
局部 塑性 变形
疲劳裂纹
破裂
交变 载荷
2020/4/22
6
4.3.5 开孔和开孔补强设计
一、补强结构
局部补强
补强结构
整体补强
补强圈补强 厚壁接管补强 整锻件补强
2020/4/22
7
4.3.5 开孔和开孔补强设计
(1)补强圈补强 结构: 补强圈贴焊在壳体与接管连接处,见(a)图。
优点: 结构简单,制造方便,使用经验丰富;
锥形封头
2020/4/22
d≤ Di/3
注:此处的Di是指开孔中心处锥体内直径
17
(2)在椭圆封头或碟形封头过渡部分开孔时,其孔的中心 线宜垂直于封头表面
(3)尽量不在焊缝上开孔,如果避不开必须在焊缝上开孔 时,则在开孔中心为圆心,以1.5倍开孔直径为半径的圆 中所包容的焊缝,必须进行100%的探伤。
标准:
HG21506-92《补强圈》,JB/T4736-95《补强圈》
2020/4/22
9பைடு நூலகம்
4.3.5 开孔和开孔补强设计
(2)厚壁接管补强
结构: 特点:
在开孔处焊上一段厚壁接管,见(b)图。
补强处于最大应力区域,能更有效地降低应力集中 系数。接管补强结构简单,焊缝少,焊接质量容易
检验,补强效果较好。
应用:
高强度低合金钢制压力
容器由于材料缺口敏感 性较高,一般都采用该
结构,但必须保证焊缝 全熔透。
2020/4/22
图4-37 (b) 10
4.3.5 开孔和开孔补强设计
(3)整锻件补强
整体锻件
图4-37 (c)
2020/4/22
11
4.3.5 开孔和开孔补强设计
结构: 将接管和部分壳体连同补强部分做成整体锻件,再与 壳体和接管焊接,见(c)图。
2020/4/22
优点:长期实践经验,简单易 行,当开孔较大时,只要对其 开孔尺寸和形状等予以一定的 配套限制,在一般压力容器使 用条件下能够保证安全,因此 不少国家的容器设计规范主要 采用该方法,如ASME Ⅷ-1和 GB150等。
14
4.3.5 开孔和开孔补强设计
(2)极限分析补强
定义:
带有某种补强结构的接管与壳体发生塑性失效时的极 限压力和无接管时的壳体极限压力基本相同。
3d
2020/4/22
100%探伤
18
4.3.5 开孔和开孔补强设计
(3)有效补强范围 在一定范围内能起 补强作用,除了此 范围,则起不到补 强作用。
有效补强区:
矩形WXYZ, 见图4-38。
2020/4/22
图4-38
19
4.3.5 开孔和开孔补强设计
有效宽度B: 按式(4-79)计算,取二者中较大值