神经网络方法优秀课件

合集下载

BP神经网络详解-最好的版本课件(1)

BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导

。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2

神经网络专题ppt课件

神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。

第6章人工神经网络算法ppt课件

第6章人工神经网络算法ppt课件
1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;

Hopfield神经网络ppt课件

Hopfield神经网络ppt课件
1)保证系统在异步工作时的稳定性,即它的 权值是对称的;
2)保证所有要求记忆的稳定平衡点都能收敛 到自己;
3)使伪稳定点的数目尽可能的少; 4)使稳定点的吸引域尽可能的大。 MATLAB函数
[w,b]=solvehop(T);
.
23
连续性的Hopfield网络
CHNN是在DHNN的基础上提出的,它的原理
.
34
几点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳 定性;
2)能量函数与李雅普诺夫函数的区 别在于:李氏被限定在大于零的范围内, 且要求在零点值为零;
3)Hopfield选择的能量函数,只是 保证系统稳定和渐进稳定的充分条件, 而不是必要条件,其能量函数也不是唯 一的。
1、激活函数为线性函数时
2、激活函数为非线性函数时
.
29
当激活函数为线性函数时,即
vi ui 此时系统的状态方程为:
U AU B 其中A 1 WB。
R 此系统的特征方程为:
A I 0 其中I为单位对角阵。通过对解出的特征值1, 2,, r 的不同情况,可以得到不同的系统解的情况。
.
霍普菲尔德(Hopfield) 神经网络
1、网络结构形式 2、非线性系统状态演变的形式 3、离散型的霍普菲尔德网络(DHNN) 4、连续性的霍普菲尔德网络(CHNN)
.
1
网络结构形式
Hopfield网络是单层对称全反馈网络,根据激 活函数选取的不同,可分为离散型和连续性两种 ( DHNN,CHNN)。 DHNN:作用函数为hadlim,主要用于联想记忆。 CHNN:作用函数为S型函数,主要用于优化计算。
.
19
权值修正的其它方法

人工神经网络算法基础精讲ppt课件

人工神经网络算法基础精讲ppt课件
30
2.3学习规则
学习规则
在神经网络的学习中,各神经元的连接权值需按一定的规则
调整,这种权值调整规则称为学习规则。下面介绍几种常见的学习
规则。
1.Hebb学习规则
2.Delta(δ)学习规则
3.LMS学习规则
4.胜者为王学习规则
5.Kohonen学习规则
6.概率式学习规则
2.3学习规则
1.Hebb学习规则
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突




信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
13
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
4
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。

神经网络学习PPT课件

神经网络学习PPT课件
不断迭代,权重逐渐调整到最优解附近。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。

《ANN神经网络》课件

《ANN神经网络》课件

神经网络的训练过程和算法
1 BP算法
2 Adam算法
通过反向传播算法,根据输出误差和梯度下 降法更新网络参数,目标是最小化误差函数。
结合了Ad ag r ad 和RM Sp ro p 优点的一种有效 的优化算法,自适应的调节学习率,以加快 训练速度。
神经网络的激活函数和正则化方法
激活函数
每个神经元的输出需要通过激活函数进行非线性映 射,目前比较流行的有sig mo id 、t an h 和ReLU等。
神经元和生物神经元的异同
1 神经元
是神经网络的基本单位,是一种用于计算的抽象模型,只有输入和输出,以及需要学习 的权重和偏置。
2 生物神经元
是神经系统的基本单位,由轴突、树突、细胞体和突触等结构组成,与其他神经元具有 复杂的生物学表现和相互作用。
神经网络的优势和局限性
优势
具有自主学习、自适应、非线性和可并行处理等优 势,能够处理高维度数据和复杂的非线性问题。
参考文献和拓展阅读建议
参考文献: 1. Bishop, C. M . (1995). Neural Networks for Pattern Recognition. Oxford University Press. 2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. M IT Press. 3. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-444. 拓展阅读建议: 1. 《深度学习》白板推导与Python实战 2. 《Python深度学习》实践指南 3. 《自然语言处理综论》 4. 《计算机视觉综论》

神经网络方法-PPT课件精选全文完整版

神经网络方法-PPT课件精选全文完整版

信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。

深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文

深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文
8-1图像生成文本问题引入入
8-5showandtell模型
8-2图像生成文本评测指标
8-4multi-modalrnn模型
8-6showattendandtell模型
8-10图像特征抽取(1)-文本描述文件解析
8-8图像生成文本模型对比与总结
8-9数据介绍,词表生成
8-7bottom-uptop-downattention模型
第6章图像风格转换
06
6-1卷积神经网络的应用
6-2卷积神经网络的能力
6-3图像风格转换v1算法
6-4vgg16预训练模型格式
6-5vgg16预训练模型读取函数封装
6-6vgg16模型搭建与载入类的封装
第6章图像风格转换
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,与类别封装
06
7-12数据集封装
第7章循环神经网络
7-13计算图输入定义
7-14计算图实现
7-15指标计算与梯度算子实现
7-18textcnn实现
7-17lstm单元内部结构实现
7-16训练流程实现
第7章循环神经网络
7-19循环神经网络总结
第8章图像生成文本
08
第8章图像生成文本
02
9-9文本生成图像text2img
03
9-10对抗生成网络总结
04
9-11dcgan实战引入
05
9-12数据生成器实现
06
第9章对抗神经网络
9-13dcgan生成器器实现
9-14dcgan判别器实现
9-15dcgan计算图构建实现与损失函数实现
9-16dcgan训练算子实现
9-17训练流程实现与效果展示9-14DCGAN判别器实现9-15DCGAN计算图构建实现与损失函数实现9-16DCGAN训练算子实现9-17训练流程实现与效果展示

神经网络ppt课件

神经网络ppt课件
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s

神经网络方法ppt课件

神经网络方法ppt课件
得多个信号参数如温度、烟雾等经过处理后判断火灾情况, 然而如何由多种信号分析合成得到最终的判断结果,并能适 应各种不同环境情况的有效算法还亟待研究。
2019/9/4
哈尔滨工程大学
9
神经网络实例(续)
2019/9/4
哈尔滨工程大学
10
局部决策
鉴于不同火情下多传感器系统测试的多个火情信息具有 很大的相关不确定性,如: • 明火条件下伴随着温度和烟雾信号的急剧增大同时湿度的下 降; • 阴燃火发生时则往往伴随着烟雾的增大同时温度和湿度的基 本稳定; • 而一些典型的干扰信号如厨房内是烟雾、温度、湿度信号同 时增大; 因此分布式检测系统首先对一种传感器采集的单一信号进行 局部决策,再送入融合中心根据其关联性得出最终决策。
2019/9/4
哈尔滨工程大学
2
7.2 人工神经元模型—神经组织的基本特征
2019/9/4
哈尔滨工程大学
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
(2)神经网络可增加信息处理的容错性,当某个信源的数据出现 差错时,神经网络的容错功能可以使系统正常工作,并输出可 靠的信息;
(3)神经网络的自学习和自组织功能,使系统能适应环境的不断 变化以及输入数据的不确定性;
(4)神经网络的并行结构和并行处理机制。使得信息处理速度快, 能够满足信息的实时处理要求。
2019/9/4
哈尔滨工程大学
8
7.7 神经网络实例
• 火灾探测是一种特殊类型的信号检测,由传感器采集的火情

神经网络算法的ppt课件

神经网络算法的ppt课件

神经网络的反向分散学习算法
神经网络的反向分散学习算法
神经网络的反向分散学习算法
神经网络的反向分散学习算法
神经网络的反向分散学习算法
动态网络——Hopfield网络
假设按照神经网络运转过程中的信息流向来分类, 那么一切网络都可分为前馈式网络和反响式网络,在前 一章中,主要引见了前馈式网络经过许多具有简单处置 才干的神经元的复协作用使整个网络具有复杂的非线性 映射才干。在那里,着重分析了网络学习算法,研讨的 重点是怎样尽快地得到网络的整体非线性处置才干。在 本章中,我们将集中讨论反响式网络,经过网络神经元 形状的变化而最终稳定于某一形状而得到联想存贮或神 经计算的结果。在这里,主要关怀的是网络稳定性的问 题,研讨的重点是怎样得到和利用稳定的反响式网络。
联想的定义
首先思索x类方式向量集合 (x1, x2, … , xp〕 及y类方式向量集合 (y1, y2, … , yp), 其中 xi=(x1i, x2i,… , xni ) , xi {-1, +1}n yi=(y1i, y2i,… , ymi ) , yi {-1, +1}m
联想的定义
定义3 吸引子的吸引域 对于某些特定的初始形状,网络按 一定的运转规那么最后能够都稳定在同一吸引子v(t)上。称可 以稳定在吸引子v(t)的一切初始形状集合为v(t)的吸引域。
Hopfield网络的联想原理
E= mc2 Newt
Newy
Einstan Newton
Newyear
Hopfield网络的联想原理
f1(x) = f2 (x) = … = fn (x) = sgn (x) 为以后分析方便,我们选各节点门限值相等,且等于0 ,即有 1= 2 = … = n = 0 同时,x = (x1, x2, …, xn ), x {-1, +1}n 为网络的输出, y = (y1, y2, …, yn ), y {-1, +1}n 为网络的输出 v (t) = (v1(t1), v2(t2), …, vn(tn)), v (t) {-1, +1}n 为网络在时辰 t的形状, 其中t (0,1,2,…)为离散时间变量,Wij为从Ni到Nj的衔接 权值, Hopfield网络是对称的,即Wij = Wji ,i, j {1,2, …, n} 。

神经网络基础PPT课件

神经网络基础PPT课件

AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。

神经网络ppt课件

神经网络ppt课件

2.4 误差反向传播图形解释
21
2.5 网络训练
训练BP网络,需要计算网络加权输入矢量以及 网络输出和误差矢量,然后求误差平方和
当所训练矢量的误差平方和小于误差目标,训练 停止;否则在输出层计算误差变化,且采用反向 传播学习规则来调整权值,然后重复此过程
网络完成训练后,对网络输入一个不是训练集合 中的矢量,网络将以泛化方式给出输出结果
利用附加动量的作用则有可能滑过局部极小值 修正网络权值时,不仅考虑误差在梯度上的作
用,而且考虑在误差曲面上变化趋势的影响, 其作用如同一个低通滤波器,它允许网络忽略 网络上微小变化特性 该方法是在反向传播法的基础上在每一个权值 的变化上加上一项正比于前次权值变化量的值, 并根据反向传播法来产生新的权值变化
2.5 网络训练
计算权值修正后误差平方和
– SSE=sumsqr(T-purelin(W2*tansig(W1*P,B1),B2))
检查:SSE是否小于err_goal。若是,训练结束; 否则继续
以上所有的学习规则与训练的全过程,可以用函 数trainbp.m来完成
– 它的使用只需定义有关参数:显示间隔次数,最大循 环次数,目标误差,以及学习速率。调用后返回训练 后权值,循环总数和最终误差
30
3.5 期望误差值选取
在设计网络的训练过程中,期望误差值也应当 通过对比训练后确定一个合适的值
这个所谓的“合适”,是相对于所需要的隐含 层的节点数来确定,因为较小的期望误差值是 要靠增加隐含层的节点,以及训练时间来获得
一般情况下,作为对比,可以同时对两个不同 期望误差值的网络进行训练,最后通过综合因 素的考虑来确定采用其中一个网络
3.4 学习速率
学习速率决定每一次循环训练中所产生的权值 变化量

BP神经网络PPTppt课件

BP神经网络PPTppt课件

输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl











n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;




f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数

神经网络基本介绍ppt课件.ppt

神经网络基本介绍ppt课件.ppt
电路系统实现,或用现有的计算机技术实现; (5)能进行学习,以适应环境的变化。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经网络控制的研究领域
(1)基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经网络辨识的特点
• 不要求建立实际系统的辨识格式,即可省去系统结构建模这一步 骤;
• 可以对本质非线性系统进行辨识; • 辨识的收敛速度不依赖于待辨识系统的维数,只于神经网络本身
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
图 单个神经元的解剖图
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经元由三部分构成: (1)细胞体(主体部分):包括细胞质、 细胞膜和细胞核; (2)树突:用于为细胞体传入信息; (3)轴突:为细胞体传出信息,其末端是 轴突末梢,含传递信息的化学物质; (4)突触:是神经元之间的接口( 104~105个/每个神经元)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
ai(n) xi(n1)xi(n) i1,2,3 n0
则局部决策结果 u i为
ui fai(m )ST iD
式中, f (•为) 单Байду номын сангаас阶跃函数, 、u i STi (D 分i别1,2为,3)温度、烟雾或
湿度信号的决策结果和局部报警门限。
局部决策
当局部决策结果中的任一个输出为1时,则表示温度、烟雾 或湿度信号中有一种出现非平稳变化,即提请数据融合中心 对所有信息进行融合处理,得出最终判别。这样一方面可由 局部决策器分别实现各信号的预处理、标准化并滤除噪声, 减轻了融合中心的数据处理工作,具有并行分块处理的优点; 另一方面当局部决策结果中至少有一个为报警输出1时,就进 行后级数据融合,否则不送融合中心。这样既可以最大限度 的采集火情信息,并在早期识别火灾隐患,又可减少对具有 非显著火灾特征信息的计算处理,降低误报警。
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X ( n ) x 1 ( n )x 2 ,( n )x 3 ,( n )
式中,xi(n) (i1,2,3)分别为温度、烟雾和温度采样信号。
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (n差) 值之和
(3)神经网络的自学习和自组织功能,使系统能适应环境的不断 变化以及输入数据的不确定性;
(4)神经网络的并行结构和并行处理机制。使得信息处理速度快, 能够满足信息的实时处理要求。
7.7 神经网络实例
• 火灾探测是一种特殊类型的信号检测,由传感器采集的火情
参数一方面具有不确定性,另一方面其不仅随火灾特征而变 化,也可能随环境变化和存在噪声等而有所改变,而且这种 变化往往与火灾参数变化特征基本相似,容易引起误报。
出了历史上第一个神经元模型,称为M-P模型,这一模型形式
上表示为:
si(t 1 )( w is jj(t)i)
x 1 j
x
0
x0 其他
7.3 人工神经网络的结构模型
单层人工神经网络
两层人工神经网络
根据神经元之间连接方式的不同,人工神经网络可分为:不
含反馈的前向网络、从输出层到输入层有反馈的前向网络、
(2)从例子中学习:在学习时给网络提供一个输入信息,教 师给出正确的输出信息,对系统进行训练,调节系统权值, 以使系统输出更接近期望结果,感知器就是这种教师学习的 例子。
(3)无导师学习:将网络设计成不需要教师直接指点的学习 方式,如竞争学习系统。
7.5 人工神经网络的特点和优越性
第一,具有自学习功能。例如图像识别,只需先把不同的图像 样板和对应的应识别的结果输入人工神经网络,网络就会通过 自学习功能,慢慢学会识别类似的图像。 第二,具有联想存储功能。人的大脑是具有联想功能的。用人 工神经网络的反馈网络就可以实现这种联想。 第三,具有容错性。神经网络可以从不完善的数据图形进行学 习和作出决定。由于知识存在于整个系统而不是一个存储单元 中,一些结点不参与运算,对整个系统性能不会产生重大影响。 所以,神经网络承受硬件损坏的能力比一般计算机强得多。 第四,具有高速寻找优化解的能力。寻找一个复杂问题的优化 解,往往需要很大的计算量,利用一个针对某问题而设计的反 馈型人工神经网络,发挥计算机的高速运算能力,可能很快找 到优化解。
胞的结构和功能的系统。它是由很多处理单元有机地联接起 来,进行并行的工作,它的处理单元十分简单,其工作是 “集体”进行的,它的信息传播,存贮方式与神经网络相似, 没有运算器、存贮器、控制器这些现代计算机的基本单元, 而是相同的简单处理器的组合。它的信息是存贮在处理单元 之间的连接上,因而它是与现代计算机完全不同的系统。
神经网络方法
7.1 人工神经网络综述
• 二十世纪八十年代,人工神经网络取得了重大进展,在诸如
手写体邮政编码判读,蛋白质二级结构的识别,热力学参数 的求取,催化剂设计等许多方面取得成功,发展成为一门介 于物理、数学、计算机科学、神经生物学之间的交叉学科。
• 人工神经网络就是采用物理可实现的系统来模仿人脑神经细
7.2 人工神经元模型—神经组织的基本特征
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
1943年,仿照人类神经元的基本特征,McCulloch和Pitts提
层内有相互连接的前向网络、相互组合型网络。从学习方式
角度可分为有教师学习网络和无教师学网络;按层次划分,
可分为单层、两层和多层(但一般不超过3层)。
7.4 人工神经网络的学习算法
NN的工作过程分学习、训练阶段和回忆阶段。其学习方 式有如下几种:
(1)死记式学习:将网络事先设计成特殊记忆的模式,以后 当给定有关该系统的输入信息时,它们就被回忆起来。
7.6 人工神经网络与信息融合的结合
利用神经网络实现信息融合技术,具有很多优越性:
(1)神经网络的信息存储在网络的连接权值和连接结构上,使得 传感器的信息表示具有统一的形式,便于管理和建立知识库;
(2)神经网络可增加信息处理的容错性,当某个信源的数据出现 差错时,神经网络的容错功能可以使系统正常工作,并输出可 靠的信息;
• 因此近年来出现了复合火灾探测器,即采用多通道传感器获
得多个信号参数如温度、烟雾等经过处理后判断火灾情况, 然而如何由多种信号分析合成得到最终的判断结果,并能适 应各种不同环境情况的有效算法还亟待研究。
神经网络实例(续)
局部决策
鉴于不同火情下多传感器系统测试的多个火情信息具有 很大的相关不确定性,如: • 明火条件下伴随着温度和烟雾信号的急剧增大同时湿度的下 降; • 阴燃火发生时则往往伴随着烟雾的增大同时温度和湿度的基 本稳定; • 而一些典型的干扰信号如厨房内是烟雾、温度、湿度信号同 时增大; 因此分布式检测系统首先对一种传感器采集的单一信号进行 局部决策,再送入融合中心根据其关联性得出最终决策。
相关文档
最新文档