《函数及其图像》测试及答案

合集下载

初一数学函数及其图像试题

初一数学函数及其图像试题

初一数学函数及其图像试题1.(11·永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()【答案】A【解析】略2.(6分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.【答案】(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.【解析】(1)甲印刷厂收费表示为:甲厂每份资料印发费×材料的份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;(2)先把x=2400代入(1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.试题解析:解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.2x+500=980(元),乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.【考点】列代数式,求代数式的值3.A、B两仓库分别有水泥15吨和35吨,C、D两工地分别需要水泥20吨和30吨.已知从A、B仓库到C、D工地的运价如表:到C工地到D工地(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为10吨时,那么总运输费为多少元?【答案】(1)15-x;9x+180;(2)(2x+515)元;(3)535元.【解析】(1)A仓库原有的20吨去掉运到C工地的水泥,就是运到D工地的水泥;首先求出B仓库运到D仓库的吨数,也就是D工地需要的水泥减去从A仓库运到D工地的水泥,再乘每吨的运费即可;(2)用x表示出A、B两个仓库分别向C、D运送的吨数,再乘每吨的运费,然后合并起来即可;(3)把x=10代入(2)中的代数式,求得问题的解.试题解析:(1)从A仓库运到D工地的水泥为:(15-x)吨,从B仓库将水泥运到D工地的运输费用为:[35-(15-x)]×9=(9x+180)元;(2)总运输费:15x+12×(15-x)+10×(15-x)+[35-(15-x)]×9=(2x+515)元;(3)当x=10时,2x+515=535.答:总运费为535元.【考点】1.列代数式;2.代数式求值.4.重庆某餐饮集团公司将沙坪坝下属一个分公司对外招商承包,有符合条件的两个企业甲、乙,分别拟定上缴利润方案如下:甲:每年结算一次上缴利润,第一年上缴利润5万元,以后每年比前一年增加5万元;乙:每半年结算一次上缴利润,第一个半年上缴利润1.5万元,以后每半年比前一半年增加1.5万元;(1)如果企业乙承包一年,则需上缴的总利润为万元.(2)如果承包4年,你认为应该承包给哪家企业,总公司获利多?为什么?(3)如果承包n年,请你用含n的代数式分别表示两企业上缴利润的总金额(单位:万元).【解析】(1)4.5;(2)该承包给企业乙,总公司获利多,理由见解析;(3)企业甲承包n年上缴的利润为:(万元),企业乙承包n年上缴的利润为:1.5n(2n+1)(万元).(1)企业乙承包一年:上半年上缴利润1.5万元,下半年上缴利润(1.5+1.5)万元;(2)根据两企业的利润方案计算即可;(3)归纳总结,根据题意列出两企业上缴利润的总金额即可.试题解析:(1)1.5+(1.5+1.5)=4.5(万元);(2)由题意,企业甲承包4年上缴的利润为:5+10+15+20=50(万元),企业乙承包4年上缴的利润为:1.5+1.5×2+1.5×3+1.5×4+1.5×5+1.5×6+1.5×7+1.5×8=1.5×(1+2+3+4+5+6+7+8)=54(万元),54-50=4(万元),即企业乙比企业甲上缴利润多4万元,所以该承包给企业乙,总公司获利多;(3)企业甲承包n年上缴的利润为:5+10+15+20+…+5n=5×(1+2+3+…+n)=(万元), 企业乙承包n年上缴的利润为:.5+1.5×2+1.5×3+1.5×4+…+1.5×2n=1.5×(1+2+3+…+2n)=1.5×=1.5n(2n+1)(万元).【考点】①列代数式;②有理数的混合运算.5.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【答案】B【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【考点】函数的概念.6.(2015秋•乳山市期末)利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【答案】(1)y与x之间的关系式为y=2x+60;(2)该天童装的单价是每件30元.【解析】(1)设y=kx+b,把(0,60)和(20,100)代入解答即可;(2)根据题意得出方程80=2x+60,进而解答即可.解:(1)y=kx+b,由题意知,当x=0时,y=60,可得:b=60,所以解析式为y=kx+60,当x=20时,y=100,可得:100=20k+60,解得:k=2,所以y与x之间的关系式为y=2x+60;(2)由80=2x+60,解得x=10,所以40﹣10=30(元),所以该天童装的单价是每件30元.【考点】一次函数的应用.7.函数y=ax2+a与(a≠0),在同一坐标系中的图象可能是()A.B.C.D.【答案】D【解析】应分a>0和a<0两种情况分别讨论,逐一排除.解:当a>0时,二次函数y=ax2+a的图象开口向上,且对称轴为x=0,顶点坐标为(0,a),故A、C都可排除;当a<0时,二次函数y=ax2+a的图象开口向下,且对称轴为x=0,顶点坐标为(0,a),故排除A,C,函数的图象在二、四象限,排除B,则D正确.故选D.【考点】二次函数的图象;反比例函数的图象.8.如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)A(4,0),C(0,8);(2)y=﹣x+8;(3)满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【解析】(1)已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.解:(1)令y=0,则﹣2x+8=0,解得x=4,∴A(4,0),令x=0,则y=8,∴C(0,8);(2)由折叠可知:CD=AD,设AD=x,则CD=x,BD=8﹣x,由题意得,(8﹣x)2+42=x2,解得x=5,此时AD=5,∴D(4,5),设直线CD为y=kx+8,把D(4,5)代入得5=4k+8,解得k=﹣,∴直线CD的解析式为y=﹣x+8;(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图1,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=5,AP=BC=4,PD=BD=8﹣5=3,由AD×PQ=DP×AP得:5PQ=3×4,∴PQ=,∴x=4+=,把x=代入y=﹣x+8得y=,P此时P(,)③当点P在第二象限时,如图2,同理可求得:PQ=,在RT△PCQ中,CQ===,∴OQ=8﹣=,此时P(﹣,),综上,满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【考点】一次函数综合题.9.抚州市正在争创省文明城市,为了美化城市,改善人们的居住环境,我市深入开展绿化彩化美化工程,通过植草、种树、修建公园及树阵式停车位等多项措施,使城区绿地面积不断增加.请根据图中所提供的信息,回答下列问题:(1)2014年底的公园绿地面积为________公顷,比2012年底增加了________公顷;(2)在2013年,2014年,2015年这三年中,绿地面积增加最多的是________年;(3)为满足城市发展的需要,计划到2017年底使城区公园绿地总面积达到1200公顷,试求2017年底公园绿地面积对2015年底的增长率.【答案】(1)850;310;(2)2014;(3)20%.【解析】(1)观察折线图即可得出结论;(2)通过计算比较即可得出结论;(3)利用求增长率的计算公式:(增加后的-增加前的)÷增加前的,即可得出结论.试题解析:(1)观察折线图得知,2014年底的公园绿地面积为850公顷,比2012年底增加了850-540=310公顷.故答案为850;310;(2)通过计算2013年增加:650-540=110公顷,2014年增加:850-650=200公顷,2015年增加:1000-850=150公顷,故绿地面积增加最多的是2014年;(3)由题意可得,2017年底公园绿地面积对2015年底的增长率是(1200-1000)÷1000=20%.【考点】1.折线统计图分析与计算;2.增长率计算.10.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是()A.B.C.D.【答案】A【解析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短,故选A.。

2019-2020学年度华东师大版数学八年级下册第十七章 《函数及其图像》(含解析)第17章 单元测试

2019-2020学年度华东师大版数学八年级下册第十七章    《函数及其图像》(含解析)第17章  单元测试

第十七章函数及其图像单元测试班级:姓名:学号:成绩:一、选择题1.对于圆的面积公式S=πR2,下列说法中,正确的为()A. π是自变量B. R是常量C. R是自变量D. π和R是都是常量.其中y是x函数的是() 2.关于变量x,y有如下关系:①x−y=5;②y2=2x;③:y=|x|;④y=3xA. ①②③B. ①②③④C. ①③D. ①③④3.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.4.如图,是反比例函数y1=k和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()xA. 1<x<6B. x<1C. x<6D. x>15.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大6.已知反比例函数y=−2,下列结论不正确的是()xA. 图象经过点(−2,1)B. 图象在第二、四象限C. 当x<0时,y随着x的增大而增大D. 当x>−1时,y>27.当x=−3时,函数y=x2−3x−7的函数值为()A. −25B. −7C. 8D. 11(k≠0)的图象经过点(2,−3),则k的值为()8.若反比例函数y=kxA. 5B. −5C. 6D. −69.若反比例函数y=2k+1的图象位于第一、三象限,则k的取值可以是()xA. −3B. -2C. -1D. 010.在平面直角坐标系中,点P(-2,3-π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米12.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题13. 王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______. 14. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是______.15. 若一次函数y =−2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是 (写出一个即可).16. 已知点P(x,y)在第四象限,且到y 轴的距离为3,到x 轴的距离为5,则点P 的坐标是 . 17. 已知y =(k −1)x +k 2−1是正比例函数,则k = . 18. 函数y =√x+2−√3−x 中自变量x 的取值范围是 .19. 如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,−1)和(−3,1),那么“卒”的坐标为 .20.如图,在平面直角坐标系中,A是x轴上的任意一点,BC平行于x轴,分别交y=4x (x>0),y=kx(x<0)的图象于B,C两点若△ABC的面积为3,则k的值为______.三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。

(完整版)函数及其图像测试题(含答案)

(完整版)函数及其图像测试题(含答案)

函数及其图像测试题班级: 姓名: 学号:一、单项选择(每题3分,共24分)1. 下列图像中,表示y 是x 的函数的是( )Y y y yx x xA B C D2.下列函数中,分别是一次函数和反比列函数的是( )A.y 2=2x +1和y =x 5B.y =1x +1和y =π2C.|y |=x +2和y =4xD.y =34+x 和y =5x −1 3.已知函数y =√2−x 1−x ,则自变量x 的取值范围是( )A.x ≠1B.x ≤2C.x ≠1且x ≤2D.任意实数4.已知一次函数y =k 2x +k (k 为常数),则这个函数的图像可能经过( )A.第一、二、三象限或第一、三、四象限B.第一、二、三象限或第二、三、四象限C.第一、二、四象限或第一、三、四象限D.第二、三、四象限或第一、三、四象限5.在平面直角坐标系中,点A (2a+3,1-b )与点B(2-3a,4b-1)关于y 轴对称,则点C(a+1,b+2) 在( )A.第一象限B.第二象限C.第三象限D.第四象限6.函数y =kx +b 和函数y =kx (k ≠0,k 为常数)在同一指教坐标系内的图像可能是( ) y y y yxA B C 7.在匀速直线运动中,有公式v =s t ,其中v 表示速度,s 表示路程,t 表示时间,则s 与t 的关系是( )A.不是函数关系B.正比列函数关系C.反比例函数关系D.是不能确定的函数关系8.如右图,MN ⊥PQ,垂足为点O ,点A 、C 在直线MN 上运动,点B 、D 在直线PQ 上运动。

顺次连结点A 、B 、C 、D ,围成四边形ABCD 。

当四边形ABCD 的面积为12时,设AC 长为x, BD 长为y ,则下图能表示x 与y关系的图像是( )yy3xA By yx x C D二、填空题(每小题3分,共24分)1.一次函数y =4x 与反比例函数y =16x 的交点坐标是 。

2.已知函数y =(m +1)x 2−|m |+n +4是正比列函数,则m= ,n= 。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间与火车在隧道内的长度之间的关系用图象描述大致是( )【答案】A【解析】根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选A.2.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是()A B C D【答案】D【解析】依题意,0-20分钟散步,离家路程增加到900米, 20-30分钟看报,离家路程不变,30-45分钟返回家,离家路程减少为0米.故选D.3.(本小题满分5分)如图所示,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东, 在M的南偏东方向上有一点A,以A为圆心、500米为半径的圆形区域为居民区,在MN上另一点B ,测得 BA 的方向为南偏东.已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?【答案】200+200>500,不会穿过居民区【解析】地铁路线不会穿过居民区.理由:过A作AC⊥MN于C,设AC的长为xm,∵∠AMN=30°∴AM=2xm,MC=xm∵测得BA的方向为南偏东75°∴∠ABC=45°∴∠ABC=∠BAC=45°∵MB=400m∴x-x=400,解得:x==200(+1)(m)≈546(m)>500(m)∴不改变方向,地铁线路不会穿过居民区.4.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<3【答案】A.【解析】经过第二、三、四象限是3-k<0,-k<0,∴k>3,k>0,取公共解k>3,故选A.【考点】一次函数图像性质.5.点A(3,)和点B(-2,)都在直线y=3x+2上,则,的大小关系是(选填“>”“=”“<”).【答案】y1 >y2.【解析】解析式中K=3,y随x的增大而增大,3>-2,∴y1 >y2.【考点】一次函数的增减性.6.(10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?【答案】(1)440;(2)y2=40x﹣80;(3)4.4小时【解析】(1)观察图形结合点(0,80)(0,360)可知:B、C之间的距离为80千米,A、C之间的距离为360千米,所以A,B两地相距360+80=440千米;(2)先根据条件求出点P的坐标(11,360),设y2=kx+b,代入点(2,0)、(11,360)解方程组即可;(3)求得y1的函数解析式,然后与(2)中的函数解析式联立方程,解方程组即可.试题解析:(1)填空:A,B两地相距:360+80=440千米;(2)由图可知货车的速度为80÷2=40千米/小时,货车到达A地一共需要2+360÷40=11小时,设y2=kx+b,代入点(2,0)、(11,360)得,解得,所以y2=40x﹣80;(3)设y1=mx+n,代入点(6,0)、(0,360)得解得,所以y1=﹣60x+360由y1=y2得,40x﹣80=﹣60x+360解得x=4.4答:客、货两车经过4.4小时相遇.【考点】一次函数的应用.7.直线y=kx+3与y=-x+3的图象如图所示,则方程组的解集为.【答案】【解析】根据题意可知方程组得解集即为两个一次函数的图像的交点坐标,因此可直接求得方程组得解为.【考点】二元一次方程组与一次函数的图像8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.已知一次函数经过两点(,)(,),若,则当时,().A.B.C.D.无法比较【答案】B.【解析】一次函数当时,y随x的增大而减小,若,则,故选B.【考点】一次函数性质.10.(本题12分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k 的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.【答案】(1)P(,);(2);(3)【解析】(1)把k=1代入l2解析式,然后与l1组成方程组,方程组的解即为p点坐标;(2)此题求出P点坐标是解题的关键,由点D为PA的中点即PD=AD,作PG⊥DF于点G,可证△PDG≌△ADE,得DE=DG=DF,PG是DF的垂直平分线,于是PD=PF得到对应两个底角相等,根据等角的余角相等,得到∠FCA=∠PAC,于是PC=PA,过点P作PH⊥CA于点H,因为点C和点A坐标可求。

八年级下册《函数及其图象》试卷及答案

八年级下册《函数及其图象》试卷及答案

八年级下册《函数及其图象》测验卷班级姓名座号成绩:________一、选择题(每题3分,共36分)1、函数y=12x-1的自变量的取值范围是( )A.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠122、下列函数中,y 随x 的增大而减小的有()①y=-2x+1 ②y=6-x ③y=-1+x3④y=(1- 2 )xA.1个B.2个C.3个D.4个3、正比例函数y=kx 和反比例函数y=kx在同一坐标系内的图象为()A B C D4、已知一次函数y=kx+b的图象经过第一、二、四象限,则反比例函数y=kbx的图象在( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5、一次函数y=kx+b 的图象如图所示,则k、b的符号()A. k<0,b>0.B. k>0,b>0.C. k<0,b<0.D. k>0,b<0.x6、如右图,P 是双曲线上一点,且图中的阴影部分的面积为3,则此反比例函数的解析式为( )A 、y=6xB 、y=- 6xC 、y=3xD 、y=- 3x7、 一次函数y=kx-k 的图象大致是 ( )8、如图,是一次函数y=kx+b 与反比例函数y= 2x的图像,则关于x 的方程kx+b=2x的解为( )A.x l =1,x 2=2B.x l =-2,x 2=-1C.x l =1,x 2=-2D.x l =2,x 2=-1 9、已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y=•- 1x的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 1 10、已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( )11、如图,过原点的一条直线与反比例函数y=kx(k<0)的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点的坐标为( ) A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b )12、如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<2 二.填空题(每小题2分,共24分)13、如果点P (-1,b )在直线y=2x+3上,那么点P 到x 轴的距离为__________. 14、已知两点(a ,3),(-2,b)均在直线3x+2y=12上,則a+b=____________. 15、若函数y=(a+3)x+a 2-9是正比例函数,则a= , 图像过______象限.16、等腰三角形的周长为16cm ,底边长为ycm ,腰长为xcm,则y 与x 之间的关系式为____________,自变量x 的取值范围为_________17、已知点A 的坐标为(2,-1),AB=4,AB ∥X 轴,则B 点的坐标为_________ 18、老师给出一个函数,甲,乙各指出了这个函数的一个性质:甲:第一,三象限有它的图象;乙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的函数___________19、若点M (1+a ,2b-1)在第三象限内,则点N (a-1,1-2b )点在第 象限;20、点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k= ,a= 21、已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 ________________。

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析

初三数学函数及其图像试题答案及解析1.对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,}=.若关于x 的函数y = min{,}的图象关于直线对称,则a、t的值可能是A.3,6B.2,C.2,6D.,6【答案】C【解析】如图所示,函数图象关于直线对称,则只能,观察图象两个函数交点为(3,0),则有18=,以上选项中2,6代入恰好合适。

时不存在。

故选C2.某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为(元)(利润=销售额-成本-广告费).若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为(元)(利润=销售额-成本-附加费).【1】当x=1000时,y= ▲元/件,w甲= ▲元【答案】190 67500;【2】分别求出,与x间的函数关系式(不必写x的取值范围);【答案】w甲= x2+150 x-72500,W乙= x2+(200)x【3】当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a的值;【答案】a=60【4】如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?【答案】选择甲3.对于一个函数,如果将=代入,这个函数将失去意义,我们把这样的数值叫做自变量x的奇异值,请写出一个函数,使2和-2都是这个函数的奇异值,你写出的函数为▲ .【答案】.答案不唯一,如等;【解析】函数自变量的奇异值就是函数没意义,如分式的分母为零等4.如图,直线(>0)与双曲线在第一象限内的交点为R,与轴的交点为P,与轴的交点为Q;作RM⊥轴于点M,若△OPQ与△PRM的面积是9∶1,则▲.【答案】2【解析】如图,有直线方程,得Q(0,-3)即因为RM⊥,所以△OPQ与△PRM相似。

第17章 函数及其图象【真题训练】(解析版)

第17章 函数及其图象【真题训练】(解析版)

第17章 函数及其图象[真题训练](解析版)一、选择题1.(2020湖北黄冈)在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A解:∵点(,)A a b -在第三象限,∴0a <,, ∴0b >,∴,∴点B 在第一象限, 故选:A .2.(2020四川遂宁)函数12-+=x x y 中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠1【答案】D .【解答】解:根据题意得:{x +2≥0x −1≠0解得:x ≥﹣2且x ≠1. 故选:D .3.(2020湖北武汉)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A. 32 B. 34C. 36D. 38【答案】C.解:设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知, 即201251235c +⨯-= 解得15()4c L =则当24x =时, 因此,解得36(min)a = 故选:C .4.(2020·安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(-1,2) B .(1,-2)C .(2,3)D .(3,4)【答案】B解:由一次函数的解析式,得:k =3y x -≠0,则y ≠3.∵一次函数y 随x 的增大而减小,∴k <0,即3y x-<0,故x >0、y <3或x <0、y >3,故选B.5.(2020·乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤-2B .x ≤-4C .x ≥-2D .x ≥-4【答案】C解析:先根据图像用待定系数法求出直线的解析式,然后根据图像可得出解集.因为直线y =kx +b 经过(0,1),(2,0)两点,所以⎩⎨⎧b =1,2k +b =0,解得⎩⎪⎨⎪⎧k =-12,b =1,故直线的解析式为y =-12x +1;将y =2代入得2=-12x +1,解得x =-2,由图像得到不等式kx +b ≤2的解集是x ≥-2.6.(2020·济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P,根据图象可知,方程x+5=ax+b 的解是( )A. x=20B.x=5C.x= 25D.x=15 【答案】A解析:由函数图象知,当x=20时,y=x+5=25,y=ax+b=25,所以方程x+5=ax+b 的解是x=20.7.(2020·湖北荆州)在平面直角坐标系中,一次函数1y x 的图象是( )A. B. C. D. 【答案】C解析:此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键. 观察一次函数的解析式,确定出k 与b 的符号,利用一次函数图象及性质判断即可.一次函数1yx 中,其中k =1,b =1,其图象为,故选C.8.(2020·凉山州)若一次函数y =(2m +1)x +m -3的图象不经过第二象限,则m 的取值范围是( ) A .m >-12 B .m <3 C .-12<m <3 D .-12<m ≤3 【答案】D解析:由题意得,解得-12<m ≤3,故选D . 9.(2020河南)若点A(-1,1y ), B(2,2y ),C(3,3y )在反比例函数xy 6-=的图像上,则1y , 2y ,3y 的大小关系为( ) A. 123y y y >> B. 231y y y >>C. 132y y y >>D. 321y y y >>【答案】C【详解】解:∵点在反比例函数6y x=-的图象上,∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<, ∴132y y y >>, 故选:C .10. (2020内蒙古呼和浩特)在同一坐标系中,若正比例函数y =k 1x 与反比例函数y =的图象没有交点,则k 1与k 2的关系,下面四种表述①k 1+k 2≤0;②|k 1+k 2|<|k 1|或|k 1+k 2|<|k 2|;③|k 1+k 2|<|k 1﹣k 2|;④k 1k 2<0.正确的有( ) A .4个 B .3个 C .2个 D .1个【答案】B解:∵同一坐标系中,正比例函数y =k 1x 与反比例函数y =的图象没有交点,若k 1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限, 则k 2<0,若k 1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限, 则k 2>0,综上:k 1和k 2异号,①∵k 1和k 2的绝对值的大小未知,故k 1+k 2≤0不一定成立,故①错误; ②|k 1+k 2|=||k 1|﹣|k 2||<|k 1|或|k 1+k 2|=||k 1|﹣|k 2||<|k 2|,故②正确; ③|k 1+k 2|=||k 1|﹣|k 2||<||k 1|+|k 2||=|k 1﹣k 2|,故③正确; ④∵k 1和k 2异号,则k 1k 2<0,故④正确; 故正确的有3个, 故选:B . 二、填空题11.(2020齐齐哈尔)在函数23-+=x x y 中,自变量x 的取值范围是 . 【答案】x ≥﹣3且x ≠2. 解:由题可得,{x +3≥0x −2≠0,解得{x ≥−3x ≠2,∴自变量x 的取值范围是x ≥﹣3且x ≠2, 故答案为:x ≥﹣3且x ≠2.12.(2020重庆B 卷)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚__________分钟到达B 地.【答案】12.解析:由图及题意易乙的速度为300米/分,甲原速度为250米/分,当x=25后,甲提速为400米/分,当x=86时,甲到达B地,此时乙距B地为250(25-5)+400(86-25)-300×86=3600.13.(2020·黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是________.【答案】y=-2x解析:本题考查了一次函数的性质、正比例函数的性质、点的坐标意义.∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=-x+1上,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2).设正比例函数解析式为y=kx,把P(-1,2)代入得2=-k,解得k=-2,∴正比例函数的解析式为y=-2x,因此本题答案为y=-2x.14.(2020·黔东南州)把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为__________ .【答案】y=2x+3解析:利用一次函数图象的平移规律“左加右减,上加下减”来解.∴把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1;再向上平移2个单位长度,得到y=2(x+1)﹣1+2=2x+3.15.(2020·宿迁)已知一次函数y=2x-1的图像经过点A(x1,1),B(x2,3)两点,则x1_______x2(填“>”、“<”或“=”).【答案】<.解析:∵k=2>0,∴y随x的增大而增大.∵1<3,∴x1<x2.故答案为<.16.(2020·南京)将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是________.【答案】y=12x+2解析:直线y=-2x+4与x、y轴的交点分别为(2,0)、(0,4),该两点逆时针旋转90°后的对应点分别是(0,2)、(-4,0).设旋转后的直线解析式为y=k x+b,代入点(0,2)、(-4,0),得:,解得:故旋转后的直线解析式为y=12x+2.17.(2020·毕节)一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象的两个交点分别是A(-1,-4),B(2,m),则a+2b=_________.【答案】-2,解析:本题考查一次函数与反比例函数的交点.解:把A (-1,-4)代入y =k x ,得-4=1k-,∴k =4.∴反比例解析式为y =4x.把B (2,m )代入,得m =42,∴m =2,∴B (2,2).把A (-1,-4),B (2,2)代入y =ax +b , 得解得∴a +2b =2+2×(-2)=-2. 故答案为-2.18.(2020北京)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_________. 【答案】0【解析】由于正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴021=+y y19.(2020成都)在平面直角坐标系中,已知直线与双曲线交于,两点(点在第一象限),直线与双曲线交于,两点.当这两条直线互相垂直,且四边形的周长为时,点的坐标为 .【答案】或. 【解答】解:联立与并解得:,故点的坐标为,, 联立与同理可得:点,这两条直线互相垂直,则,故点,,则点,则,同理可得:, 则,解得:或, 故点的坐标为或, 故答案为:或.xOy 4y x=A C A 1y x=-B D ABCD A 4y x =A 1y x=-D 1mn =-D (B 2255AB m AD m=+=14AB =⨯225552AB m m==+2m =12A20.(2020河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个. 【答案】 (1)-16 (2)5 (3)7 【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数ky x=(0x <)的图象经过T 1 ∴116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8) ∵L 过点4T ∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28 ∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值. 故答案为:(1)-16;(2)5;(3)7. 三、解答题21.(2020·宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地,两辆货车离开各自出发....地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?分析:本题考查了一次函数的图象和性质及实际应用.(1)根据函数图象中两点的坐标由待定系数法求得函数表达式;(2)计算出货车乙与货车甲相遇时间,货车甲正常到达B 地的时间,货车乙按要求到达B 地时间,根据速度、路程、时间关系列不等式求得最低速度.【答案】解:(1)设函数表达式为y =kx +b(k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得,解得.∴y 关于x 的函数表达式为y =80x -128(1.6≤x≤3.1)(注:x 的取值范围对考生不作要求)(2)当y=200-80=120(千米)时,120=80x-128,解得x=3.1.因为货车甲的行驶速度为80÷1.6=50(千米/小时),所以货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5-3.1-0.3=1.6(小时) .设货车乙返回B地的车速为v千米/小时,则1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米小时.22.(2020·绵阳)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?分析:(1)根据甲书店按标价8折出售,利用标价总额乘以0.8即为应支付金额y;在乙书店购书,若x≤100,则标价总额即为应支付金额;若x>100,则应支付金额y为100+0.6(x-100).(2)求出甲、乙两个书店应付金额相同的标价总额,当购书金额小于这个值时,则去甲书店省钱,购书金额大于这个值时,则去乙书店省钱.解:(1)甲书店应支付金额为:y1=0.8x;乙书店:当x≤100时,y=x;当x>100时,y=100+0.6(x-100).∴乙书店应支付金额为:y2=(2)当x>100时,若y1=y2,则0.8x=40+0.6x,解得x=200.∴当x<200时,去甲书店省钱,x=200时,去甲乙两家书店购书应付金额相同金额,当x>200时,去乙书店省钱.23.(2020·北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)值大于一次函数y=kx+b的值,直接写出m的取值范围.分析:(1)根据一次函数y=kx+b(k≠0)由y=x平移得到可得出k值,然后将点(1,2)代入y=x+b可得b值即可求出解析式;(2)由题意可得临界值为当x=1时,两条直线都过点(1,2),即可得出当x>1,m>2时,y=mx(m≠0)都大于y=x+1,根据x>1,可得m可取值2,可得出m的取值范围.解:(1)∵一次函数y=kx+b(k≠0)由y=x平移得到,∴k=1,将点(1,2)代入y=x+b可得b=1,∴一次函数的解析式为y=x+1;(2)当x>1时,函数y=mx(m≠0)的函数值都大于y=x+1,即图象在y=x+1上方,由下图可知:临界值为当x =1时,两条直线都过点(1,2), ∴当x >1,m >2时,y =mx (m ≠0)都大于y =x +1, 又∵x >1,∴m 可取值2,即m =2, ∴m 的取值范围为m ≥2.24.(2020·南通)如图,直线l 1:y =x +3与过点A (3,0)的直线l 2交于点C (1,m )与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.分析:(1)由已知先求出C 点坐标,再用待定系数法求出直线解析式.(2)由MN ∥y 轴可得M 、N 两点的横坐标相等,再由6MN AB ==,求出a 的值即可求出M 点坐标. 解:在y =x +3中,令x =0,得y =-3;∴B (-3,0), 把x =1代入y =x +3,得y =4,∴C (1,4), 设直线l 2的解析式为y =kx +b , ,解得. ∴y =-2x +6. (2)AB =3-(-3)=6,设(,3)M a a +,由MN ∥y 轴,得N (a,-2a +6),3(26)6MN a a AB =+--+==,解得3a =或1a =-, ∴M (3,6)或M (-1,2).25.(2020·抚顺本溪辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?分析:(1)将两组y 与x 的值代入解析式中,即可得解;(2)根据题意可以得到w 与x 之间的函数关系式,然后利用二次函数的性质,将其化成顶点式,然后在规定的取值范围内求出最大值.解:(1)设y 与x 之间的函数关系式为:y =kx +b (k≠0),根据题意,得 ,解得∴y 与x 之间的函数关系式为y =-5x +150. (2)根据题意,可得w =(x -10)(-5x +150) 整理得-5x2+200 x -1500=-5(x -20)2+500∵a=-5<0,开口向下,w 有最大值∴当x <20时,w 随x 的增大而增大,∵10≤x≤15,且x 为整数,∴当x =15时,w 有最大值,最大值=-5×(15-20)2+500=375 答:当每瓶洗手液的售价定为15元时利润最大,最大利润为375元. 26.(2020·滨州)如图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A 、B . (1)求交点P 的坐标; (2)求△PAB 的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.分析:本题考查了两条直线相交及面积,(1)把解析式联立,解方程组求出交点P 的坐标;(2)先求出A 、B 的坐标,然后根据三角形面积公式来求;(3)根据图象即可得出x 的取值范围. 解:(1)由直线112y x =--与直线22y x =-+得x=2,y=-2,∴P(2,-2); (2)直线112y x =--与直线22y x =-+中,令y=0,则- 12x-1=0与-2x+2=0,解得x=-2与x=1, ∴A(-2,0),B (1,0),∴AB=3,∴S△PAB= 12AB•|yP|=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.27.(2020·吉林)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L .在整个过程中,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如图所示.(1)机器每分钟加油量为_____L ,机器工作的过程中每分钟耗油量为_____L . (2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围. (3)直接写出油箱中油量为油箱容积的一半时x 的值.分析:(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可. 【详解】(1)由函数图象得:机器每分钟加油量为 机器工作的过程中每分钟耗油量为3050.5()6010L -=-故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作 则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点 设机器工作时y 关于x 的函数解析式y kx b =+ 将点代入得: 解得则机器工作时y 关于x 的函数解析式1352y x =-+; (3)设机器加油过程中的y 关于x 的函数解析式y ax = 将点(10,30)代入得:1030a = 解得3a =则机器加油过程中的y 关于x 的函数解析式3y x = 油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中 当30152y ==时,315x =,解得5x = ②在机器工作过程中 当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40.28.(2020北京)在平面直角坐标系xOy 中,一次函数的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【解析】(1)∵一次函数由x y =平移得到,∴1=k将点(1,2)代入b x y +=可得1=b ,∴一次函数的解析式为1+=x y .(2)当1>x 时,函数的函数值都大于1+=x y ,即图象在1+=x y 上方,由下图可知:临界值为当1=x 时,两条直线都过点(1,2),∴当2,1>>m x 时.都大于1+=x y .又∵1>x ,∴m 可取值2,即2=m ,∴m 的取值范围为2≥m29.(2020成都)在平面直角坐标系中,反比例函数的图象经过点,过点的直线与轴、轴分别交于,两点.(1)求反比例函数的表达式; (2)若的面积为的面积的2倍,求此直线的函数表达式.【解答】解:(1)反比例函数的图象经过点, , 反比例函数的表达式为; (2)直线过点,,过点的直线与轴、轴分别交于,两点,,,, 的面积为的面积的2倍,,,当时,, 当时,,直线的函数表达式为:,. 30.(2020乐山)如图,已知点A (-2,-2)在双曲线xk y =上,过点A 的直线与双曲线的另一支交于点B(1,a). (1)求直线AB 的解析式; (2)过点B 作BC x ⊥轴于点C ,连结AC ,过点C 作CD AB ⊥于点D .求线段CD 的长.解:(1)将点()22A --,代入k y x =,得4k =,即4y x=, 将(1)B a ,代入4y x=,得4a =,即(14)B ,, 设直线AB 的解析式为y mx n =+,将()22A --,、(14)B ,代入y mx n =+,得 ,解得∴直线AB 的解析式为22y x =+.(2)∵()22A --,、(14)B ,, xOy (0)m y x x=>(3,4)A A y kx b =+x y B C AOB ∆BOC ∆(0)m y x x=>(3,4)A 3412k ∴=⨯=12y x=y kx b =+A 34k b ∴+=A y kx b =+x y B C (b B k∴-0)(0,)C b AOB ∆BOC ∆2b ∴=±2b =23k =2b =-2k =223y x =+22y x =-∵BC x ⊥轴, ∴BC=4,∵,∴3BC CD AB ⨯===.。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,小手盖住的点的坐标可能为A B C D【答案】A【解析】解:小手盖住的点在第三象限,故选A。

2.已知正比例函数和反比例函数的图象交于点A(m,一2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.【答案】(1)反比例函数的解析式为y=;(2)-1<x<0或x>1;(3)四边形OABC是菱形.证明见解析.【解析】(1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC即可判定出四边形OABC的形状.试题解析:(1)设反比例函数的解析式为y=(k>0),∵A(m,-2)在y=2x上,∴-2=2m,∴m=-1,∴A(-1,-2),又∵点A在y=上,∴k=2,∴反比例函数的解析式为y=;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为-1<x<0或x>1;(3)四边形OABC是菱形.证明:∵A(-1,-2),∴OA=,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y=上,∴n=1,∴C(2,1),OC=,∴OC=OA,∴四边形OABC是菱形.【考点】反比例函数综合题.3.在平面直角坐标系中,把直线沿y轴向上平移两个单位后,得到的直线的函数关系式为____________________.【答案】y="2x-1"【解析】根据平移法则上加下减可得出平移后的解析式.由题意得:平移后的解析式为:y=2x-3+2=-2x-1.【考点】函数图像的平移4.如图,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1与y2的大小.【答案】(1)(1,2);y=;(2)当0<x<1时,;当x=1时,;当x>1时,;【解析】首先将点A的坐标代入一次函数解析式得出点A的坐标,将点A的坐标代入反比例函数解析式得出反比例函数的解析式;根据函数图象进行比较大小.试题解析:(1)将点A(m,2)代入一次函数可得:2=m+1 解得:m=1 ∴A(1,2),将A(1,2)代入反比例函数解析式可得:k=2 则反比例函数的解析式为:(2)根据函数图象可得:当0<x<1时,;当x=1时,;当x>1时,.【考点】反比例函数与一次函数.5.一次函数y=2x﹣4的图象与两坐标轴交点的距离是()A.B.C.D.【答案】B【解析】令y=2x﹣4=0,则x=2,令x=0,则y=-4,∴一次函数y=2x﹣4的图象与坐标轴交于A、B两点的坐标是A(0,﹣4),B(2,0),∴OA=4,OB=2,∴AB=,故选:B【考点】一次函数图象上点的坐标特征.6.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()【答案】A【解析】∵当k>0时,正比例函数y=kx的函数值y随x的增大而增大,∴一次函数y=x+k中,x的系数1>0,b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选:A.【考点】1.一次函数的图象;2.正比例函数的性质.7.(10分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,(1)求直线y=kx+b的表达式;(2)求不等式>kx+b>-2的解集.【答案】(1)y=x-1;(2)-1<x<2【解析】(1)由于直线y=kx+b经过点A(2,1),和B(-1,-2)两点,利用待定系数法求出函数解析式;(2)再组成不等式方程组解答.试题解析:(1)直线y=kx+b经过a(2,1),B(-1,-2)得方程组:解得:k=1,b=-1,∴y=x-1,(2)不等式x>kx+b>-2可化为不等式组:解得:-1<x<2.【考点】一次函数,不等式组8.对于一次函数y= -2x-1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图像不经过第一象限C.函数图像向上平移2个单位后得到函数y= -2x+1D.函数图像上到x轴距离为3的点的坐标为(2,-3)【答案】D.【解析】选项A,由一次函数y=﹣2x-1中k=﹣2<0,可得函数值随x的增大而减小,故本选项正确;选项B,一次函数y=﹣2x-1中k=﹣2<0,b=-1<0,可得此函数的图象经过二、三、四象限,不经过第一象限,故本选项正确;选项C,由“上加下减”的原则可知,函数的图象向上平移2个单位长度得y=﹣2x+1的图象,故本选项正确;选项D,令y=3或-3,,则x=-2或2,函数图像上到x轴距离为3的点的坐标为(-2,3)或(2,-3),故本选项错误.故答案选D.【考点】一次函数的性质.9.请写出一个图像经过第一、三象限的正比例函数的解析式____________________.【答案】y=2x(答案不唯一,只要k>0即可).【解析】根据正比例函数的性质可得只要k>0即可.【考点】正比例函数的性质.10.(10分)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图像回答下列问题:(1)汽车行驶__________h后加油,中途加油__________L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?【答案】(1)2,190;(2)y=-20x+100;(3)该车从出发到现在已经跑了1120km,用时14h.【解析】(1)观察图象可知,汽车行驶2h后加油,所加油量为250-(100-25×1.6)=190L;(2)根据题意可得大巴车每公里油耗为0.25L;大巴车以速度为80km/h行驶x小时的油耗为0.25×80xL,所以加油前油箱剩余油量y与行驶时间x的函数解析式为y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,所以加油前和加油后的函数解析式的k值相同,加油后的解析式经过(2,250),可求得加油后y与x的函数关系式,把y=10代入求得大巴车油箱中剩余油量为10L时行驶的时间,再根据路程=速度×时间即可求得大巴车所跑的最远路程.试题解析:(1)2,190;(2)y=100-80×0.25▪x=-20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b,把k=-20代入,得到y="-20x+b"再把(2,250)代入,得b=290所以y="-20x+290"当y=10时,x=14,所以14×80=1120因此该车从出发到现在已经跑了1120km,用时14h.【考点】一次函数的应用.11.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.12.(9分)为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y是x的一次函数,下表列出两套符合条件的课桌椅的高度.(1)请确定课桌高度与椅子高度的函数关系式;(2)现有一张高80cm的课桌和一张高为43cm的椅子,它们是否配套?为什么?【答案】y=x+32;不配套.【解析】本题利用待定系数法求出一次函数的解析式;求x=43代入函数解析式求出y的值,看求出的y值是否等于80,若相等则说明配套,否则不配套.试题解析:(1)设一次函数的解析式为y=kx+b,把点(42,74)(38,70)代入,得到,解得:,∴函数解析式为:y=x+32,(2)当x=43时,y=43+32=75≠80,∴它们不能配套.【考点】一次函数的应用13.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积v时,气体的密度也随之改变.与v在一定范围内满足,图象如图所示,该气体的质量m为 kg.【答案】7.【解析】由图象可知,的图象经过(5,1.4),代入即可得m=7.【考点】反比例函数的应用.14.(本题满分8分)如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(l)如果∠BAC=300,∠DAE=l050,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(l)中y与x之间的函数关系式还成立?试说明理由.【答案】(1);(2)当α、β满足关系式时,函数关系式成立,理由见解析.【解析】(1)根据已知条件证明△ADB∽△EAC即可得,代入x、y得值即可得y与x之间的函数关系式;(2)要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又因∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.试题解析:(l)在△ABC中,AB="AC" =1,∠BAC=300,∴∠ABC=∠ACB=750,∴∠ABD=∠ACE=1050,1分∵∠DAE=1050.∴∠DAB+∠CAE=750,又∠DAB+∠ADB=∠ABC=750,∴∠CAE=∠ADB∴△ADB∽△EAC∴即;(2)当α、β满足关系式时,函数关系式成立理由如下:要使,即成立,须且只须△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC.又∠ADB+∠BAD=∠ABC=,∠EAC+∠BAD=β-α,所以只=β-α,须即.【考点】相似三角形的综合题.15.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【答案】B.【解析】∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.【考点】反比例函数图象上点的坐标特征.16.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.17.在平面直角坐标系中,直线y1=x+a和y2=﹣x+b交于点E(3,3),点P(m,n)在直线y1=x+a上,过点P(m,n)作x轴的垂线,交直线y2=﹣x+b于点F.(1)若n=2,求△PEF的面积;(2)若PF=2,求点P的坐标.【答案】(1);(2)P(﹣,)或P(,).【解析】(1)已知直线y1=+a和直线y2=﹣+b的交点为E(3,3),代入即可得a、b的值,点P(m,n)在直线y1=x+a上且n=2,即可求得m的值,所以可得点P的坐标,根据已知条件可得点F的坐标,根据三角形的面积公式即可得△PEF的面积;(2)已知点P在y1=x+2,点F在y2=,可设(m,),F(m,),根据PF=|()﹣()|=2即可得m的值,再求点P的坐标即可.试题解析:(1)解:∵直线y1=+a和直线y2=﹣+b的交点为E(3,3)∴3=×3+a,3=﹣×3+b,∴a=2,b=,得直线y1=和直线y2=,如图所示,又∵n=2,∴2=,m=0,∴P(0,2),过点P(0,2)作x轴的垂线,交y2=直线于点F,F(0,),∴PF=,∴,(2)解:由(1)知,点P在y1=x+2,点F在y2=,∵PF⊥x轴,可设P(m,),F(m,),∴PF=|()﹣()|=2,∴m=﹣或m=,∴P(﹣,)或P(,).【考点】一次函数的综合题.18.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.【答案】m=5,n=3;5.【解析】先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.试题解析:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.【考点】两条直线相交或平行问题;二元一次方程组的解.19.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则▱ABCD的面积为()A.3B.5C.7D.9【答案】B【解析】连结OA、OB,如图,AB交y轴于E,根据反比例函数k的几何意义得到S△OAE=1,S△OBE =,则S△OAB=,然后根据平行四边形的面积公式求解.连结OA、OB,如图,AB交y轴于E,∵AB∥x轴,∴S△OAE =×|2|=1,S△OBE=×|﹣3|=,∴S△OAB=,∵四边形ABCD为平行四边形,∴▱ABCD的面积=2S△OAB=5.【考点】反比例函数系数k的几何意义20.要使y=(m-2)是关于x的一次函数,则m= .【解析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m 的值.根据一次函数的定义可得:m﹣2≠0,=1,由=1,解得:m=0或2,又m﹣2≠0,m≠2,∴m=0.【考点】一次函数的定义21.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是.【答案】﹣1.【解析】∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1.【考点】一次函数图象上点的坐标特征.22.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为()A.3B.6C.D.【答案】A【解析】根据一次函数图象上点的坐标特点,直线y=﹣x+3与x轴、y轴的交点坐标分别为(2,0),(0,3),故可求出三角形的面积.当x=0时,y=3,即与y轴交点是(0,3),当y=0时,x=2,即与x轴的交点是(2,0),所以与x轴、y轴所围成的三角形的面积为×2×3=3.【考点】一次函数图象上点的坐标特征23.如图,一次函数y1=mx+n的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=(x<0)交于点C,过点C分别作x轴、y轴的垂线,垂足分别为点E、F.若OB=2,CF=6,.(1)求点A的坐标;(2)求一次函数和反比例函数的表达式.【答案】(1)(-2,0);(2)y=-x-2、y=-.【解析】利用,OE=CF=6,可计算出OA=2,于是得到A点坐标为(﹣2,0);由于B 点坐标为(0,﹣2),则可利用待定系数法求出一次函数解析式为y1=﹣x﹣2,再利用一次函数解析式确定C点坐标为(﹣6,4),根据反比例函数图象上点的坐标特征计算出k=﹣24,所以反比例函数解析式为y2=﹣.试题解析:(1)∵,而OE=CF=6,∴OA=2,∴A点坐标为(﹣2,0);(2)B点坐标为(0,﹣2),把A(﹣2,0)B(0,﹣2)代入y1=mx+n得,解得:,∴一次函数解析式为y1=﹣x﹣2;把x=﹣6代入y1=﹣x﹣2得y=6﹣2=4,∴C点坐标为(﹣6,4),∴k=﹣6×4=﹣24,∴反比例函数解析式为y2=﹣.【考点】反比例函数与一次函数的交点问题24.已知点(a,1)在函数y=3x+4的图象上,则a= .【答案】-1.【解析】把(a,1)代入y=3x+4得3a+4=1,解得a=﹣1.故答案为:﹣1.【考点】一次函数图象上点的坐标特征.25.直线y=x+3与x轴,y轴所围成的三角形的面积为.【答案】3.【解析】当x=0时,y=x+3=3,则直线与y轴的交点坐标为(0,3),当y=0时,x+3=0,解得x=﹣2,则直线与x轴的交点坐标为(﹣2,0),所以直线y=x+3与x轴,y轴所围成的三角形的面积=×3×2=3.故答案为:3.【考点】一次函数图象上点的坐标特征.26.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【答案】(1)(6,0);(2)4.【解析】(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.试题解析:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.【考点】两条直线相交或平行问题.27.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的().A.B.C.D.【答案】B.【解析】根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,即B图形满足题意.故选:B.【考点】函数的图象.28.一次函数y=-2x+4的图象与x轴交点坐标是,与y轴交点坐标是 .【答案】(2,0),(0,4).【解析】令y=0,得x=2,令x=0,得y=4;所以,图象与x轴交点坐标是(2,0),图象与y轴交点坐标是(0,4).【考点】一次函数图象上点的坐标特征.29.在直角坐标系中,直线与坐标轴围成的三角形的面积为 .【答案】【解析】先求出直线与x轴,y轴的交点为(,0)(0,-2),根据面积公式计算即可得出三角形的面积【考点】一次函数30.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a= .【答案】15.【解析】由图象可得出:进水速度为:20÷4=5(升/分钟),出水速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分钟),(a﹣4)×(5﹣3.75)+20=(24﹣a)×3.75,解得:a=15.故答案为:15.【考点】一次函数的应用.31.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=3x+2.【解析】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x﹣1+3,即y=3x+2.故答案为:y=3x+2.【考点】一次函数图象与几何变换.32.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【答案】(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)方案一【解析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.试题解析:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.【考点】一次函数的应用.33.已知反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,试写出一个符合条件的整数k= .【答案】﹣1(答案不唯一).【解析】∵反比例函数y=(k≠0),当x>0时,y随着x的增大而增大,∴k<0,∴k可以为﹣1.故答案为:﹣1(答案不唯一).【考点】反比例函数的性质.34.已知一次函数中,随着的增大而减小,则这个函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】已知一次函数y=kx-3,y随x的增大而减小可得k<0,b=-3<0,即可得此函数的图象经过二、三、四象限,不经过第一象限.故答案选A.【考点】一次函数的性质;一次函数的图象与系数的关系.35.(本题满分8分)已知一次函数(1)为何值时,随的增大而减小?(2)为何值时,它的图象经过原点?【答案】k>4;k=-4【解析】对于一次函数y=kx+b,y随x的增大而减小,则k>0;当图象经过原点,则b=0且k≠0.试题解析:(1)∵一次函数y=(4﹣k)x﹣2k2+32,y随x的增大而减小,∴4﹣k<0 ∴k>4;(2)∵一次函数y=(4﹣k)x﹣2k2+32,它的图象经过原点∴﹣2k2+32=0 解得:k=±4∵4﹣k≠0∴k=﹣4.【考点】一次函数的性质36.已知函数y=k x+b和y=k x+b图像如图所示,直线y与直线 y交于A点(0,3)(1)求函数y和y的函数关系式(2)求三角形ABC的面积(3)已知点D在x轴上,且满足三角形ACD是等腰三角形,直接写出D点坐标【答案】(1)y=—3x+3,y=—x+3;(2)3;(3)(0,0)(—3,0)(3—3,0)(3+3,0)【解析】(1)根据图像可知B、C点的坐标,代入函数解析式分别求出解析式;(2)根据图像可知三角形的底为BC,高为AO,然后由三角形的面积公式可求解;(3)由图像可知,当AC=CD1,AC=CD2,AC=CD3,AD4=CD4时,分别写出点的坐标.试题解析:【考点】由图像,根据勾股定理AC=,当AC=CD1时,D1为(-3,0);当AC=CD2时,D2为(3+2);当AC=CD3时,D3为(3-2);当AD4=CD4时,D4为(0,0).【考点】勾股定理,等腰三角形,一次函数的图像与性质37.若直线经过二、三、四象限,则m的取值范围是()A.B.m>0C.D.m<0【答案】D.【解析】试题分析∵直线经过第二,三,四象限;∴m<0,2m﹣1<0,即m<0.故选D.【考点】一次函数图象与系数的关系.38.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.39.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)乙车休息的时间为;(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)求行驶多长时间两车相距100km.【答案】(1)y=-80x+400;(2)0.5小时;(3)y=100x,y乙=80x;(4)x=1或x=3.125.【解析】(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,利用待定系数法解答即可;(2)先把y=200代入甲的函数关系式中,可得x的值,再由图象可知乙车休息的时间;(3)根据待定系数法,可得休息前,休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式;(4)分类讨论,0≤x≤2.5,y甲减y乙等于100千米,2.5≤x≤5时,y乙减y甲等于100千米即可.试题解析:(1)设甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式为y=kx+b,可得:,解得:.所以函数解析式为:y=-80x+400;(2)把y=200代入y=-80x+400中,可得:200=-80x+400,解得:x=2.5,所以乙车休息的时间为:2.5-2=0.5小时;(3)设休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=kx,∴200=2k,∴k=100,∴休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y=100x,设休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式为:y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x;(4)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于100千米,即400-80x-100x=100,解得 x=1;2.5≤x≤5时,y乙减y甲等于100千米,即2.5≤x≤5时,80x-(-80x+400)=100,解得x=3.125,综上所述:x=1或x=3.125.【考点】一次函数的应用.40.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.41.已知过点(-2,4)的直线()不经过第三象限.设,则s的取值范围是.【答案】-4≤s﹤4.【解析】由题意得m<0且n≥0,把(﹣2,4)代入y=mx+n得﹣2m+n=4,则n=2m+4,所以2m+4≥0,解得m≥﹣2,所以m的取值范围为﹣2≤m<0,因为s=2m+n=2m+2m+4=4m+4,所以﹣4≤s<4.故答案为:﹣4≤s<4.【考点】一次函数图象与系数的关系.42.已知y-3与4x-2成正比例,且当x=1时,y=5.(1)求与的函数关系式;(2)求当时的函数值.【答案】(1)y=4x+1;(2)函数值-7.【解析】(1)由正比例函数的定义设出函数解析式,再把当x=1时,y=5代入求出k的值;(2)把x=﹣2代入(1)中的解析式进行计算即可.试题解析:(1)设y﹣3=k(4x﹣2)(k≠0),把x=1,y=5代入,得:5﹣3=k(4×1﹣2),解得k=1,则y与x之间的函数关系式是y=4x+1;(2)由(1)知,y=4x+1.当x=﹣2时,y=4×(﹣2)+1=﹣7.即当x=﹣2时的函数值是7.【考点】待定系数法求一次函数解析式.43.一棵新栽的树苗高1米,若平均每年都长高5厘米.请写出树苗的高度y(cm)与时间x (年)之间的函数关系式:.【答案】y=5x+100.【解析】由题意得,树苗x年后长高5xcm,1米=100cm,所以树苗的高度y(cm)与时间x (年)之间的函数关系式是y=5x+100.【考点】列一次函数关系式.44.表示函数的方法一般有、、.【答案】列表法;关系式法;图象法.【解析】根据函数的定义,可得答案.表示函数的方法一般有列表法、关系式法、图象法.故答案为:列表法、关系式法、图象法.【考点】函数的表示方法.45.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.【答案】y=20-2x;5<x<10.【解析】试题解析:∵2x+y=20∴y=20-2x,即x<10,∵两边之和大于第三边∴x>5,综上可得5<x<10.【考点】根据实际问题列一次函数关系式.46.杨佳明周日骑车从家里出发,去图书馆看书,(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义:;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第分钟,并求出她在骑行30分钟时的路程是.【答案】(1)杨佳明在图书馆看书的时间为20min;(2)杨佳明在图书馆看书的时间为20min;(3)20-30;2km.【解析】(1)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(2)根据图中提供的信息路程不变,时间为30-20=10分钟,即可得到答案;(3)根据图中提供的信息即可得到结论.试题解析:(1)如图1,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(2)如图2,线段AB所表示的实际意义:杨佳明在图书馆看书的时间为20min,(3)当她离家最远时,时间是在第20-30分钟,并求出她在骑行30分钟时的路程是2km.【考点】一次函数的应用.47.直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】B.【解析】试题解析:由于k=-1<0,b=1>0,故函数过一、二、四象限,故选B.【考点】一次函数图象与系数的关系.48.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.【答案】(﹣,﹣).【解析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).【考点】一次函数综合题.49.(2015秋•常熟市校级月考)如图是某汽车行驶的路程s(km)与时间t(m/n)的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是 km/min;(2)汽车在中途停了 min;(3)当16≤t≤30时,s与t的函数关系式:.【答案】(1)km/min;(2)7min.(3),7,S=2t﹣20.【解析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20,故答案为:,7,S=2t﹣20.【考点】一次函数的应用.50.若有一条直线与直线y=2x平行,且过点A(-1,2),则该直线解析式为_____________.【答案】y=2x+4【解析】根据两直线平行,可知k=2,设该直线的解析式为y=2x+b,把A(-1,2)代入可得2×(-1)+b=2,解得b=4,因此可得该一次函数的解析式为y=2x+4.【考点】一次函数的解析式51.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.(1)求A、B两点的坐标;(2)求直线AE的解析式;(3)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.【答案】(1)A(0,3),B(-1,0);(2)AE:y=-x+3;(3)(-3,4)(-4,1)(-2,2)。

高中函数图像考试题及答案

高中函数图像考试题及答案

高中函数图像考试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 的图像是一个:A. 直线B. 抛物线C. 双曲线D. 正弦曲线答案:B2. 函数 \( y = |x| \) 的图像在 \( x = 0 \) 处的切线斜率是:A. 0B. 1C. -1D. 不存在答案:A3. 函数 \( y = \sin(x) \) 的图像是:A. 线性的B. 周期性的C. 单调的D. 常数的答案:B二、填空题4. 如果函数 \( f(x) \) 在 \( x = a \) 处取得极值,那么\( f'(a) \) 等于 _______ 。

答案:05. 函数 \( y = x^3 \) 的图像是关于 \( x \) 轴的 _______ 对称。

答案:不三、简答题6. 解释函数 \( y = \ln(x) \) 的图像为什么在 \( x = 0 \) 处没有定义。

答案:函数 \( y = \ln(x) \) 是自然对数函数,其定义域为\( x > 0 \)。

当 \( x = 0 \) 时,没有实数可以作为对数的底数,因为对数函数的底数不能为1,也不能为负数或0。

因此,\( x = 0 \) 处没有定义。

7. 描述函数 \( y = 1/x \) 的图像在第一象限和第三象限的行为。

答案:函数 \( y = 1/x \) 的图像在第一象限和第三象限都是递减的。

当 \( x \) 增大时,\( y \) 减小;当 \( x \) 减小时,\( y \) 增大。

这是因为当 \( x \) 的值增加时,其倒数 \( 1/x \) 的值会减少,反之亦然。

四、计算题8. 给定函数 \( f(x) = 2x^2 + 3x - 5 \),求导数 \( f'(x) \) 并找到函数的极值点。

答案:导数 \( f'(x) = 4x + 3 \)。

令 \( f'(x) = 0 \) 解得\( x = -3/4 \)。

一次函数及其图像练习(含答案详解)

一次函数及其图像练习(含答案详解)

一次函数及其图象一、选择题1.关于一次函数y =-x +1的图象,下列所画正确的是(C )【解析】 由一次函数y =-x +1知:图象过点(0,1)和(1,0),故选C.2.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为(D )A .(-1,4)B .(-1,2)C. (2,-1)D. (2,1)【解析】 一次函数y =-x +3与y =3x -5的图象的交点M 的坐标即为方程组⎩⎪⎨⎪⎧y =-x +3,y =3x -5的解, 解方程组,得⎩⎪⎨⎪⎧x =2,y =1,∴点M 的坐标为(2,1). 3.已知直线y =kx +b ,若k +b =-5,kb =6,则该直线不经过(A )A .第一象限B .第二象限C. 第三象限D. 第四象限【解析】 由kb =6,知k ,b 同号.又∵k +b =-5,∴k <0,b <0,∴直线y =kx +b 经过第二、三、四象限,∴不经过第一象限.4.直线y =-32x +3与x 轴,y 轴所围成的三角形的面积为(A )A .3B .6C.34D.32【解析】直线y=-32x+3与x轴的交点为(2,0),与y轴的交点为(0,3),所围成的三角形的面积为12×2×3=3.5.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(C)A.y1+y2>0 B.y1+y2<0C. y1-y2>0D. y1-y2<0【解析】∵正比例函数y=kx中k<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2,∴y1-y2>0.(第6题)6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.设他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象提供的信息,下列说法正确的是(C) A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发1 h D.甲比乙晚到B地3 h【解析】根据图象知:甲的速度是204=5(km/h),乙的速度是202-1=20(km/h),乙比甲晚出发1-0=1(h),甲比乙晚到B地4-2=2(h),故选C.7.丁老师乘车从学校到省城去参加会议,学校距省城200 km,车行驶的平均速度为80 km/h.若x(h)后丁老师距省城y(km),则y与x之间的函数表达式为(D)A. y=80x-200B. y=-80x-200C. y=80x+200D. y=-80x+200【解析】∵丁老师x(h)行驶的路程为80x(km),∴x(h)后距省城(200-80x)km.8.如果一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么下列对k和b的符号判断正确的是(D)A.k>0,b>0 B.k>0,b<0C .k <0,b >0D .k <0,b <0【解析】 ∵y 随x 的增大而减小,∴k <0.∵图象与y 轴交于负半轴,∴b <0.(第9题)9.张师傅驾车从甲地到乙地,两地相距500km ,汽车出发前油箱有油25L ,途中加油若干升,加油前、后汽车都以100km/h 的速度匀速行驶,已知油箱中剩余油量y (L)与行驶时间t (h)之间的函数关系如图所示,则下列说法错误的是(C )A .加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式是y =-8t +25B .途中加油21LC. 汽车加油后还可行驶4hD. 汽车到达乙地时油箱中还剩油6L【解析】 A .设加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式为y =kt +b .将点(0,25),(2,9)的坐标代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25,∴y =-8t +25,故本选项正确.B .由图象可知,途中加油30-9=21(L),故本选项正确.C .由图象可知,汽车每小时用油(25-9)÷2=8(L),∴汽车加油后还可行驶30÷8=334(h)<4h ,故本选项错误.D .∵汽车从甲地到乙地所需时间为500÷100=5(h),又∵汽车油箱出发前有油25L ,途中加油21L ,∴汽车到达乙地时油箱中还剩油25+21-5×8=6(L),故本选项正确.故选C.二、填空题10.写出一个图象经过第一、三象限的正比例函数y=kx(k≠0)的表达式:y =2x.【解析】∵图象经过第一、三象限,∴k>0,∴k可以取大于0的任意实数.答案不唯一,如:y=2x.11.已知一次函数y=(2-m)x+m-3,当m>2时,y随x的增大而减小.【解析】由一次函数的性质可知:当y随x的增大而减小时,k=2-m<0,∴m>2.12.如图是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的表达式为y=-2x-2.【解析】设原函数图象的表达式为y=kx.当x=-1时,y=2,则有2=-k,∴k=-2,∴y=-2x.设平移后的图象的表达式为y=-2x+b.当x=-1时,y=0,则有0=2+b,∴b=-2,∴y=-2x-2.(第12题)(第13题)13.如图所示是某工程队在“村村通”工程中修筑的公路长度y(m )与时间x(天)之间的函数关系图象.根据图象提供的信息,可知该公路的长度是504m .【解析】 当2≤x ≤8时,设y =kx +b.把点(2,180),(4,288)的坐标代入,得⎩⎪⎨⎪⎧180=2k +b ,288=4k +b ,解得⎩⎪⎨⎪⎧k =54,b =72.∴y =54x +72.当x =8时,y =504.14.直线y =kx +b 经过点A(-2,0)和y 轴正半轴上的一点B ,如果△ABO(O 为坐标原点)的面积为6,那么b 的值为__6__.【解析】 S △ABO =12×2·b =6,∴b =6.(第15题)15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q(0,2)和动点P(a ,0)的直线与矩形ABCD 的边有公共点,则a 的取值范围是-2≤a ≤2.【解析】 当QP 过点C 时,点P(2,0);当QP 过点D 时,点P(-2,0).∴-2≤a ≤2.16.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图所示,则这次越野跑的全程为2200m.,(第16题))【解析】 设小明的速度为a (m/s),小刚的速度为b (m/s),由题意,得 ⎩⎪⎨⎪⎧1600+100a =1400+100b ,1600+300a =1400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.∴这次越野跑的全程为1600+300×2=2200(m).17.已知直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)交于点A (-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于__4__.【解析】 如解图,设直线y =k 1x +b 1(k 1>0)与y 轴交于点B ,直线y =k 2x +b 2(k 2<0)与y 轴交于点C ,则OB =b 1,OC =-b 2.(第17题解)∵△ABC 的面积为4,∴12OA·OB +12OA·OC =4,∴12×2·b 1+12×2·(-b 2)=4,∴b 1-b 2=4.三、解答题(第18题)18.A ,B 两城相距600 km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km)与行驶时间x (h)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数表达式,并写出自变量x 的取值范围.(2)当它们行驶7 h 时,两车相遇,求乙车的速度.【解析】 (1)①当0≤x ≤6时,易得y =100x .②当6<x ≤14时,设y =kx +b .∵图象过点(6,600),(14,0),∴⎩⎪⎨⎪⎧6k +b =600,14k +b =0,解得⎩⎪⎨⎪⎧k =-75,b =1050.∴y =-75x +1050.∴y =⎩⎪⎨⎪⎧100x (0≤x ≤6),-75x +1050(6<x ≤14).(2)当x =7时,y =-75×7+1050=525,∴v 乙=5257=75(km/h).19.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留了一段相同的时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x (h),两车之间的距离为y (km),如图中的折线表示y 与x 之间的函数关系.(第19题)请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__km.(2)求快车和慢车的速度.(3)求线段DE 所表示的y 关于x 的函数表达式,并写出自变量x 的取值范围.【解析】 (1)由图象可得:甲、乙两地之间的距离为560 km.(2)由图象可得:慢车往返分别用了4 h ,慢车行驶4 h 的距离,快车3 h 即可行驶完,∴可设慢车的速度为3x (km/h),则快车的速度为4x (km/h).由图象可得:4(3x +4x )=560,解得x =20.∴快车的速度为4x =80(km/h),慢车的速度为3x =60(km/h).(3)由题意可得:当x =8时,慢车距离甲地60×(4-3)=60(km),∴点D (8,60).∵慢车往返一次共需8h ,∴点E (9,0).设直线DE 的函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧9k +b =0,8k +b =60,解得⎩⎪⎨⎪⎧k =-60,b =540.∴线段DE 所表示的y 关于x 的函数表达式为y =-60x +540(8≤x ≤9).20.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (kg)与上市时间x (天)的函数关系如图①所示,樱桃价格z (元/kg)与上市时间x (天)的函数关系如图②所示.(第20题)(1)观察图象,直接写出日销售量的最大值.(2)求小明家樱桃的日销售量y 与上市时间x 之间的函数表达式.(3)第10天与第12天的销售金额哪天多?请说明理由.【解析】 (1)日销售量的最大值为120 kg.(2)当0≤x ≤12时,设日销售量y 与上市时间x 之间的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上,∴120=12k ,∴k =10,∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 之间的函数表达式为y =k 1x +b 1.∵点(12,120),(20,0)在y =k 1x +b 1的图象上,∴⎩⎪⎨⎪⎧12k 1+b 1=120,20k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-15,b 1=300.∴函数表达式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 之间的函数表达式为y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)当5<x ≤15时,设樱桃价格z 与上市时间x 之间的函数表达式为z =k 2x +b 2.∵点(5,32),(15,12)在z =k 2x +b 2的图象上,∴⎩⎪⎨⎪⎧5k 2+b 2=32,15k 2+b 2=12,解得⎩⎪⎨⎪⎧k 2=-2,b 2=42.∴函数表达式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22,∴销售金额为100×22=2200(元).当x =12时,y =10×12=120,z =-2×12+42=18,∴销售金额为120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图是一次函数=kx+b和反比例函数的图象,观察图象写出时,x的取值范围()A.x<-2或x>3B.x<-2或x<3C.-2<x<0或x>3D.-2<x<0或0<x<3【答案】C【解析】∵y1>y2,∴ x的取值范围为-2<x<0或x>3.故选C.2.(8分)下面的图象记录了某地一月份某天的温度随时间变化的情况,请你仔细观察图象回答下面的问题:⑴20时的温度是℃,温度是0℃的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为小时.⑵你从图象中还能获取哪些信息(写出3~4条即可)?【答案】(1)-1; 12,18;14;8(2)例如:(1)这天10时的气温是-1℃;(2)这天的最高气温为2℃;(3)这天的最低气温是-4.8℃;(4)这一天中,从凌晨4时到14时气温在逐渐升高。

【解析】略3.在反比例函数的图像上,到轴和轴的距离相等的点有A.1个B.2个C.4个D.无数个【答案】B.【解析】根据k=xy求值即可.试题解析:∵到x轴和y轴的距离相等∴x2=9解得:x=3或x=3.故选B.【考点】函数图象上点的坐标特征.4.如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为,点An的坐标为.【答案】(7,8),().【解析】由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.A1的纵坐标是:1=20,A1的横坐标是:0=20-1;A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).据此可以得到An 的纵坐标是:2n-1,横坐标是:2n-1-1,即点An的坐标为(2n-1-1,2n-1).【考点】一次函数与正方形结合的规律题.5.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()【答案】A【解析】∵当k>0时,正比例函数y=kx的函数值y随x的增大而增大,∴一次函数y=x+k中,x的系数1>0,b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选:A.【考点】1.一次函数的图象;2.正比例函数的性质.6.(7分)已知一次函数的图象经过点A(1,1)和点B(2,﹣1),求这个一次函数的解析式.【答案】y=﹣2x+3.【解析】把A(1,1)和点B(2,﹣1),代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,即可得到一次函数的解析式.试题解析:解:设一次函数y=kx+b的图象经过两点A(1,1)和点B(2,﹣1)∵A(1,1)和点B(2,﹣1),∴,解得:,∴一次函数解析式为:y=﹣2x+3.【考点】用待定系数法求一次函数解析式.7.若A(-1,y1)、B(-2,y2)是反比例函数y=(m为常数,m≠)图象上的两点,且y1>y2,则m的取值范围是.【答案】m>0.5.【解析】因为-1>-2,y1>y2,所以y随x的增大而增大,所以反比例函数y=中,1-2m<0,解得m>0.5.【考点】反比例函数的性质.8.(本题14分)如图①,直线:分别与轴、轴交于A、B两点,与直线:交于点.(1)求A、B两点坐标及、的值;(2)如图②,在线段BC上有一点E,过点E作轴的平行线交直线于点F,过E、F分别作EH⊥轴,FG⊥轴,垂足分别为H、G,设点E的横坐标为,当为何值时,矩形EFGH的面积为;(3)若点P为轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【答案】(1)A(8,0);B(0,4);;;(2)1或3 ;(3)(5,4)、(0,-4)、(,4)或(-,4).【解析】(1)把点代入直线和,即可求得k和b的值,根据直线的解析式求得其与两坐标轴的交点A和B的坐标;(2)用m的代数式分别表示点E和点F的坐标,求出EF的长,应用矩形的面积公式表示矩形EFGH的面积,然后求出面积为时的m值;(3)分情况讨论,当PA=PB时,当BP=BA时,当AB=AP时,分别求出点Q的值.试题解析:解:(1)把点代入直线和,可得,,解得k=2,b=4,即,,直线:与x轴的交点A的坐标为A(8,0),与y轴的交点B的坐标为B(0,4);(2)由题意得,点E的坐标为(m,),点F的坐标为(m,2m-6),所以EF=,EH=m,所以矩形EFGH的面积为:S=m(),当S=时,,解得m=1或m=3,答:当为1或3时,矩形EFGH的面积为;(3)当PA=PB时,设OP=a,则PA=PB=8-a,在Rt△PAB中:,解得:,所以BQ=PA=5,得Q(5,4),当BP=BA时,因为PA⊥OB,所以OP=OA=4,则Q、B关于x轴对称,得Q(0,-4),当AB=AP时,因为AB=,所以BQ=,得Q(,4)或(-,4),综上:符合条件的Q点坐标为(5,4)、(0,-4)、(,4)或(-,4).【考点】待定系数法求解析式;坐标与图形.9.在y=5x+a﹣2中,若y是x的正比例函数,则常数a= .【答案】a=2【解析】本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.【考点】正比例函数的定义.10.函数y=中自变量x的取值范围是.【答案】x≠3【解析】根据分式的分母不等于0列式即可得出答案.根据题意得,x﹣3≠0,解得x≠3.【考点】函数自变量的取值范围.11.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.-1C.3D.-3【答案】A.【解析】:一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.故选A.【考点】一次函数图象上点的坐标特征.12.(3分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.【答案】:2或﹣7.【解析】分k>0和k<0两种情况,•当k>0时,此函数是增函数,由一次函数的性质可知当x=1时,y=3;当x=4时,y=6,所以,解得k=1,b=2,即可得=2; 当k<0时,此函数是减函数,一次函数的性质可知当x=1时,y=6;当x=4时,y=3,所以,解得k=—1,b=7,即可得=﹣7.【考点】一次函数的性质.13. (11分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x 棵,到两家林场购买所需费用分别为y 甲(元)、y 乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;(2)分别求出y 甲、y 乙与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么? 【答案】(1)5900,6000; (2)y 甲=;y 乙=;(3)当0≤x≤1000或x=3000时,两家林场购买一样, 当1000<x <3000时,到甲林场购买合算; 当x >3000时,到乙林场购买合算.【解析】(1)根据购买树苗需要的费用=树苗的单价×数量分别计算甲、乙的费用;(2)根据购买树苗需要的费用=树苗的单价×数量,分别求出当0≤x≤1000,或x >1000时,y 甲与x 之间的函数关系式;当.0≤x≤2000,或x >2000时y 乙与x 之间的函数关系式;(3)分类讨论,当0≤x≤1000,1000<x≤2000时,x >2000时,根据y 甲、y 乙的关系式列出不等式或方程,即可得结论.试题解析:解:(1)由题意,得.y 甲=4×1000+3.8(1500﹣1000)=5900元, y 乙=4×1500=6000元; 故答案为:5900,6000; (2)当0≤x≤1000时, y 甲=4x ,x >1000时.y 甲=4000+3.8(x ﹣1000)=3.8x+200, ∴y 甲=;当0≤x≤2000时, y 乙=4x当x >2000时,y 乙=8000+3.6(x ﹣2000)=3.6x+800 ∴y 乙=;(3)由题意,得当0≤x≤1000时,两家林场单价一样, ∴到两家林场购买所需要的费用一样.当1000<x≤2000时,甲林场有优惠而乙林场无优惠, ∴当1000<x≤2000时,到甲林场优惠;当x >2000时,y 甲=3.8x+200,y 乙=3.6x+800, 当y 甲=y 乙时3.8x+200=3.6x+800, 解得:x=3000.∴当x=3000时,到两家林场购买的费用一样; 当y 甲<y 乙时,3.8x+200<3.6x+800, x <3000.∴2000<x <3000时,到甲林场购买合算; 当y 甲>y 乙时,3.8x+200>3.6x+800, 解得:x >3000.∴当x >3000时,到乙林场购买合算.综上所述,当0≤x≤1000或x=3000时,两家林场购买一样, 当1000<x <3000时,到甲林场购买合算; 当x >3000时,到乙林场购买合算. 【考点】一次函数的应用.14. 如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.【答案】(1)直线AB 的解析式为y=2x ﹣2;(2)点C 的坐标是(2,2).【解析】(1)设直线AB 的解析式为y=kx+b ,根据直线AB 过点A (1,0)、点B (0,﹣2),列出方程组,解方程组求得k 、b 的值,即可得直线AB 的解析式;(2)设点C 的坐标为(x ,y ),根据三角形面积公式可得•2•x=2,解得x 的值再代入直线即可求出y 的值,即可得点C 的坐标.试题解析:解:(1)设直线AB 的解析式为y=kx+b (k≠0), ∵直线AB 过点A (1,0)、点B (0,﹣2), ∴, 解得,∴直线AB 的解析式为y=2x ﹣2. (2)设点C 的坐标为(x ,y ), ∵S △BOC =2, ∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C 的坐标是(2,2).【考点】待定系数法求一次函数解析式.15. 在同一平面直角坐标系中,观察以下直线:y=2x ,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k 值. 【答案】k=﹣.【解析】把其中任意两个函数表达式联立,组成方程组,解方程组可得到这两个函数图像的交点坐标,再将交点坐标代入其它两个函数解析式,计算后发现均经过这个交点坐标,由此可得直线y=2x ,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点是都经同一点,把这点的坐标代入y=kx+5求出k 的值即可.试题解析:解:解法一:∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4,∴验证发现此组直线均经过(2,4),∴把把(2,4)代入y=kx+5得4=2k+5,得k=﹣.解法二:在同一直角坐标系中,正确画出y=2x,y=﹣x+6,y=x+2与y=4x﹣4其中任意的两条图象,观察它们的图象发现这些直线交于同一点(2,4)…(3分)验证其余直线也交于同一点(2,4),把(2,4)代入y=kx+5得4=2k+5,得k=﹣.【考点】一次函数的性质;一次函数的图象.16.(3分)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A、B两地之间的距离为千米.【答案】450.【解析】本题考查了一次函数图象的运用,行程问题的数量关系速度×时间=路程的运用,二元一次方程组的解法的运用,解答时求出二元一次方程组的解是关键.设甲的速度为x千米/小时,乙的速度为y千米/小时,根据函数图象反应的数量关系建立方程组求出其解即可.解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意,得,解得:.∴A、B两地之间的距离为:5×90=450千米.故答案为:450.【考点】一次函数的应用.17.(10分)已知2y﹣3与﹣3x﹣1成正比例,且x=2时,y=5.(1)求y与x之间的函数关系式,并在坐标系中画出图象;(2)若﹣1≤y≤2,求x的取值范围;(3)若把直线向下平移3个单位长度,那么平移后的直线的解析式为,请画出图象.【答案】y=+2;-2≤x≤0;y=-1【解析】由2y﹣3与﹣3x﹣1成正比例,设2y﹣3=k(﹣3x﹣1),将x=2,y=5代入求出k的值,代入即可确定出y与x的函数关系式;先分别计算出函数值为﹣1和1所对应的自变量的值,然后根据一次函数的性质求解;根据平移的性质即可求得.试题解析:(1)由2y﹣3与﹣3x﹣1成正比例,设2y﹣3=k(﹣3x﹣1),将x=2,y=5代入得:10﹣3=k(﹣6﹣1),解得:k=﹣1,则y与x的关系式为y=+2;画图如下:(2)当y=﹣1时,+2=﹣1,解得x=﹣2;当y=2时+2=2,解得x=0,所以当﹣1≤y≤2时,x的取值范围为﹣2≤x≤0.(3)根据平移的性质得出y=﹣1;如图:【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象与几何变换18.使函数y=有意义的x的取值范围是()A.x<2B.x>2C.x≤2D.x≥2【答案】D【解析】当函数表达式是二次根式时,被开方数为非负数是解题的关键.根据二次根式的性质被开方数大于或等于0可得:x-2≥0,解得:x≥2.【考点】函数自变量的取值范围19.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试练习题(精选含解析)

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试练习题(精选含解析)

八年级数学下册第十七章函数及其图像综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两地相距s 千来,汽车从甲地匀速行驶到乙地,行驶的时间t (小时)关于行驶速度v (千米时)的函数图像是( )A .B .C .D .2、下列函数中,表示y 是x 的反比例函数的是( )A .y =B .a y x =C .21y x =D .13y x =3、把函数y =x 的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)4、火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④5、如图,点A 在双曲线k y x=上,AB x ⊥轴于B ,3AOB S =△,则k 的值为( )A .不能确定B .3C .18D .66、如图,Rt AOB Rt CDA ≌,且点A 、B 的坐标分别为(1,0),(0,2)B -,则OD 长是( )A .3-B .5C .4D .37、如图1,在Rt ABC 中,90C ∠=︒,点D 是BC 的中点,动点P 从点C 出发沿CA AB -运动到点B ,设点P 的运动路程为x ,PCD 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ).A .10B .12C .D .8、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5x y = 9、在平面直角坐标系中,点()8,15-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M (a ﹣2,a +1)在第二象限,则a 的值为 _____.2、下列函数:①y kx =;②23y x =;③2(1)y x x x =--;④21y x =+;⑤22y x =-.其中一定是一次函数的有____________.(只是填写序号)3、观察图象可知:当k >0时,直线y =kx +b 从左向右______;当k<0时,直线y=kx+b从左向右______.由此可知,一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.4、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.5、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△PnAn﹣1An都是等腰直角三角形,点P1、P2、P3…Pn都在函数y=4x(x>0)的图象上,斜边OA1、A1A2、A2A3…An﹣1An都在x轴上.则点A2021的坐标为____.6、在平面内画两条互相垂直、原点重合的数轴,组成_______.水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.7、在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.解:设y =kx +b (k ≠0)由题意得:14.5=b ,16=3k +b ,解得:b =___,k =___.所以在弹性限度内,y =___,当x =4时,y =0.5×4+14.5=___(厘米).即物体的质量为4千克时,弹簧长度为16.5厘米.8、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.9、如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行.反比例函数y =k x (k ≠0)的图象,与大正方形的一边交于点A (32,4),且经过小正方形的顶点B .求图中阴影部分的面积为 _____.10、自行车运动员在长为10000 m 的路段上进行骑车训练,行驶全程所用时间为t s ,行驶的平均速度为v m/s ,则vt =______,用t 表示v 的函数表达式为_______;y 与x 的乘积为-2,用x 表示y 的函数表达式为______.以上两个函数表达式都具有________的形式,其中________是常数.具有________的形式.三、解答题(5小题,每小题6分,共计30分)1、请根据学习“一次函数”时积累的经验和方研究函数2y x =-+的图象和性质,并解决问题.(1)填空:①当x =0时,2y x =-+= ;②当x >0时,2y x =-+= ;③当x <0时,2y x =-+= ;(2)在平面直角坐标系中作出函数2y x =-+的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,方程20x -+=有 个解; ②方程22x -+=有 个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是 .2、如图,在平面直角坐标系中,点B ,C ,D 的坐标分别是什么?3、如图分别是函数y=k1x,y=k2x,y=k3x,y=k4x的图象.(1)k1k2,k3k4(填“>”或“<”);(2)用不等号将k1,k2,k3,k4及0依次连接起来.4、如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为_______,点B的坐标为______;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)②试求线段OQ长的最小值.5、某通讯公司推出①②两种收费方式供用户选择,其中一种有月租费,另一种没有月租费,且两种收费方式的通话时间x(分钟)与收费y(元)的关系如图所示:(1)分别求出①②两种方案的收费y(元)与通话时间x(分钟)之间的函数关系式.(2)当x值为多少时两种方案收费相等.(3)选择哪种收费方案更合算?-参考答案-一、单选题1、B【解析】【分析】直接根据题意得出函数关系式,进而得出函数图象.解:由题意可得:t=sv,是反比例函数,故只有选项B符合题意.故选:B.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.2、D【解析】略3、C【解析】【分析】由函数“上加下减”的原则解题.【详解】解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,当x=2时,y=2+2=4,所以在平移后的函数图象上的是(2,4),故选:C.【点睛】本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.4、D【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5、D【解析】【分析】根据反比例函数k 的几何意义直接求解即可【详解】解:∵3AOB S =△ ∴=32k 函数图象经过一、三象限0k ∴>6k ∴=故选D【点睛】 本题考查了反比例函数0k y k x=≠()中比例系数k 的几何意义:过反比例函数图象上任意一点分别作x 轴、y 轴的垂线,则垂线与坐标轴所围成的矩形的面积为k .6、D【解析】【分析】利用全等三角形的性质证明即可.【详解】解:∵A (-1,0),B (0,2),∴OA =1,OB =2,∵△AOB ≌△CDA ,∴OB =AD =2,∴OD =AD +AO =2+1=3,故选D .【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.7、D【解析】【分析】由图像可知, 当08x ≤≤时,y 与x 的函关系为:y =x ,当x =8时,y =8,即P 与A 重合时,PCD ∆的面积为8,据此求出CD ,BC ,再根据勾股定理求出AB 即可P .【详解】解:如图2,当08x ≤≤时,设y =kx ,将(3,3)代入得,k =1,()08y x x ∴=≤≤ ,当P 与A 重合时,即:PC =AC =8,由图像可知,把x =8代入y =x ,y =8,8PCD S ∆∴=,1882DC ∴⨯=, 2DC ∴=, D 是BC 的中点,24BC CD ==在Rt ABC ∆中,AB故选:D .【点睛】本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.8、D【分析】根据正比例函数的定义逐个判断即可.【详解】解:A .是二次函数,不是正比例函数,故本选项不符合题意;B .是一次函数,但不是正比例函数,故本选项不符合题意;C .是反比例函数,不是正比例函数,故本选项不符合题意;D .是正比例函数,故本选项符合题意;故选:D .【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y =kx +b (k 、b 为常数,k ≠0)的函数,叫一次函数,当b =0时,函数也叫正比例函数.9、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】解:点()8,15-所在的象限是第四象限,故选:D .【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.10、C【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.二、填空题1、0或1##1或0【解析】【分析】根据点M 在第二象限,求出a 的取值范围,再由格点定义得到整数a 的值.【详解】解:∵点M (a ﹣2,a +1)在第二象限,∴a -2<0,a +1>0,∴-1<a <2,∵点M 为格点,∴a 为整数,即a 的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.2、②③⑤【解析】【分析】根据一次函数的定义条件解答即可.【详解】解:①y =kx 当k =0时原式不是一次函数; ②23y x =是一次函数;③由于2(1)y x x x =--=x ,则2(1)y x x x =--是一次函数;④y =x 2+1自变量次数不为1,故不是一次函数;⑤y =22−x 是一次函数.故答案为:②③⑤.【点睛】本题主要考查了一次函数的定义,一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.3、 上升 下降 增大 减小【解析】略4、第二、四象限下降减少第一、三象限上升增大【解析】略5、(0)【解析】【分析】首先根据等腰直角三角形的性质,知点P1的横、纵坐标相等,再结合双曲线的解析式得到点P1的坐标是(2,2),则根据等腰三角形的三线合一求得点A1的坐标;同样根据等腰直角三角形的性质、点A1的坐标和双曲线的解析式求得A2点的坐标;根据A1、A2点的坐标特征即可推而广之.【详解】解:可设点P1(x,y),根据等腰直角三角形的性质可得:x=y,又∵y=4x,则x2=4,∴x=±2(负值舍去),再根据等腰三角形的三线合一,得A1的坐标是(4,0),设点P2的坐标是(4+y,y),又∵y=4x,则y(4+y)=4,即y2+4y-4=0解得,y1y2∵y>0,∴y,再根据等腰三角形的三线合一,得A2的坐标是(0);An点的坐标是(0).可以再进一步求得点A故点A2021的坐标为(0).故答案是:(0).【点睛】本题考查了反比例函数的综合应用,解决此题的关键是要根据等腰直角三角形的性质以及反比例函数的解析式进行求解.6、平面直角坐标系横轴右纵轴上原点O【解析】略x+ 16.57、 14.5 0.5 0.514.5【解析】略8、自变量【解析】略9、40【解析】【分析】根据待定系数法求出k即可得到反比例函数的解析式;利用反比例函数系数k的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积=大正方形的面积-小正方形的面积即可求出结果.【详解】解:反比例函数k y x=的图象经过点3(,4)2A , 4623k ∴=⨯=, ∴反比例函数的解析式为6y x=; 小正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,∴设B 点的坐标为(,)m m , 反比例函数6y x =的图象经过B 点, 6m m ∴=, 26m ∴=,∴小正方形的面积为2424m =,大正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,且3(,4)2A ,∴大正方形在第一象限的顶点坐标为(4,4),∴大正方形的面积为24464⨯=,∴图中阴影部分的面积=大正方形的面积-小正方形的面积642440=-=. 【点睛】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k 的几何意义,正方形的性质,熟练掌握反比例函数系数k 的几何意义是解决问题的关键.10、 10000 10000v t = 2y x -= 分式 分子 (0)k y k x=≠ 【解析】略三、解答题1、(1)2;-x +2,x +2;(2)见解析;(3)函数图象关于y 轴对称;当x =0时,y 有最大值2;(4)①2 2;②1;③2a >.【解析】【分析】(1)利用绝对值的意义,分别代入计算,即可得到答案;(2)结合(1)的结论,画出分段函数的图像即可;(3)结合函数图像,归纳出函数的性质即可;(4)结合函数图像,分别进行计算,即可得到答案;【详解】解:(1)①当x =0时,22y x =-+=;②当x >0时,22y x x =-+=-+;③当x <0时,22y x x =-+=+;故答案为:2;-x +2;x +2;(2)函数y =-|x |+2的图象,如图所示:(3)函数图象关于y 轴对称;当x =0时,y 有最大值2.(答案不唯一)(4)①函数图象与x 轴有2个交点,方程20x -+=有2个解; ②方程22x -+=有1个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是2a >.故答案为:2;2;1;2a >.【点睛】本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.2、B (-2,3),C (4,-3),D (-1,-4)【解析】略3、 (1)<,<(2)k 1<k 2<0<k 3<k 4【解析】略4、 (1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO ,∠BAQ ;②线段OQ 长的最小值为125 【解析】【分析】(1)根据题意令x =0,y =0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:443y x=+,推出点Q在直线y=﹣43x+4上运动,再根据垂线段最短,即可解决问题.(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ﹣∠APB=∠BPE﹣∠APB.∴∠QPO=∠EPA.又∵PE=PB,AP=PQ∴∠PEB=∠PBE=∠PAQ=∠AQP.∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.∴与∠EPA相等的角有∠QPO,∠BAQ.故答案为:∠QPO,∠BAQ.②如图3中,连接BQ交x轴于T.∵AP=PQ,PE=PB,∠APQ=∠BPE,∴∠APE=∠QPB,在△APE和△QPB中,PA PQAPE QPBPE PB=⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△QPB(SAS),∴∠AEP=∠QBP,∵∠AEP=∠EBP,∴∠ABO=∠QBP,∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,∴∠BAO=∠BTO,∴BA=BT,∵BO⊥AT,∴OA=OT,∴直线BT的解析式为为:443y x=+,∴点Q在直线y=﹣43x+4上运动,∵B(0,4),T(3,0).∴BT=5.当OQ⊥BT时,OQ最小.∵S△BOT=12×3×4=12×5×OQ.∴OQ=125.∴线段OQ长的最小值为125.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.5、(1)①:y=0.1x+30;②:y=0.2x(2)当x值为300时两种方案收费相等(3)当0<x<300时,选择②种方案;当x=300时,两种方案一样;当x>300时,选择①种方案.【解析】【分析】(1)根据函数图象中的数据,用待定系数法可以分别求得①②两种方案的收费y(元)与通话时间x(分钟)之间的函数关系式;(2)令(1)中的两个函数值相等,即可求出当x 值为多少时两种方案收费相等;(3)根据(2)中的结果和函数图象,可以写出当x 何值时,选择哪种收费方案更合算.(1)解:设①种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =kx +b ,∵点(0,30),(500,80)在此函数图象上,∴3050080b k b =⎧⎨+=⎩, 解得0.130k b =⎧⎨=⎩, 即①种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =0.1x +30;设②种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =ax ,∵点(500,100)在此函数图象上,∴100=500a ,得a =0.2,即②种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =0.2x ;(2)解:令0.1x +30=0.2x ,解得x =300,答:当x 值为300时两种方案收费相等;(3)解:由(2)中的结果和图象可得,当0<x<300时,选择②种方案;当x=300时,两种方案一样;当x>300时,选择①种方案.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答.。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为,瓶中水位的高度为,下列图象中最符合故事情景的是:【答案】D【解析】观察瓶子形状,下边较细,中间最粗,上面最细,乌鸦向瓶中放石子的过程中,水位不断上升,由于瓶子粗细不同,所以水位上升也不是均匀的,等到水位上升到一定程度时,乌鸦开始喝水,水位开始下降,据此,选D2.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)10时和13时,他分别离家多远?(2)他到达离家最远的地方是什么时间?离家多远?(3)他由离家最远的地方返回时的平均速度是多少?【答案】(1)10时和13时,分别离家15千米和30千米;(2分)(2)到达离家最远的时间是12时(或12-13),离家30千米;(2分)(3)共用了2时,因此平均速度为15千米/时.(3分)【解析】(1)根据图象可以直接看出纵坐标表示离家的距离,从横坐标中找到时间点,可直接得到答案;(2)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;(3)根据返回时所走路程和使用时间即可求出返回时的平均速度.3.如图,已知函数和的图象交于点P,则根据图象可得,关于的二元一次方程组的解是【答案】.【解析】函数和的图象交点P的坐标是二元一次方程组的解,所以二元一次方程组的解为.【考点】一次函数与二元一次方程组方程组的关系.4.(本小题6分)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.(1)求直线AB的解析式;(2)点P在直线AB上,是否存在点P使得△AOP的面积为1,如果有请直接写出所有满足条件的点P的坐标【答案】(1)y=-x+2;(2)存在,P(1,) P(-1,).【解析】(1)设一次函数解析式,将A,B两点坐标代入这个解析式,求出k,b即确定了一次函数解析式.(2)因为OA是2作为△AOP的底,利用△AOP的面积为1,把P点的横坐标求出来,代入一次函数解析式求出纵坐标,这样满足条件的P点就求出来了.试题解析:(1)根据题意得,A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则∴,∴直线AB的解析式为y=-x+2.(2)设P点横坐标为x,S△AOP=×2×=1,∴x=±1,分别代入直线AB解析式得:y1=,y2=∴P(1,) P(-1,).【考点】一次函数与三角形综合题.5.(本小题满分7分)甲、乙两人沿同一路线登山,图中线段、折线分别是甲、乙两人登山的路程(米)与登山时间(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【答案】(1);(2)分钟,200米.【解析】(1)由图像可知甲登山的路程(米)与登山时间(分)之间的函数是正比例函数,设正比例函数解析式为y=kx,将点(30,600)代入求k,即得其函数解析式,自变量的取值范围可以看图像得出;(2)所求第一个问题为AB与OC交点的横坐标,第二个问题为AB与OC交点的纵坐标.先求AB的解析式,然后和OC的解析式组成方程组求解.试题解析:(1)设甲登山的路程与登山时间之间的函数解析式为.∵点在函数的图象上,∴.解得.∴.(2)设乙在段登山的路程与登山时间之间的函数解析式为,依题意,得,解得∴.设点为与的交点,∴,解得∴乙出发后分钟追上甲,此时乙所走的路程是米.【考点】1.一次函数的实际应用;2.一次函数与二元一次方程组的关系.6.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)【答案】=【解析】令PM与QB的交点为C,根据反比例函数的性质可知矩形AOMP和矩形QBON的面积均为,然后可知矩形PCBA的面积等于矩形QNMC的面积,由PB、QM为对角线,因此△ABP的面积等于矩形PCBA的面积的一半,△QMN的面积等于矩形QNMC的面积的一半,因此△ABP的面积等于△QMN的面积,即填“=”.【考点】反比例函数的图像与性质,矩形的面积,矩形的性质7.已知函数中自变量的取值范围是().A.B.C.D.【答案】C.【解析】此式要满足x-1≥0,且≠0,解x≥1,且x≠1,所以x>1,故选C.【考点】1.二次根式意义;2.分母不能为0.8.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x≥ax+4的解集为().A.B.C.D.【答案】A.【解析】利用图像比较大小,以交点A为界,看A的横坐标,大于等于1时,函数y=3x高于等于y=ax+4,因此x≥1时,不等式3x≥ax+4,故选A.【考点】利用图像比较一次函数大小.9.已知一次函数y=(k+2)x-k,函数y的值随自变量x的值的增大而增大,则k的取值范围是为.【答案】k>-2.【解析】因为函数y的值随自变量x的值的增大而增大,所以k+2>0,所以k>-2.【考点】一次函数性质.10.)冷冻一个0℃的物体.使它每分钟下降2℃,物体的温度T(单位℃)与冷冻时间t(单位:分)的函数关系式是.【答案】T=﹣2t.【解析】由题意可知,它每分下降2℃,即可得t分钟下降2t℃,所以T=0+(﹣2t)=﹣2t.【考点】列函数关系式.11.将直线y=﹣2x+1向下平移4个单位得到直线l,则直线l的解析式为()A.y=﹣6x+1B.y=﹣2x﹣3C.y=﹣2x+5D.y=2x﹣3【答案】B【解析】一次函数的平移法则为“左加右减,上加下减”,直接根据平移规律求解即可.根据平移法则可得直线l的解析式为y=﹣2x+1﹣4,即y=﹣2x﹣3.【考点】一次函数图象与几何变换.12.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是()【答案】C.【解析】分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.【考点】1.反比例函数的图象;2.一次函数的图象.13.若反比例函数的图象经过点A(2,﹣1),则k= ,该函数的图象还经过点B(-2,).【答案】﹣2,1.【解析】∵k=xy,过(2,﹣1)点,∴k=2×(﹣1)=﹣2.∵B点的横坐标为﹣2.∴y==1.【考点】1.待定系数法求反比例函数解析式;2.反比例函数图象上点的坐标特征.14.(8分)如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.15.下列各式中,y随x的变化关系式是正比例函数的是()A.y="2x"B.y=C.y=x﹣1D.y=x2﹣1【答案】A.【解析】形如y=kx,k为常数且k≠0,这样的函数称为正比例函数,符合条件的只有选项A,故答案选A.【考点】正比例函数的定义.16.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()A.m<0B.m<3C.0<m<3D.m>0【答案】A【解析】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.根据题意可得:m-3<0,-m>0,解得:m<0.【考点】一次函数图象与系数的关系17.若一次函数y=﹣2x+3的图象经过点P1(﹣5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空)【答案】>【解析】根据一次函数y=kx+b的增减性:当k>0时,y随x的增大而增大,当k<0时,y随x 的增大而减小。

华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、若点(1,2)同时在函数y=ax+b和y=的图象上,则点(a,b)为()A.(-3,-1)B.(-3,1)C.(1,3)D.(-1,3)2、如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B. C. 或 D.或3、反比例函数y= 的图象经过的象限是()A.第一二象限B.第一三象限C.第二三象限D.第二四象限4、两个一次函数的图象如图所示,下列方程组的解满足交点P的坐标的是()A. B. C. D.5、如图,点M是反比例函数(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定6、若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限;C.第三象限D.第四象限7、过和两点的直线一定 ( )A.垂直于轴B.与轴相交但不平行于轴C.平行于轴 D.与轴、轴都不平行8、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮9、甲、乙两名运动员同时从地出发前往地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程(千米)与行驶时间(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,或.其中正确的个数有( )A.1个B.2个C.3个D.4个10、如图,已知两点的坐标分别为,点分别是直线和x轴上的动点,,点D是线段的中点,连接交y轴于点E;当⊿ 面积取得最小值时,的值是()A. B. C. D.11、一次函数y1=kx+b和反比例函数y2= 的图象如图,则使y1>y2的x范围是()A.x<﹣2或x>3B.﹣2<x<0或x>3C.x<﹣2或0<x<3 D.﹣2<x<312、一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A.9B.16C.25D.3613、如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,),则该坐标系的原点在()A.G点处B.F点处C.E点处D.EF的中点处14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h(甲车休息前后的速度相同),甲、乙两车行驶的路程y(km)与行驶的时间x(h)的函数图象如图所示.根据图象的信息有如下四个说法:①甲车行驶40千米开始休息②乙车行驶3.5小时与甲车相遇③甲车比乙车晚2.5小时到到B地④两车相距50km时乙车行驶了小时其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,一次函数与正比例函数的图象交于点P(-2,-1),则关于的方程的解是________.17、写出一个一次函数,使该函数图像经过第一,二,四象限和点(0, 5),则这个一次函数可以是________.18、剧院里5棑2号可用(5,2)表示,则(7,4)表示________ .19、如图,矩形ABCD中,AB=2,BC=4,点A,B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是________.20、某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费元,如果乘客白天乘坐出租车的路程为千米,乘车费为元,那么与之间的关系为________.21、如图,在直角坐标系中,正方形的中心在原点,且正方形的一组对边与轴平行,点是反比例函数的图象上与正方形的一个交点.若图中阴影部分的面积等于,则这个反比例函数的解析式为________.22、如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点的对应点落在直线上……,依次进行下去,若点的坐标是(0,1),点的坐标是,则点的横坐标是________.23、三角形的面积公式中S=ah其中底边a保持不变,则常量是________ ,变量是________ .24、函数有意义,则自变量x的取值范围是________.25、已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、已知矩形中,米,米,为中点,动点以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求与间的函数关系式.28、在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.29、请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x …﹣3 ﹣2 ﹣1 0 1 2 3 …y ……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)写出函数y=|x|与y=|x+2|图象的平移关系.30、一次函数y=kx+b中(k、b为常数,k≠0),若-3≤x≤2,则-1≤y≤9,求一次函数的解析式.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、A6、A8、D9、B10、B11、B12、C13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.定义新运算:,则函数的图象大致是().【答案】B【解析】先根据新定义运算列出y的关系式,再根据此关系式及x的取值范围画出函数图象即可.解答:解:根据新定义运算可知,=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.2.已知一次函数图象经过点(3 , 5) , (–4,–9)两点.【1】求一次函数解析式.【答案】y=2x-1【2】求图象和坐标轴交点坐标.【答案】(0,-1)(,0)【3】求图象和坐标轴围成三角形面积.【答案】【4】点(a , 2)在图象上,求a的值.【答案】a=3.(本小题满分8分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【答案】【解析】略4.函数的自变量的取值范围是.【答案】>1【解析】依题意可得,解得,所以函数的自变量的取值范围是5.在反比例函数的图像上,到轴和轴的距离相等的点有A.1个B.2个C.4个D.无数个【答案】B.【解析】根据k=xy求值即可.试题解析:∵到x轴和y轴的距离相等∴x2=9解得:x=3或x=3.故选B.【考点】函数图象上点的坐标特征.6.写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小;(2)图像经过点(0,-3)【答案】y=-x-3.【解析】满足第一条k小于0,满足第二条b=-3,,所以可以是y=-x-3.(k值不唯一,解析式也不唯一)【考点】确定一次函数解析式.7.(10分)如图,四边形ABCD为菱形,A(0,4),B(﹣3,0).(1)求点D的坐标(2)求经过C点的反比例函数解析式.【答案】(1)D(0,﹣1).(2)y=.【解析】(1)根据A,B点坐标用勾股定理把AB边求出,因为是菱形,所以AD=AB,用AD 长减去A的纵坐标即可求出D点坐标.(2)先求出C点坐标,因为BC=AB,CB∥AD,∴CB⊥x轴,C点纵坐标的绝对值是CB的长,而C的横坐标和B的横坐标相同,从而求出经过C点的反比例函数解析式.试题解析:(1)∵A(0,4),B(﹣3,0),∴OB=3,OA=4,∴AB=5.在菱形ABCD中,AD=AB=5,∴OD=1,∴D(0,﹣1).(2)∵BC∥AD,BC=AB=5,∴C(﹣3,﹣5).设经过点C的反比例函数解析式为y=.把(﹣3,﹣5)代入解析式得:k=15,∴经过点C的反比例函数解析式为y=.【考点】菱形性质与反比例函数综合题.8.直线的图象经过第()象限A.二、三、四B.一、二、四C.一、三、四D.一、二、三【答案】C.【解析】一次函数解析式中的K,b值决定过哪些象限,K=1>0过一,三象限,b=-1<0,与y轴交于负半轴,所以图像过1,3,4象限,故选C.【考点】一次函数性质.9.(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求直线AC的解析式;(2)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)动点P从点A出发,沿线段AB方向以2个单位/秒的速度向终点B匀速运动,当∠MPB与∠BCO互为余角时,试确定t的值.【答案】(1)y=-x+.(2)S=-t+(0≤t<).S=-(<t≤5)(3).【解析】(1)要求出AC的解析式,需要知道两点坐标,A点坐标是已知的,由A点坐标可知AO的长,因为是菱形,OA=OC,这样C点坐标就知道了,于是求出直线AC的解析式;(2)分两个时间段建立函数关系,①当0≤t<时,P在AB上,由直线AC解析式求出M点坐标,再求出M,用t表示出PB,建立S△PMB与t之间的函数关系式;②当<t≤5时,P在BC上,可证△MOC≌△MBC(SAS),∴∠MBP=90°,BM=MO,用t表示出PB的长,建立S△PMB与t之间的函数关系式;(3)此题关键是求出PA的长度,由题意可得到∠AOM=∠ABM,∠BAO=∠BCO,∠BAO+∠AOM=90°,又∵∠MPB与∠BCO互为余角∴∠MPB=∠AOM,∴∠MPB =∠ABM.△PMB是等腰三角形,PH=BH,,可求出PH长度,于是求出PA长度,t值就求出来了.试题解析:(1)如图1,过点A作AE⊥x轴,垂足为E.∵A(-3,4),∴AE=4,OE=3,∴OA==5.∵四边形ABCO是菱形,∴OC=CB=BA=OA=5,∴C(5,0).设直线AC的解析式为y=kx+b,将A(-3,4),C(5,0)代入得:,解得,∴直线AC的解析式为y=-x+.(2)由(1)得点M的坐标为(0,),∴OM=.如图1,当点P在AB边上运动时.由题意得OH=4,∴HM=.∴S=BP·MH=(5-2t)×,∴S=-t+(0≤t<).如图2,当点P在BC边上运动时.∵∠OCM=∠BCM,OC=BC,MC=MC.∴△MOC≌△MBC.∴BM=OM=,∠MBC=∠MOC=90°,∴S=BP·BM=(2t-5)×,∴S=-(<t≤5).(3)∵∠AOC=∠ABC,∠MOC=∠MBC,∴∠AOM=∠ABM.∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOM=90°,∴∠MPB=∠AOM,∴∠MPB=∠ABM.如图3,当点P在AB边上运动时,∵∠MPB=∠ABM,∴PM=BM,∵MH⊥PB,∴PH=HB=5-3=2,∴PA=3-2=1.∴t=.【考点】1.一次函数的实际应用;2.图形的动点问题;3.与三角形有关的知识;3.菱形性质.10.在平面直角坐标系中,若直线经过第一、三、四象限,则直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.由题意知k>0,b<0,因此可得的图像过一二四象限,不经过三象限.故选C【考点】一次函数的图像与性质11.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点的坐标;(2)求四边形PQOB的面积.【答案】(1)A(﹣1,0),B(1,0),P();(2)【解析】(1)令y=x+1=0求出点A的坐标,令y=﹣2x+2 =0可求出B的坐标,再解方程组可求出点P的坐标;(2)根据四边形PQOB的面积=即可求解.试题解析:(1)∵一次函数y=x+1的图象与x轴交于点A,∴A(﹣1,0),一次函数y=﹣2x+2的图象与x轴交于点B,∴B(1,0),由,解得,∴P().(2)设直线PA与y轴交于点Q,则Q(0,1),直线PB与y轴交于点M,则M(0,2),∴四边形PQOB的面积==×1×2﹣×1×= .【考点】一次函数综合题.12.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣【答案】B.【解析】由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.【考点】一次函数图象与系数的关系.13.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【答案】D【解析】根据一次函数的图像与性质可知:当k<0时,y随x的增大而减小,可知a>b.故选D【考点】一次函数的图像与性质14. (本题满分8分)直线y=kx+b 交坐标轴于A (-2,0),B (0,3)两点,求不等式kx+b >0的解集. 【答案】x>-2.【解析】先把两点坐标代入y=kx+b ,将直线y=kx+b 解析式求出来,再解不等式kx+b>0,求解集.试题解析:先把两点坐标代入y=kx+b ,解得b=3,k=,∴y=x+3,解不等式x+3>0,得:x>-2.【考点】1.用代入法求一次函数解析式;2.解一元一次不等式.15. 如图的四个图象中,不表示某一函数图象的是( )【答案】B .【解析】根据函数的定义,对于自变量x 的某一取值,函数y 都有唯一值与之对应,可知选项A 、C 、D 的图象满足函数的定义,选项B 的图象中,对于自变量x 的某一取值,y 有两个值与之对应,不是函数图象. 故答案选B .【考点】函数的图象;函数的概念.16. 一次函数y=2x ﹣6的图象经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】B【解析】对于一次函数y=kx+b 而言,当k >0,b <0时,图象经过一、三、四象限.本题中k >0,b <0.先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可. 【考点】一次函数图象与系数的关系.17. 直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( ) A .x >3 B .x <3 C .x >﹣1 D .x <﹣1【答案】D .【解析】当k 2x >k 1x+b 时,y=k 2x 的图象应位于y=k 1x+b 图象的上方;观察图象可得,当x <﹣1时,直线y=k 2x 图象在直线y=k 1x+b 图象的上方,所以不等式k 2x >k 1x+b 的解集为x <﹣1,故答案选D .【考点】一次函数与一元一次不等式的关系.18. 根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )A .1B .-1C .3D .-3【答案】A .【解析】:一次函数的解析式为y=kx+b (k≠0), ∵x=-2时y=3;x=1时y=0, ∴, 解得,∴一次函数的解析式为y=-x+1, ∴当x=0时,y=1,即p=1. 故选A .【考点】一次函数图象上点的坐标特征.19. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示的方式放置,点A 1,A 2,A 3,…在直线y=x+1,点C 1,C 2,C 3,…在x 轴上,则B 6的坐标是 .【答案】(63,32).【解析】已知点A 1在直线y=x+1,可得OA 1=1,又因正方形A 1B 1C 1O ,所以C 1坐标为(1,0),B 1的坐标(1,1);已知A 2在直线y=x+1图象上,所以A 2坐标为(1,2),A 2B 2C 2C 1是正方形,可得C 2坐标为(1,0),点B 2的坐标为(3,2),A 3在直线y=x+1图象上,可得点A 3的坐标为(3,4),以此类推可得点B 3的坐标为(7,4),所以B 1的纵坐标是:1=20,B 1的横坐标是:1=21﹣1;B 2的纵坐标是:2=21,B 2的横坐标是:3=22﹣1;B 3的纵坐标是:4=22,B 3的横坐标是:7=23﹣1;…B n 的纵坐标是:2n ﹣1,横坐标是:2n ﹣1,则B n (2n ﹣1,2n ﹣1).所以B 6的坐标是:(26﹣1,26﹣1),即(63,32).【考点】一次函数图象上点的坐标特征;正方形的性质;规律探究题.20. (8分)如图,直线AC 是一次函数y=2x+3的图象,直线BC 是一次函数y=﹣2x ﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.21.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC【答案】(1)直线AB的解析式为y=2x﹣2;(2)点C的坐标是(2,2).【解析】(1)设直线AB的解析式为y=kx+b,根据直线AB过点A(1,0)、点B(0,﹣2),列出方程组,解方程组求得k、b的值,即可得直线AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式可得•2•x=2,解得x的值再代入直线即可求出y的值,即可得点C的坐标.试题解析:解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),∵S=2,△BOC∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).【考点】待定系数法求一次函数解析式.22.一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)【答案】A【解析】本题考查了一次函数与坐标轴的交点坐标的求法,是一个基础题,掌握y轴上点的横坐标为0是解题的关键.令x=0,得y=﹣2×0+4=4,则函数与y轴的交点坐标是(0,4).【考点】一次函数图象上点的坐标特征23.直线y=kx+2过点(1,﹣2),则k的值是()A.4B.﹣4C.﹣8D.8【解析】B本题考查了用待定系数法求解析式,是基础知识要熟练掌握.将点(1,﹣2)代入y=kx+2,求出k的值.∵直线y=kx+2过点(1,﹣2),∴k+2=﹣2,解得k=﹣4,【考点】待定系数法求一次函数解析式24.如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k= .【答案】3.【解析】如图,过点D作DE⊥x轴,垂足为E,连OD.由题意可知∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,根据同角的余角相等可得∠DAE=∠OBA,根据正方形的性质可得∠BOA=∠AED,AB=DA,根据AAS可证出△BOA≌△AED,得到AE=BO,AO=DE,所以=•OE•DE=×3×1=,,根据反比例函数k的几何意义,即可得S△DOEk=3..【考点】反比例函数综合题.25.关于x的一次函数y=3kx+k-1的图象无论k怎样变化,总经过一个定点,这个定点的坐标是.【答案】(-,-1).【解析】∵y=3kx+k-1,∴(3x+1)k=y+1,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴3x+1=0且y+1=0,∴x=-,y=-1,∴一次函数y=3kx+k-1过定点(-,-1).【考点】一次函数图象上点的坐标特征.26.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A.x=B.x=3C.x=﹣D.x=﹣3【答案】A【解析】可先求得A点坐标,再结合函数图象可知方程的解即为两函数图象的交点横坐标,可求得方程的解.∵A点在直线y=2x上,∴3=2m,解得m=,∴A点坐标为(,3),∵y=2x,y=ax+4,∴方程2x=ax+4的解即为两函数图象的交点横坐标,∴方程2x=ax+4的解为x=,【考点】一次函数与一元一次方程27.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组解是.【答案】.【解析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【考点】一次函数与二元一次方程(组).28.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【答案】(1)直线AB的解析式为:y=﹣x+5;(2)点C(3,2);(3)x>3.【解析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.试题解析:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)由图象可得x>3.【考点】 1.待定系数法;2.一次函数与一元一次不等式;3.两条直线相交或平行问题.29.将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,(1)求y与x之间的函数关系式,并画出函数图象,(2)若x=20,求纸条的面积.【答案】(1)y=18x+2;(2) 3620cm2.【解析】(1)根据白纸粘合后的总长度=x张白纸的长-(x-1)个粘合部分的宽,列出函数解析式即可;(2)根据长方形的面积计算公式,把相关数值代入即可求解.试题解析:(1)由题意得:y=20x-(x-1)×2=18x+2;(2)当x=20时,y=18x+2=362(cm),纸条的面积=362×10=3620(cm2).【考点】一次函数的应用.30.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.【答案】(1)200米.(2) y=200x-1000;(3) 小文离家600米.【解析】从图象可以知道,2分钟时小文返回家,在家一段时间后,5分钟又开始回学校,10分钟到达学校.试题解析:(1)200米(2)设直线AB的解析式为:y=kx+b由图可知:A(5,0),B(10,1000)∴解得∴直线AB的解析式为:y=200x-1000;(3)当x=8时,y=200×8-1000=600(米)即x=8分钟时,小文离家600米.【考点】一次函数的应用.31.如果是方程组的解,则一次函数y=mx+n的解析式为()A.y="-x+2"B.y="x-2"C.y="-x-2"D.y=x+2【答案】D.【解析】根据题意,将代入方程组,得,即,①×2得,6m-2n=2…③,②-③得,3m=3,∴m=1,把m=1代入①,得,3-n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【考点】一次函数与二元一次方程(组).32.已知函数是正比例函数,且图象在第二、四象限内,则m的值是()A.2B.-2C.±2D.【答案】B.【解析】∵函数是正比例函数,且图象在第二、四象限内,∴m2-3=1,m+1<0,解得:m=±2,则m的值是-2.故选B.【考点】1.正比例函数的定义;2.正比例函数的性质.33.下列描述一次函数y=-2x+5图象性质错误的是()A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)【答案】D【解析】A,B,C都符合一次函数的定义;D直线与y轴的交点为(0,5),故错误.【考点】一次函数34.下列图象不能表示y是x的函数的是()A.B.C.D.【答案】D.【解析】根据函数的定义可知:对于x的任何值y都有唯一的值与之相对应,分析图象可知只有D不能表示函数关系.故选D.【考点】函数的图象.35.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为.【答案】x>1.【解析】由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;故答案为:x>1.【考点】一次函数与一元一次不等式.36.将直线向下平移1个单位长度后得到的图像的函数解析式是【答案】y=2x-1.【解析】根据一次函数图象与几何变换得到直线y=2x向下平移1各单位得到函数解析式y=2x-1.【考点】一次函数的图象与几何变换37.若一次函数的图象经过点(,),则的值为.【答案】4.【解析】把点(,)代入可得10=2k+2,解得k=4.【考点】一次函数图象上点的特征.38.(本小题满分8分)如图,已知一次函数与正比例函数图像相交于点A,与轴交于点B.(1)求出m、n的值;(2)求出的面积.【答案】(1)n=4,m=2;(2)4.【解析】(1)把A(2,n)代入可求得n的值,再把A点的坐标代入求得m 的值即可;(2)求得与轴的交点B的坐标,利用即可求得的面积.试题解析:解:(1)∵点A(2,n)在函数的图象上,∴∴A(2,4)∵点A(2,4)也在函数的图象上,∴解得:(2)∵与轴交于点B ,∴令,则∴B (-2,0)∴【考点】一次函数.39. (10分)如图,在△ABC 中,∠BAC=90°,AB=AC=6,D 为BC 的中点.(1)若E 、F 分别是AB 、AC 上的点,且AE=CF ,求证:△AED ≌△CFD ;(2)当点F 、E 分别从C 、A 两点同时出发,以每秒1个单位长度的速度沿CA 、AB 运动,到点A 、B 时停止;设△DEF 的面积为y ,F 点运动的时间为x ,求y 与x 的函数关系式;(3)在(2)的条件下,点F 、E 分别沿CA 、AB 的延长线继续运动,求此时y 与x 的函数关系式.【答案】(1)详见解析;(2);(3).【解析】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC ,再利用SAS 可判定△AED ≌△CFD ; (2)利用S 四边形AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC ="9" 即可得到y 与x 之间的函数关系式;(3)依题意有:AF=BE=x-6,AD=DB ,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF ≌△BDE ,利用全等三角形面积相等得到S △ADF =S △BDE 从而得到S △EDF =S △EAF +S △ADB 即可确定两个变量之间的函数关系式.试题解析:(1)证明:∵∠BAC="90°" AB=AC=6,D 为BC 中点∴∠BAD=∠DAC=∠B=∠C=45° ∴AD=BD=DC ∵AE=CF ∴△AED ≌△CFD(2)解:依题意有:FC=AE=x ,∵△AED ≌△CFD ∴S 四边AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC =9S △EDF =S 四边AEDF -S △AEF =9-=;∴ (3)解:依题意有:AF=BE=x ﹣6,AD=DB ,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135° ∴△ADF ≌△BDE ∴S △ADF =S △BDE∴S △EDF =S △EAF +S △ADB=+9=;∴. 【考点】等腰直角三角形的性质;全等三角形的判定与性质.40. (本题8分)如图,在平面直角坐标系中,O 是坐标原点,点A 坐标为(2,0),点B 坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC 垂直于x 轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.=4时,求点P的坐标;(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【答案】(1)①y=-1.5x+3 ②P(,4)(2)或【解析】(1)①利用待定系数法求解即可;由①知点P坐标为(a,-a+3),可求出点P坐标,再利用求出a的值,即可得出点P的坐标;(2)分两种情况①当∠QAC=90°,且AQ=AC时,QA∥y轴,②当∠AQC=90°,且QA=QC时,过点Q作QH⊥x轴于点H,分别求解即可.试题解析:解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得所以直线AB的函数表达式为y=-x+3,由①知点P坐标为(a,-a+3),∴点Q坐标为(-a,-a+3),∴=×2×==-a+3=4,解得a=-∴P点的坐标为(-,4)(2)设P点的坐标为(a,n),(a<0,n>0),则点C,Q的坐标分别为C(a,0),Q(-a,n),①如图1,当∠QAC=90°且AQ=AC时,QA∥y轴,∴-a=2,解得a=-2∴AC=4,从而AQ=AC=4,即=4,由n>0得n=4∴P点的坐标为(-2,4)设直线AB的解析式为y=cx+b(c≠0),将P(-2,4),A(2,0)代入得,解得∴a=-2,b=2②如图2,当∠AQC=90°,且QA=QC时,过点Q作QH⊥x轴于点H,∴QH=CH=AH=AC,由Q(-a,n)知H(-a,0)Q的横坐标为-a=,解得a=-,Q的纵坐标为QH=∴Q(,),P(-,)由P(-,),点A坐标为(2,0),可得直线AP的解析式为y=-x+1,∴b=1,∴a=-,b=1综上所述,当△QAC是等腰三角形时,a=-2,b=2或a=-,b=1.【考点】待定系数法,一次函数的图像与性质41.若点A(0,2)和点B(-2,8)在一次函数y=kx+b的图像上,则该函数关系式为.【答案】y=-3x+2【解析】根据待定系数法可知,解得,因此该函数的解析式为y=-3x+2.【考点】待定系数法42.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【答案】(1);(2)x=25时,y取得最大值为1875.【解析】(1)根据题意列出方程即可;(2)根据一次函数的增减性求解即可.试题解析:解:(1)y=(45﹣30)x+(70﹣50)(100﹣x)=15x+2000﹣20x=﹣5x+2000;(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).【考点】一次函数的应用.43.如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.【答案】(1)900.(2)y=.【解析】(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.试题解析:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:900.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.【考点】一次函数的应用.44.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.45.已知点M(2,1)和点N(1,-2)在直线l:y=kx+b上,则直线l与x轴的交点坐标是()A.(0,-5)B.(-5,0)C.(0,)D.(,0)【答案】D.【解析】试题解析:∵点M(2,1)和点N(1,-2)在直线y=kx+b上,∴,解得,∴直线l的解析式为y=3x-5.∵当y=0时,x=,∴直线l与x轴的交点坐标是(,0).故选D.【考点】一次函数图象上点的坐标特征.46.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【答案】D.【解析】试题解析:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=-6,∴一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),故D选项错误.故选D.【考点】一次函数的性质.47.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.48.如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1) (1)A(2,0);C(0,4);(2) 直线CD解析式为y=-x+4.(3)P1(0,0);P2(,);P3(-,).【解析】(1)已知直线y=-2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.试题解析:(1)A(2,0);C(0,4)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4-x,根据题意得:(4-x)2+22=x2解得:x=此时,AD=,D(2,)设直线CD为y=kx+4,把D(2,)代入得=2k+4解得:k=-∴该直线CD解析式为y=-x+4.(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD=4-=,AP=BC=2由AD×PQ=DP×AP得:PQ=3∴PQ=∴xP=2+=,把x=代入y=-x+4得y=此时P(,)(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:CQ=∴OQ=4-=此时P(-,)综合得,满足条件的点P有三个,分别为:P1(0,0);P2(,);P3(-,).【考点】一次函数综合题.49.将直线y=2x﹣1的图象向上平移3个单位长度所得的函数表达式.【答案】y=2x+2【解析】函数图象的平移法则为:上加下减,左减右减.【考点】函数图象的平移50.已知:y-1与x+2成正比例,且x=1时,y=4.(1)写出与之间的函数关系式;(2)在图中画出此函数的图像;(3)求此直线与坐标轴围成的三角形的面积.(4)观察图像,直接写出时的取值范围.【答案】(1)y="x+3" ;(2)详见解析;(3)4.5;(4)x<-3.【解析】(1)根据题意设y-1=k(x+2),将x与y的值代入求出k的值,即可确定出y与x关系式;(2)求出直线与x轴、y轴的交点坐标,连接即可;(3)根据三角形的面积公式即可解答;(4)观察图象,可得时的取值范围.试题解析:(1)根据题意得:y-1=k(x+2),将x=1,y=4代入得:3=3k,即k=1,则y-1=x+2,即y=x+3;直线y=x+3与x轴的交点坐标为(-3,0),与y轴的交点坐标为(0,3),函数图象如图,直线y=x+3与坐标轴围成的三角形的面积为×3×3=4.5;观察图象可得时的取值范围为)x<-3.【考点】一次函数的图象及性质.51.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:。

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

八年级数学下册第十七章函数及其图像达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(n >0).若△ABC 是等腰直角三角形,且AB =BC ,当0<a <1时,点C 的横坐标m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >32、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米3、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--4、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇5、如果点P (﹣5,b )在第二象限,那么b 的取值范围是( )A .b ≥0B .b ≤0C .b <0D .b >06、已知()231m y m x -=-+是一次函数,则m 的值是( )A .-3B .3C .±3D .±27、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5xy =8、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是()A .x ≥2B .x ≤2C .x ≥3D .x ≤39、在下列图象中,y 是x 的函数的是( )A .B .C .D .10、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x (秒),甲、乙两人之间的距离为y (米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A .503B .18C .553D .20第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、点P (5,﹣4)到x 轴的距离是___.2、函数y x π=,当x >0时,图象在第____象限,y 随x 的增大而_________.3、一次函y =kx +b (k ≠0)的图象可以由直线y =kx 平移______个单位长度得到(当b >0时,向______平移;当b <0时,向______平移).4、在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为______5、反比例函数k y x=的图像是由两支_______组成的. (1)当k >0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______;(2)当k <0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______.6、将一次函数22y x =-的图像向上平移5个单位后,所得图像的函数表达式为______.7、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.8、如图,直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P ,若点P (1,n ),则方程组4y kx b y x =+⎧⎨=-+⎩的解是_____.9、若点(),2P m m +在x 轴上,则m 的值为______.10、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.三、解答题(5小题,每小题6分,共计30分)1、如图,一次函数y =-x +5的图象与反比例函数k y x= (k ≠0)在第一象限的图象交于A (1,n )和B 两点.(1)求反比例函数的表达式与点B 的坐标;(2)在第一象限内,当一次函数y =-x +5的值小于反比例函数k y x =(k ≠0)的值时,直接写出自变量x 的取值范围 .2、在平面直角坐标系xOy 中,已知点A 的坐标为(4,1),点B 的坐标为(1,﹣2),BC ⊥x 轴于点C .(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标;(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为;(3)求出以A,B,O为顶点的三角形的面积;(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.4、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E 的对应点E′;(2)如图2,当点E 的对应点E′落在x 轴上时,求点P 的坐标;(3)如图3,直线l 上有A ,B 两点,坐标分别为(-2,-6),(4,6),当点P 从点A 运动到点B 的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.5、直线()10l y kx b k =+≠:,与直线2:l y ax =相交于点(1,2)B .(1)求直线2l 的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线1l 与直线2l 和x 轴围成的区域内(不含边界)为W .k=-时,直接写出区域W内的整点个数;①当1②若区域W内的整点恰好为2个,结合函数图象,求k的取值范围.-参考答案-一、单选题1、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB 和△BDC 中,AOB BDC BAO CBD AB BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB +BD =2+a =m ,∴2a m =-∴2<m <3,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.2、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A 选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,,A BOD=∠=︒∠+∠=︒∠+∠=︒909090≌,OA OB AOB A AOC AOC BOD∠=∠,故有AOC OBD ,,进而可得B点坐标.21====OD AC BD OC【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.4、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.5、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b 的取值范围.【详解】解:∵点P (﹣5,b )在第二象限,∴b >0,故选D .【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.6、A【解析】略7、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.8、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.9、D【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【详解】解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.故选:D.【点睛】本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.10、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=10050,63故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.二、填空题1、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】点P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.2、一减少【解析】略3、 b 上 下【解析】略4、1x >【解析】【分析】根据函数图象写出一次函数y kx =在y x b =-+上方部分的x 的取值范围即可.【详解】解:一次函数y kx =和y x b =-+的图象交于点()1,2所以,不等式kx x b >-+的解集为1x >.故答案为:1x >【点睛】本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.5、 双曲线 一、三 减小 二、四 增大【解析】略6、23y x =+【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数22y x =-的图像向上平移5个单位,∴所得图像的函数表达式为:22523y x x =-+=+故答案为:23y x =+【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.7、 象限 不属于 一 三 y 轴【解析】略8、13x y =⎧⎨=⎩【解析】【分析】由两条直线的交点坐标P (1,n ),先求出n ,再求出方程组的解即可.【详解】解:∵y =﹣x +4经过P (1,n ),∴n =-1+4=3,∴n =3,∴直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P (1,3),∴13x y =⎧⎨=⎩, 故答案为13x y =⎧⎨=⎩. 【点睛】本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 积 和 一次【解析】略三、解答题1、 (1)反比例函数的表达式为4y x=,B 的坐标为(4,1); (2)4x >或01x <<【解析】【分析】(1)将点A 的横坐标代入直线的解析式求出点A 的坐标,然后将的A 的坐标代入反比例函数的解析式即可;(2)一次函数y =−x +5的值大于反比例函数k y x=(k≠0)的值时,双曲线便在直线的下方,所以求出直线与双曲线及x 轴的交点后可由图象直接写出其对应的x 取值范围.(1)解:∵一次函数y =-x +5的图象过点A (1,n ),∴n =-1+5=4∴点A 坐标为(1,4), ∵反比例函数k y x =(k ≠0)过点A (1,4), ∴k =4, ∴反比例函数的表达式为4y x= 联立54y x y x =-+⎧⎪⎨=⎪⎩,解得1114x y =⎧⎨=⎩,2241x y ,即点B 的坐标为(4,1)(2)解:如图:由图象可知:当4x >或01x <<时一次函数y =−x +5的值小于反比例函数4y x=的值.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是掌握反比例函数与一次函数的交点与它们的解析式的关系.2、 (1)作图见解析,C 点坐标为()1,0(2)()23--,(3)4.5(4)E 点坐标为()5.52-,或()3.52--, 【解析】【分析】(1)在平面直角坐标系中表示出A ,B ,C 即可.(2)由题意知,AB CD ,将点C 向下移动3格,向左移动3格到点D ,得出坐标.(3)利用分割法求面积,ABC 的面积等于矩形减去3个小三角形的面积,计算求值即可.(4)设E 点坐标为()2m ,-,由题意列方程求解即可.(1)解:如图,点A ,B ,C 即为所求,C 点坐标为(1,0)故答案为:(1,0).(2)解:∵点A 向下移动3格,向左移动3格到点B ,AB CD∴点C 向下移动3格,向左移动3格到点D∴D 点坐标为()23--,故答案为:()23--,. (3) 解:∵11134141233 4.5222AOB S ⨯-⨯⨯-⨯⨯-⨯⨯== ∴以A ,B ,O 为顶点的三角形的面积为4.5.(4)解:设E 点坐标为()2m ,-由题意可得112 4.52m ⨯⨯﹣= 解得: 5.5m =或 3.5m =∴E 点坐标为()5.52-,或()3.52--,. 【点睛】本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.3、 (1)k =2;(2)7; (3)32≤m ≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l 2的解析式,分别求得D 、C 、N 的坐标,再利用四边形OCNB 的面积=S △ODC - S △NBD 求解即可;(3)先求得点P 的纵坐标,根据题意列不等式组求解即可.(1)解:令x =0,则y =2;∴B (0,2),∴OB =2,∵AB∴OA 1,∴A (-1,0),把B (-1,0)代入y =kx +2得:0=-k +2,∴k =2;(2)解:∵直线l 2平行于直线y =−2x .∴设直线l 2的解析式为y =−2x +b .把(2,2)代入得2=−2⨯2+b ,解得:b =6,∴直线l 2的解析式为26y x =-+.令x =0,则y =6,则D (0,6);令y =0,则x =3,则C (3,0),由(1)得直线l 1的解析式为22y x =+.解方程组2226y x y x =+⎧⎨=-+⎩得:14x y =⎧⎨=⎩, ∴N (1,4),四边形OCNB 的面积=S △ODC - S △NBD =()113662122⨯⨯-⨯-⨯=7;(3)解:∵点P 的横坐标为m ,∴点P 的纵坐标为26m -+,∴PM =26m -+,∵PM ≤3,且点P 在线段CD 上,∴26m -+≤3,且m ≤3. 解得:32≤m ≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.4、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭ (3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-=解得:52 a=当52a=时,5232232a-=⨯-=所以点P的坐标为5,3 2⎛⎫ ⎪⎝⎭(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM 上运动,根据对称性知,点E'运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点E'运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.5、 (1)直线2l 为2y x =;(2)①当1k =-时,整点个数为1个,为(1,1);②k 的取值范围为112k -<-或1132k < 【解析】【分析】(1)根据待定系数法求得即可;(2)①当k =1时代入点A 坐标即可求出直线解析式,进而分析出整点个数;②当k <0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k 的值;当k >0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k 的值,根据图形即可求得k 的取值范围.(1)解:直线2:l y ax =过点(1,2)B .2a ∴=,∴直线2l 为2y x =.(2)解:①当1k =-时,y x b =-+,把(1,2)B 代入得21b =-+,解得:3b =,3y x ∴=-+,如图1,区域W 内的整点个数为1个,为(1,1).②如图2,若0k <,当直线过(1,2),(2,1)时,1k =-.当直线过(1,2),(3,1)时,12k =-. 112k ∴-<-, 如图3,若0k >,当直线过(1,2),(1,1)-时,12k =. 当直线过(1,2),(2,1)-时,13k =. ∴1132k <. 综上,若区域W 内的整点恰好为2个,k 的取值范围为112k -<-或1132k <. 【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.。

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析

初二数学函数及其图像试题答案及解析1.已知反比例函数的图象上两点,,当时,有,则m的取值范围是.【答案】m<.【解析】考查反比例函数图象的特点,当k>0时,图象在一三象限,k<0时,图象在二四象限解答.试题解析:∵时,有∴反比例函数的图象在一、三象限,∴1-2m>0解不等式得m<.【考点】1.反比例函数图象上点的坐标特征;2.不等式的解集.2.在平面直角坐标系中,把直线沿y轴向上平移两个单位后,得到的直线的函数关系式为____________________.【答案】y="2x-1"【解析】根据平移法则上加下减可得出平移后的解析式.由题意得:平移后的解析式为:y=2x-3+2=-2x-1.【考点】函数图像的平移3.(10分)如图,直线与相交于点P,的函数表达式y=2x+3,点P的横坐标为-1,且交y轴于点A(0,1).求直线的函数表达式.【答案】y=-2x-1.【解析】设点P坐标为(-1,y),代入y=2x+3得y=1,即P(-1,1).再把P(-1,1),A的解析式y=kx+b可求出k,b的值,进而求出其解析式.(0,-1)分别代入直线l2试题解析:、解:设点P坐标为(-1,y),代入y=2x+3,得y=1,∴点P(-1,1).设直线的函数表达式为y=kx+b,把P(-1,1)、A(0,-1)分别代入y=kx+b,得1=-k+b,-1=b,∴k=-2,b=-1.∴直线的函数表达式为y=-2x-1.【考点】利用函数图象求一次函数的表达式.4.(本题满分8分)已知与成正比例,当=-1时,=4,(1)求出与的函数表达式;(2)设点(,-2)在这个函数的图像上,求的值.【答案】(1)y=-2x+2;(2)2.【解析】(1)先设解析式,代入x,y值求待定系数,再代回,即可确定函数表达式.(2)把y=-2代入表达式,求出a值.试题解析:(1)设y=k(x-1),把x=-1,y=4代入,4=k(-1-1),解得k=-2,∴y=-2(x-1)即:y=-2x+2.(2)把y=-2代入:-2=-2x+2,∴x=2,即a=2.【考点】求一次函数解析式及点的坐标.5.(本小题6分)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.(1)求直线AB的解析式;(2)点P在直线AB上,是否存在点P使得△AOP的面积为1,如果有请直接写出所有满足条件的点P的坐标【答案】(1)y=-x+2;(2)存在,P(1,) P(-1,).【解析】(1)设一次函数解析式,将A,B两点坐标代入这个解析式,求出k,b即确定了一次函数解析式.(2)因为OA是2作为△AOP的底,利用△AOP的面积为1,把P点的横坐标求出来,代入一次函数解析式求出纵坐标,这样满足条件的P点就求出来了.试题解析:(1)根据题意得,A(0,2),B(4,0),设直线AB的解析式为y=kx+b,则∴,∴直线AB的解析式为y=-x+2.(2)设P点横坐标为x,S△AOP=×2×=1,∴x=±1,分别代入直线AB解析式得:y1=,y2=∴P(1,) P(-1,).【考点】一次函数与三角形综合题.6.已知一次函数的图象与轴正半轴相交,且随的增大而减小,请写出符合上述条件的一个解析式:.【答案】或等.【解析】∵与y轴的正半轴相交,∴b>0,∵随的增大而减小,∴k<0,写出满足条件的解析式即可,如:y=-x+1,y=-2x+1,等等.【考点】一次函数图像性质.7.小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】观察图象:由点(2,20)和(2.5,20)可得他们都行驶了20km,所以说法(1)正确;小陆全程共用了:2﹣0.5=1.5h,所以说法(2)正确;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,所以说法(3)正确;表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,所以说法(4)正确,故选:A.【考点】一次函数的应用.8.(本题满分12分)已知一次函数的图像经过点M(-1,3)、N(1,5)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数及其图像》测试(时间90分钟,满分:100分)一、单选题(每题3分,共8题24分)1. 函数中,自变量的取值范围是A .B .C .D .2. 已知函数,当x=1或3时,对应的两个函数值相等,则实数b的值是()A.1 B.-1 C.2D.-23. 如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()A.10 B.16 C.18D.204. 已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-2≤y≤4,则kb的值为()A.12B.-6C.6或12D.-6或-125. 已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系为()A.a>b B.a=b C.a<b D.以上都不对6. 已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3 C.y2<y1<y3 D.y3<y2<y1 7. 反比例函数y =和正比例函数y=mx 的图象如图所示.由此可以得到方程=mx的实数根为()A.x=-2 B.x=1 C.x1=2,x2=-2D.x1=1,x2=-28. 如图,在平面直角坐标系中,BA⊥y轴于点A,BC⊥x轴于点C,函数的图象分别交BA,BC于点D,E.当AD:BD=1:3且BDE的面积为18时,则的值是()A.9.6 B.12 C.14.4 D.16第7题图第8题图二、填空题(每题3分,共8题24分)10. 若一次函数y=kx+b的自变量的取值范围是-3≤x≤6,则相应函数值的取值范围是-5≤y≤-2,这个函数的解析式为11. 如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.12. 已知一次函数y=x+b与反比例函数y=中,x与y的对应值如下表:则不等式x+b>的解集为.13. 已知函数和的图象交于点P, 根据图象可得,求关于x的不等式ax+b>kx的解是14. 下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息,请你根据表格中的相关数据计算:m+2n=.15. 将直线y=2x-4向上平移5个单位后,所得直线的解析式是.16. 如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为.三、解答题(共7小题,52分)17. (5分)如图一次函数y=kx+b的图象经过点A(-1,3)和点B(2,-3)(1)描出A(-1,3)和点B(2,-3),画出一次函数y=kx+b的图象(2)y随x的增大而(填“增大”或“减小”)18. (7分)如右上图,在平面直角坐标系中,函数y=x的图象是第一、三象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线的对称点、的位置,并写出它们的坐标: 、;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点的坐标为19. (7分)如下图,在方格纸中(小正方形的边长为1),反比例函数与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)①分别写出点A、B的坐标;②把直线AB向右平移5个单位,再向上平移5个单位,求出平移后直线A′B′的解析式;(2)若点C在函数的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.20. (8分)已知,一次函数的图象与反比例函数的图象都经过点.(1)求的值及反比例函数的表达式;(2)判断点是否在该反比例函数的图象上,请说明理由.21. (8分)今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?22. (9分)(1)用图象的方法解方程组xyO(2)用图像法解方程 x 3=x 时,小明已画出了y =x 3的图像,请你再画出一个函数图像,求出方程的解。

xyO方程 x 3=x 的解是23. (8分)如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?参考答案1. 答案:B.解析:试题分析:依题意,得x+2≥0,解得x≥-2.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.2. 答案:C.解析:试题分析:本题考查了函数值的知识,难度不大,代入后解方程时,要注意运用绝对值的性质.将x=1和x=3分别代入,可得:|1-b|=|3-b|,所以:1-b=3-b(舍去)或1-b=b-3,解得b=2.故选C.考点:函数?3. 答案:A4. 知识点:待定系数法求一次函数解析式答案:D.解析:试题分析:(1)当k>0时,y随x的增大而增大,即一次函数为增函数,∴当x=0时,y=-2,当x=2时,y=4,代入一次函数解析式y =kx +b 得:解得 ,∴kb =3×(-2)=-6;(2)当k <0时,y 随x 的增大而减小,即一次函数为减函数, ∴当x =0时,y =4,当x =2时,y =-2,代入一次函数解析式y =kx +b 得: ,解得 ,∴kb =-3×4=-12. 所以kb 的值为-6或-12. 故选D .考点:待定系数法求一次函数解析式. 5. 答案:A .解析:试题分析:∵k =-2<0, ∴y 随x 的增大而减小, ∵1<2, ∴a >b . 故选A .考点:一次函数图象上点的坐标特征. 6. 答案:D解析:试题分析:分别把各点横坐标代入反比例函数求出y 1、y 2、,y 3的值,再比较出其大小即可:∵点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,∴,∵6>3>﹣2,∴y1>y2>y3。

故选D7. 答案:C.解析:试题分析:如图,反比例函数y=和正比例函数y=mx相交于点A(﹣2,1),∴另一个交点为:(2,﹣1),∴方程=mx的实数根为:x1=2,x2=﹣2.故选C.考点:反比例函数图象的对称性.8. 答案:D.解析:试题分析:如图,过点D作DF⊥x轴于点F,过点E作EG⊥y轴于点G.设B(4a,b),E(4a,d),∵AD:BD=1:3,∴D(a,b).又∵△BDE的面积为18,∴BD=3a,BE="b-d."∴×3a(b-d)=18,即a(b-d)=12,即ab-ad=12.∵D,E都在反比例函数图象上,∴ab="4ad." ∴4ad-ad=12,解得:ad=4.∴k=4ad=16.故选D.考点:反比例函数系数k的几何意义.9. 答案:.解析:试题分析:根据函数解析式为分式且含有二次根式,分式的分母不能为0,二次根式的被开方数为非负数可得:,解得:考点:1、分式有意义的条件;2、二次根式有意义的条件10. 知识点:点的坐标、函数自变量的取值范围、待定系数法求一次函数解析式答案:解析:试题分析:根据一次函数的增减性,可知本题分两种情况:①当k>0时,y随x的增大而增大,把x=-3,y=-5;x=6,y=-2代入一次函数的解析式y=kx+b,运用待定系数法即可求出函数的解析式;②当k<0时,y随x的增大而减小,把x=-3,y=-2;x=6,y=-5代入一次函数的解析式y=kx+b,运用待定系数法即可求出函数的解析式.分两种情况:①当k>0时,把x=-3,y=-5;x=6,y=-2代入一次函数的解析式y=kx+b,得解得,则这个函数的解析式是;②当k<0时,把x=-3,y=-2;x=6,y=-5代入一次函数的解析式y=kx+b,得解得,则这个函数的解析式是;故这个函数的解析式是或考点:本题考查的是待定系数法求一次函数解析式点评:根据一次函数图象的性质分两种情况是解决本题的关键.11. 答案:(﹣1,0).解析:试题分析:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,求出C的坐标,设直线BC的解析式是y=kx+b,把B、C的坐标代入求出k、b,得出直线BC的解析式,求出直线与x轴的交点坐标即可.试题解析: 作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).考点:1.轴对称-最短路线问题;2.坐标与图形性质.12. 答案:x>1或-2<x<0解析:试题分析:根据表中数据得到一次函数y=x+b与反比例函数y=的图象交点坐标为(-2,-)和(1,3),再画出函数图象,然后利用函数图象求解.由表可得一次函数y=x+b与反比例函数y=的图象交点坐标为(-2,-)和(1,3),如图,所以当x>1或-2<x<0时,一次函数y=x+b的值大于反比例函数y=的值.考点:反比例函数与一次函数的交点问题.13. 答案:x<-4.解析:试题分析:求使ax+b>kx的x的取值范围,即求对于相同的x的取值,直线x+b落在直线kx 的上方时,对应的x的取值范围.直接观察图象,可得出结果.试题解析:由图象可知,当x<-4时,直线ax+b落在直线kx的上方,故使不等式ax+b>kx成立时x的取值范围是:x<-4.故答案是:x<-4.考点: 一次函数与一元一次不等式.14. 答案:6.解析:试题分析:本题考查待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.设y=kx+b,将(-1,m)、(1,2)、(2,n)代入即可得出答案.解:设一次函数解析式为:y=kx+b,则可得:-k+b=m①;k+b=2②;2k+b=n③;m+2n=①+2×③=3k+3b=3×2=6.故答案为:6.考点:待定系数法求一次函数解析式.15. 知识点:一次函数图象与几何变换答案:y=2x+1.解析:试题分析:根据平移的性质,向上平移几个单位b的值就加几.由题意得:向上平移5个单位后的解析式为:y=2x-4+5=2x+1.故填:y=2x+1.考点:一次函数图象与几何变换16. 答案:2解析:试题分析:∵AB ⊥x 轴, ∴S △AOB =×|6|=3,S △COB =×|2|=1,∴S △ACB =S △AOB ﹣S △COB =2. 故答案为2.考点:反比例函数系数k 的几何意义17. 答案:(1)略 ………………3分 ;(2)减小……………………5分解析:试题分析:y =kx +b 的图象经过点A (-1,3)和点B (2,-3),则有-x +b =3和2x +b =-3两个方程,从而求出x =-2,b =1,y =-2x +1,故y 随着x 的增大而减小 考点:本题考查了一次函数的求解点评: 此类试题属于难度一般的试题,考生只需把该一次函数解出即可 18. 答案:(1) B ′(3,5),C ′(5,)………………4分 (2) (n ,m )…………7分19. 答案:(1)①;②;(2)(-2,-2)或(2,2).解析:试题分析:(1)①直接根据图象写出点A 、B 的坐标. ②求出点A ′,B ′的坐标,应用待定系数法求解. (2)看AB 的垂直平分线与抛物线哪两点相交即可. (1)①.……………………………………………………2分②把直线AB 向右平移5个单位,再向上平移5个单位,得到.……3分设平移后直线A ′B ′的解析式为,则 , 解得.……………………………………………………4分∴平移后直线A ′B ′的解析式为.…………………………………………5分(2)C 点的坐标为C 1(-2,-2)或C 2(2,2).………………………………7分考点:1.反比例函数综合题;一2.次函数图象与平移变换.20. 答案:(1);(2)对称轴直线,顶点坐标.解析:试题分析:(1)根据一次函数解析式,求得点A的坐标,将点A坐标代入反比例函数中,得到反比例函数解析式;(2)将点B坐标代入反比例函数中,看是否满足该反比例函数.试题解析:(1)将代入中得:,解得:,即,将代入反比例解析式中得:,则反比例解析式为;…………4分(2)将代入反比例解析式得:,则点在反比例图象上.……8分【考点】因式分解21. 知识点:一元一次不等式组的应用、一次函数的应用、一次函数的性质答案:(1)安排甲、乙两种货车有三种方案……………………………………4分(2)方案一运费最少,最少运费是2 040元……………………………………8分22. 答案:方程组的解为………………………………………………3分解析:试题分析:(1)将方程组的两道方程分别对应的图象画在图中,两个函数图象交点处即为方程组的解;xyO方程x 3 19分题后反思:需要注意的是函数图象的交点横纵即为方程组的解 ,函数图象的交点横坐标就是相应方⎩⎨⎧-==12y x程的解。

相关文档
最新文档