电路板接地线概念
PCB板设计中的接地方法与技巧
PCB板设计中的接地方法与技巧在电子设备设计中,印制电路板(PCB)的地位至关重要。
PCB板的设计需要考虑诸多因素,其中之一就是接地问题。
良好的接地方式可以有效地提高设备的稳定性、安全性以及可靠性。
本文将详细介绍PCB板设计中的接地方法与技巧。
让我们了解一下PCB板设计的基本概念。
PCB板设计是指将电子元件按照一定的规则和要求放置在板子上,并通过导线将它们连接起来的过程。
接地是其中的一个重要环节,它是指将电路的地线连接到PCB 板上的公共参考点,以实现电路的稳定工作和安全防护。
在PCB板设计中,接地的主要作用是提高电路的稳定性,同时还可以防止电磁干扰和雷电等外界因素对电路的影响。
通过将电路的地线连接到PCB板的公共参考点,可以减少电路之间的噪声和干扰,提高设备的性能和可靠性。
接地方式的选择取决于PCB板的设计和实际需求。
以下是一些常见的接地方式及其具体方法:直接接地:将电路的地线直接连接到PCB板上的参考点或金属外壳。
这种接地方式适用于对稳定性要求较高的电路,但需要注意避免地线过长导致阻抗过大。
间接接地:通过电容、电感等元件实现电路与地线的连接。
这种接地方式可以有效抑制电磁干扰,提高设备的抗干扰能力。
混合接地:结合直接接地和间接接地的方式,根据实际需求在不同位置选择不同的接地方式。
这种接地方式可以满足多种电路的接地需求,提高设备的灵活性和可靠性。
多层板接地:在多层PCB板中,将其中一层作为地线层,将电路的地线连接到该层上。
这种接地方式适用于高密度、高复杂度的PCB板设计,可以提供良好的电磁屏蔽效果。
挠性印制电路板接地:对于挠性印制电路板,可以使用金属箔或导电胶带实现电路与地线的连接。
这种接地方式适用于需要弯曲或伸缩的电路,可以提供良好的可塑性和稳定性。
确保接地连续且稳定:接地线的连接必须牢靠、稳固,确保在设备运行过程中不会出现松动或脱落现象。
同时,要确保地线阻抗最小,以提高电路的稳定性。
避免地线过长导致阻抗过大:地线的长度应尽可能短,以减少阻抗。
接地资料
电子设备可能受到电源传输耦合、传输线干扰、地电流干扰带来的电磁干扰的影响。
加接地与电磁屏蔽、加滤波器等方法都可以有效减小干扰。
接地阻抗越小,设备之间的电位差越小,干扰对信号的影响也就越小。
比如A、B两个电路直接有信号相连,二者分别接地,相距1m。
当又一个上升时间20*10-9秒,幅度50mA的脉冲电流流经此地线时,将产生感应电压其中,地线的电感约为每米0.8uH。
若存在TTL电路,那么这个感生出的电压就有可能造成电路的误翻转。
信号接地的方式有悬浮接地、单点接地、多点接地。
信号电路与外壳不相连时为悬浮接地,这样可以防止外壳上的干扰信号直接接近信号电路。
但一般不采用这种接法,因为很难做到真正的悬浮,且隔离后如果产生了静电荷,还可能会出现放电的现象,反而带来了问题。
单点接地就是信号电路的所有地都结在一起,只通过一个点接至接地系统,仍与外壳相隔离。
这种方法不适用于频率较高的通信电子设备,在模拟电路中经常采用。
因为各接线之间存在分布电容,在高频时会产生较大的阻抗。
多点接地适用于高频信号,各点就近直接接入接地系统。
可见当一个设备或电路板上同时拥有模拟和数字电路时,对于接地的处理是完全不同的。
而如今的电子设备、仪器等普遍为数字和模拟的综合电路。
因为数字地主要是如TTL或CMOS、I/O接口芯片等数字电路的地。
而模拟地则是放大器、滤波器等模拟电路的地。
数字芯片供电端一般需要加去耦和滤波电容,且尽量靠近电源。
在使用A/D和D/A集成芯片时,一般芯片会同时存在模拟地和数字地,两个地要分别接在一起,然后仅在一点处把两个地共起来,即模拟地都接在一起,数字地也都接在一起,然后通过一个点接起来。
一半会在两个地之间加上一个0.1u的电容或零欧电阻,滤掉数字电路部分的高频干扰。
因为数字信号变化速度快,引起的噪声也就很大,而模拟需要纯净的地,尽量减少噪声对模拟信号的影响。
接地从字面来看上十分简单事情,但是对于经历过电磁干扰挫折的人来说可能是一个最难掌握的技术。
电路板接地基础知识讲解
电路板接地基础知识讲解电路板接地是电子设备中非常重要的一环,它不仅能确保电路的正常工作,还能提高电路的性能和抗干扰能力。
本文将对电路板接地的基础知识进行全面的讲解。
一、什么是电路板接地电路板接地,简单来说,就是将电子设备中的所有金属部件,如电路板、金属外壳等,通过导线连接到地面或大地,形成一个闭合的回路,以提供一个稳定的参考电位。
接地的主要作用有:保护电子设备和用户的人身安全、提供一个稳定的参考电位、降低电磁辐射和抗干扰能力等。
二、电路板接地的分类根据接地回路的不同,电路板接地可以分为以下几类:1. 单点接地:将所有金属部件连接到一个统一的接地点,形成一个单一的回路。
这种接地方式适用于一些简单的电子设备,但对于复杂的设备来说,由于存在大量的信号线和功耗线,单点接地会导致接地电流增大、接地电压上升等问题。
2. 多点接地:将电路板分为不同的区域,每个区域单独进行接地,形成多个接地回路。
这种接地方式可以减少接地回路之间的干扰,提高设备的抗干扰能力。
但同时也需要注意接地电位的一致性,避免产生不同区域之间的接地环路。
3. 信号与功耗分离接地:将信号线和功耗线分开接地,分别形成不同的接地回路。
这种接地方式可以有效地隔离信号线和功耗线之间的电磁干扰,提高电路的工作性能。
三、电路板接地的注意事项1. 确保接地导线足够粗大:为了降低接地回路的电阻,接地导线的选择应尽量粗大,以确保电流能够顺利地流回地面。
2. 避免接地回路产生环路:在设计电路板接地时,要注意避免接地回路之间产生环路,否则会引发信号串扰和电磁干扰等问题。
3. 注意接地点的位置选择:接地点的位置选择应尽量靠近电路板中心,并远离会产生干扰的元器件和线路,以提高接地的效果。
4. 接地回路与信号回路分离:在设计电路板时,要将接地回路与信号回路进行分离,避免相互干扰,同时也可以提高抗干扰能力。
四、电路板接地的测试方法为了确保电路板的接地效果良好,可以采用以下几种测试方法:1. 接地电阻测试:使用专业的测试仪器对接地回路的电阻进行测试,以确保接地回路的电阻在合理范围内。
电路板接地概念
1.电路图上和电路板上的GND(Ground)代表地线或0线.GND就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。
是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。
它与大地是不同的。
有时候需要将它与大地连接,有时候也不需要,视具体情况而定。
B上的:VCC是电源接入;GND为接地;DP、DM是差分信号;PORT-、PORT+是数据负、正信号。
GNDVDD: 电源电压(单极器件);电源电压(4000系列数字电路);漏极电压(场效应管)VCC:电源电压(双极器件);电源电压(74系列数字电路);VSS:地或电源负极VEE:负电压供电;场效应管的源极(S)VPP:编程/擦除电压。
(1)电气地大地是一个电阻非常低、电容量非常大的物体,拥有吸收无限电荷的能力,而且在吸收大量电荷后仍能保持电位不变,因此适合作为电气系统中的参考电位体。
这种“地”是“电气地”,并不等干“地理地”,但却包含在“地理地”之中。
“电气地”的范围随着大地结构的组成和大地与带电体接触的情况而定。
(2)地电位与大地紧密接触并形成电气接触的一个或一组导电体称为接地极,通常采用圆钢或角钢,也可采用铜棒或铜板。
图 1示出圆钢接地极。
当流入地中的电流I通过接地极向大地作半球形散开时,由于这半球形的球面,在距接地极越近的地方越小,越远的地方越大,所以在距接地极越近的地方电阻越大,而在距接地极越远的地方电阻越小。
试验证明:在距单根接地极或碰地处 20m 以外的地方,呈半球形的球面已经很大,实际已没有什么电阻存在,不再有什么电压降。
换句话说,该处的电位已近于零。
这电位等于零的“电气地”称为”地电位”。
若接地极不是单根而为多根组成时,屏蔽系数增大,上述 20m 的距离可能会增大。
图 1中的流散区是指电流通过接地极向大地流散时产生明显电位梯度的土壤范围。
地电位是指流散区以外的土壤区域。
在接地极分布很密的地方,很难存在电位等于零的电气地。
电路中的地线GND,它的本质是什么
在PCB Layout布线过程中,工程师都会面临不同的GND处理。
这是为什么呢?在电路原理设计阶段,为了降低电路之间的互相干扰,工程师一般会引入不同的GND地线,作为不同功能电路的0V参考点,形成不同的电流回路。
GND地线的分类1. 模拟地线AGND模拟地线AGND,主要是用在模拟电路部分,如模拟传感器的ADC采集电路,运算放大比例电路等等。
在这些模拟电路中,由于信号是模拟信号,是微弱信号,很容易受到其他电路的大电流影响。
如果不加以区分,大电流会在模拟电路中产生大的压降,会使得模拟信号失真,严重可能会造成模拟电路功能失效。
2. 数字地线DGND数字地线DGND,显然是相对模拟地线AGND而言,主要是用于数字电路部分,比如按键检测电路,USB通信电路,单片机电路等等。
之所以设立数字地线DGND,是因为数字电路具有一个共同的特点,都属于离散型的开关量信号,只有数字“0”和数字“1”区分,如下图所示。
在由数字“0”电压跳变成数字“1”电压的过程中,或者由数字“1”电压跳变成数字“0”电压的过程中,电压产生了一个变化,根据麦克斯韦电磁理论,变化的电流周围会产生磁场,也就形成了对其他电路的EMC辐射。
没办法,为了降低电路的EMC辐射影响,必须使用一个单独的数字地线DGND,让其他电路得到有效的隔离。
3. 功率地线PGND模拟地线AGND也好,数字地线DGND也罢,它们都是小功率电路。
在大功率电路中,如电机驱动电路,电磁阀驱动电路等等,也是存在一个单独的参考地线,这个参考地线叫做功率地线PGND。
大功率电路,顾名思义,是电流比较大的电路。
很显然大的电流,容易造成不同功能电路之间的地偏移现象,如下图所示。
一旦电路中存在地偏移,那么原来的5V电压就可能不是5V了,而是变成了4V。
因为5V电压是参考GND地线0V而言,如果地偏移使得GND地线由0V抬升到了1V,那么之前的5V(5V-0V=5V)电压就变成了现在的4V(5V-1V=4V)了。
电路图中关于地线的知识
关于电路中的地线的接法最近大家在电路设计中都遇到了一些衔接的问题。
特别在数字模拟设计的过程中,因为电源处理的不好,烧了很多的片子。
现在收集总结一些相关的东西,包含个人的一点经验以及和顾问请教得出的心得了。
1.地线的定义什么是地线?大家在教科书上学的地线定义是:地线是作为电路电位基准点的等电位体。
这个定义是不符合实际情况的。
实际地线上的电位并不是恒定的。
如果用仪表测量一下地线上各点之间的电位,会发现地线上各点的电位可能相差很大。
正是这些电位差才造成了电路工作的异常。
电路是一个等电位体的定义仅是人们对地线电位的期望。
HENRY 给地线了一个更加符合实际的定义,他将地线定义为:信号流回源的低阻抗路径。
这个定义中突出了地线中电流的流动。
按照这个定义,很容易理解地线中电位差的产生原因。
因为地线的阻抗总不会是零,当一个电流通过有限阻抗时,就会产生电压降。
因此,我们应该将地线上的电位想象成象大海中的波浪一样,此起彼伏。
.地线的阻抗谈到地线的阻抗引起的地线上各点之间的电位差能够造成电路的误动作,许多人觉得不可思议:我们用欧姆表测量地线的电阻时,地线的电阻往往在毫欧姆级,电流流过这么小的电阻时怎么会产生这么大的电压降,导致电路工作的异常。
要搞清这个问题,首先要区分开导线的电阻与阻抗两个不同的概念。
电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。
任何导线都有电感,当频率较高时,导线的阻抗远大于直流电阻,表1 给出的数据说明了这个问题。
在实际电路中,造成电磁干扰的信号往往是脉冲信号,脉冲信号包含丰富的高频成分,因此会在地线上产生较大的电压。
对于数字电路而言,电路的工作频率是很高的,因此地线阻抗对数字电路的影响是十分可观的。
3.由于地线阻抗的存在,当电流流过地线时,就会在地线上产生电压。
当电流较大时,这个电压可以很大。
例如附近有大功率用电器启动时,会在地线在中流过很强的电流。
浅谈PCB板接地的方式
浅谈PCB板接地的方式电路图上和PCB板上的GND(Ground)代表地线或0线,GND就是公共端的意思,也可以说是地。
所谓PCB板接地,就是将所有地线连到电源地线。
而从各个电路的地线连接到地平面可以采取很多做法,下面请随PCB厂一起来了解一下吧!一、PCB板单点和多点接地方式① 单点接地:所有电路的地线接到地线平面的同一点,分为串联单点接地和并联单点接地。
② 多点接地:所有电路的地线就近接地,地线很短适合高频接地。
③ 混合接地:将单点接地和多点接地混合使用。
在低频率、小功率和相同电源层之间,单点接地是最为适宜的,通常应用于模拟电路之中;这里一般采用星型方式进行连接降低了可能存在的串联阻抗的影响,如图8.1右半部分所示。
高频率的数字电路就需要并联接地了,在这里一般通过地孔的方式可较为简单的处理,如图的左半部分所示;一般所有的模块都会综合使用两种接地方式,采用混合接地的方式完成电路地线与地平面的连接。
二、PCB板混合接地方式如果不选择使用整个平面的作为公共的地线,比如模块本身有两个地线的时候,就需要进行对地平面进行分割,这往往与电源平面有相互作用。
地之间的连接方法如下:① 地间电路板普通走线连接:使用这种方法可以保证在中两个地线之间可靠的低阻抗导通,但仅限于中低频信号电路地之间的接法。
② 地间大电阻连接:大电阻的特点是一旦电阻两端出现压差,就会产生很弱的导通电流,把地线上电荷泄放掉之后,最终实现两端的压差为零。
③ 地间电容连接:电容的特性是直流截止和交流导通,应用于浮地系统中。
④ 地间磁珠连接:磁珠等同于一个随频率变化的电阻,它表现的是电阻特性。
应用于快速小电流波动的弱信号的地与地之间。
⑤ 地间电感连接:电感具有抑制电路状态变化的特性,可以削峰填谷,通常应用于两个有较大电流波动的地与地之间。
⑥ 地间小电阻连接:小电阻增加了一个阻尼,阻碍地电流快速变化的过冲;在电流变化时候,使冲击电流上升沿变缓。
pcb gnd 和 大地 电阻电容 绝缘阻抗
pcb gnd 和大地电阻电容绝缘阻抗【主题】PCB中的GND和大地:电阻、电容和绝缘阻抗1. 引言在PCB(Printed Circuit Board,印刷电路板)设计中,地线(GND)和大地(earth)是非常重要的概念。
它们涉及到电路的稳定性、电磁兼容性和安全性等方面的问题。
本文将深入探讨PCB中的GND和大地,重点讨论其在电阻、电容和绝缘阻抗方面的作用和影响。
2. GND和大地的定义和作用GND是指地线,是电路中用于连接各种元器件、防止电流波动并提供电流回流的导线或板线。
它在PCB设计中起到接地和屏蔽的作用,可以有效降低电路中的噪声和干扰。
而大地指的是地球,它在工业和家用电路中用作安全接地,可以将电路中的过电压和故障电流引入地面,保护人和设备的安全。
3. 电阻在PCB中的作用和设计原则在PCB设计中,电阻起着很重要的作用。
电阻可以用来限制电流,保护元器件不受过载电流的损害。
在GND和大地的连接中,电阻还可以起到平衡电流的作用,防止回流电流的不稳定和漂移。
在设计电路时,要根据具体的要求和性能指标,合理选择电阻的数值和功率。
考虑到温度漂移和线性度等因素,也要合理放置和布局电阻元件。
4. 电容在PCB中的作用和设计原则电容是PCB中常用的元器件,它可以用来存储电荷,平滑电压,隔离信号等。
在GND和大地连接中,电容可以起到滤波和隔离杂散电流的作用。
在PCB设计中,要注意选择合适的电容型号和参数,避免因电压、频率等问题导致电容失效或不稳定。
电容和电阻的配合设计也很重要,可以优化电路的稳定性和性能。
5. 绝缘阻抗的意义和设计原则绝缘阻抗是指PCB中不同层间、导线间的绝缘电阻。
它在PCB设计中是非常重要的,关系到电路的安全和稳定性。
合理设计绝缘阻抗可以提高电路的抗干扰能力,防止信号叠加和串扰,提高电路的传输速率和可靠性。
在PCB设计中,要根据层间距离、介质材料、工艺条件等因素,合理选择设计绝缘阻抗的数值和布局方式。
电子电路中地及接地的概念及区别
电子电路中地及接地的概念及区别电子电路中地及接地的概念及区别1.地(1)电气地大地是一个电阻非常低、电容量非常大的物体,拥有吸收无限电荷的能力,而且在吸收大量电荷后仍能保持电位不变,因此适合作为电气系统中的参考电位体。
这种“地”是“电气地”,并不等干“地理地”,但却包含在“地理地”之中。
“电气地”的范围随着大地结构的组成和大地与带电体接触的情况而定。
(2)地电位与大地紧密接触并形成电气接触的一个或一组导电体称为接地极,通常采用圆钢或角钢,也可采用铜棒或铜板。
图 1示出圆钢接地极。
当流入地中的电流I通过接地极向大地作半球形散开时,由于这半球形的球面,在距接地极越近的地方越小,越远的地方越大,所以在距接地极越近的地方电阻越大,而在距接地极越远的地方电阻越小。
试验证明:在距单根接地极或碰地处 20m 以外的地方,呈半球形的球面已经很大,实际已没有什么电阻存在,不再有什么电压降。
换句话说,该处的电位已近于零。
这电位等于零的“电气地”称为”地电位”。
若接地极不是单根而为多根组成时,屏蔽系数增大,上述 20m 的距离可能会增大。
图 1中的流散区是指电流通过接地极向大地流散时产生明显电位梯度的土壤范围。
地电位是指流散区以外的土壤区域。
在接地极分布很密的地方,很难存在电位等于零的电气地。
(3)逻辑地电子设备中各级电路电流的传输、信息转换要求有一个参考的电位,这个电位还可防止外界电磁场信号的侵入,常称这个电位为“逻辑地”。
这个“地”不一定是“地理地”,可能是电子设备的金属机壳、底座、印刷电路板上的地线或建筑物内的总接地端子、接地干线等;逻辑地可与大地接触,也可不接触,而“电气地”必须与大地接触。
2.接地将电力系统或电气装置的某一部分经接地线连接到接地极称为“接地”。
“电气装置”是一定空间中若干相互连接的电气设备的组合。
“电气设备”是发电、变电、输电、配电或用电的任何设备,例如电机、变压器、电器、测量仪表、保护装置、布线材料等。
接地知识
接地技术接地技术在现代电子领域方面得到了广泛而深入的应用。
电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。
接地就是指在系统与某个电位基准面之间建立低电阻的导电通路。
“接大地”是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基准点与大地相连。
由于大地的电容非常大,一般认为大地的电势为零。
开始的时候,接地技术主要应用在电力系统中,后来,接地技术延伸应用到弱电系统中。
在弱电系统中的接地一般不是指真实意义上与地球相连的接地。
对于电力电子设备将接地线直接连在大地上或者接在一个作为参考电位的导体上,当有电流通过该参考电位时,接地点是电路中的共用参考点,这一点的电压为0V,电路中其他各点的电压高低都是以这一参考点为基准的,一般在电路图中所标出的各点电压数据都是相对接地端的大小,这样可以大大方便修理中的电压测量。
相同接地点之间的连线称为地线。
把接地平面与大地连接,往往是出于以下考虑:提高设备电路系统工作的稳定性,静电泄放,为工作人员提供安全保障。
接地的目的:安全考虑,即保护接地。
为信号电压提供一个稳定的零电位参考点(信号地或系统地)屏蔽保护作用。
一、接地的类型和作用不同的电路有不相同的接地方式,电子电力设备中常见的接地方式有以下几种:1、安全接地安全接地即将高压设备的外壳与大地连接。
一是防止机壳上积累电荷,产生静电放电而危及设备和人身安全,例如电脑机箱的接地,油罐车那根拖在地上的尾巴,都是为了使聚积在一起的电荷释放,防止出现事故;二是当设备的绝缘损坏而使机壳带电时,促使电源的保护动作而切断电源,以便保护工作人员的安全,例如电冰箱、电饭煲的外壳。
三是可以屏蔽设备巨大的电场,起到保护作用,例如民用变压器的防护栏。
2、防雷接地当电力电子设备遇雷击时,不论是直接雷击还是感应雷击,如果缺乏相应的保护,电力电子设备都将受到很大损害甚至报废。
为防止雷击,我们一般在高处(例如屋顶、烟囱顶部)设臵避雷针与大地相连,以防雷击时危及设备和人员安全。
各种接地概念、方法
一、地的分类工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。
根据电路的性质,将电路中“零电位”———“地”分为不同的种类,比如按交直流分为直流地、交流地,按参考信号分为数字地(逻辑地)、模拟地,按功率分为信号地、功率地、电源地等,按与大地的连接方式分为系统地、机壳地(屏蔽地)、浮地。
不同的接地方式在电路中应用、设计和考虑也不相同,应根据具体电路分别进行设置。
1 信号地信号地(SG)是各种物理量的传感器和信号源零电位以及电路中信号的公共基准地线(相对零电位)。
此处信号一般指模拟信号或者能量较弱的数字信号,易受电源波动或者外界因素的干扰,导致信号的信噪比(SNR)下降。
特别是模拟信号,信号地的漂移,会导致信噪比下降;信号的测量值产生误差或者错误,可能导致系统设计的失败。
因此对信号地的要求较高,也需要在系统中特殊处理,避免和大功率的电源地、数字地以及易产生干扰地线直接连接。
尤其是微小信号的测量,信号地通常需要采取隔离技术。
2 模拟地模拟地(AG)是系统中模拟电路零电位的公共基准地线。
由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。
所以对模拟地的接地点选择和接地线的敷设更要充分考虑。
减小地线的导线电阻,将电路中的模拟和数字部分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感滤波和隔离,汇接到一起。
如图4-1所示。
3 数字地数字地(DG)是系统中数字电路零电位的公共基准地线。
由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。
所以对数字地的接地点选择和接地线的敷设也要充分考虑。
尽量将电路中的模拟和数字部分分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感,汇接到一起.4 悬浮地悬浮地(FG)是系统中部分电路的地与整个系统的地不直接连接,而是通过变压器耦合或者直接不连接,处于悬浮状态。
接地线基础知识详解
接地线基础知识详解一、地线的概念地线,又称避雷线,是指用来将电流引入大地的导线;电气设备漏电时,电流通过地线进入大地。
地线的符号是E(Earth);可分为供电地线、电路地线两种。
按我国现行标准,GB2681中第三条依导线颜色标志电路时,一般应该是相线—A相黄色,B相绿色,C相红色。
零线—淡蓝色,地线是黄绿相间,如果是三孔插座,左边是零线,中间(上面)是地线,右边是火线。
简单的说:接地线是电气保护中的一种方式。
它的作用是当你的电器设备漏电或感应带电时能够快速通过接地线将电流引入大地从而使设备外壳不再带电,从而保证了人员后设备的安全。
例如:家用电器设备由于绝缘性能不好或使用环境潮湿,会导致其外壳带有一定静电,严重时会发生触电事故。
为了避免出现的事故可在电器的金属外壳上面连接一根电线,将电线的另一端接入大地,一旦电器发生漏电时接地线会把静电带入到大地释放掉。
另外对于电器维修人员在使用电烙铁焊接电路时,有时会因为电烙铁带电而击穿损坏电器中的集成电路,这一点比较重要。
使用电脑的朋友有时也会忽略主机壳接地,其实给电脑主机壳接根地线,在一定程度上可以防止死机现象的出现。
在电力系统中接地线:是为了在已停电的设备和线路上意外地出现电压时保证工作人员的重要工具。
按规定,接地线必须是25mm2以上裸铜软线制成。
在电器中:接地线就是接在电气设备外壳等部位及时的将因各种原因产生的不安全的电荷或者漏电电流导出的线路。
通俗点说:接地可以防止用电设备表面的静电或漏电对人造成电击伤害,大功率电器尤其需要注意。
二、地线的作用接地线的作用是为了避免家用发生漏电时对人体的伤害而接的;把有可能带电金属壳上的电引到大地中,以免人触到发生触电事故。
如果不接地,一旦设备发生漏电现象,人碰到带电体,就有可能发生触电事故。
家用电接地线是保护人身安全的,防止家用电器漏电后人身触电。
不能防雷。
地线有两种接地,分别是系统接地和保护接地。
系统接地的任务是建立零电位参考点;保护接地的任务是保护人身安全。
地线的名词解释
地线的名词解释地线是电路中的一条导体,通常是由金属材料制成的,用于连接电器设备或电路中的金属外壳和地面。
它在电路中起到将不希望出现电流的金属部分与地面之间形成良好的导电通路的作用。
地线的作用是保护人身安全和电器设备的正常运行。
地线的概念源于电器设备的安全性考虑。
在电路中,正常情况下电流沿着预定的路径流动,然而当电路发生故障或其他故障时,可能会导致电流通过不希望通过的金属部分。
这种情况可能会对人身安全造成严重威胁,并有可能引发火灾风险。
地线的引入正是为了解决这个问题。
地线与接地线有所不同。
接地线是将电器设备或电路的金属部分与地面接触并形成导电通路,以将不希望出现电流的金属部分与地面之间电位保持相同。
而地线是专门指用来保护电路和人身安全的导线。
地线通常有独立的导线,相对于接地线来说更为重要,它可以提供更好的保护。
地线的连通方式可以是直接连接,也可以通过设备的插头来实现。
在家庭或商业建筑中,电器设备通常都有地线插头,并通过插座连接地线。
这样当电器设备发生故障时,电流会通过地线插头和插座进入地线导线,从而将不希望通过的金属部分与地面进行连接,提供安全的导电通路,保护人身安全。
地线的建设和维护对于安全性至关重要。
在建筑施工过程中,地线通常会被埋入地下,与供电系统相连,确保地线的导电通路畅通无阻。
而在使用过程中,定期检查与维护地线的连通性是非常重要的。
如果地线受损或连接不良,会降低地线的保护效果,甚至可能造成电击等安全问题。
在现代电源系统中,地线的作用越来越受重视。
地线的引入不仅可以确保人身安全,还可以提供电器设备的正常运行环境。
无论是家庭、商业建筑还是工业领域,都离不开地线的存在。
它是电器设备与地面之间稳定电势的桥梁,为我们提供了安全可靠的使用环境。
总之,地线作为电路中的重要组成部分,在保护人身安全和电器设备正常运行方面具有重要的作用。
它与接地线不同,专门用于保护电路和人身安全,通过与金属部分连接形成导电通路,将不希望出现电流的金属部分与地面之间形成良好的导电通路。
电路接地原理及抗干扰分析
:、 地线 干扰原 理
( 一) 地环路干扰。由于地 线阻抗的存在,当电流流过地线 时就会在地线上产生电压。这个 电流就会加在两个设备的连接电
缆上.由于电路的不平衡性,每
根导线上的电流不同,因此会产
生差 模电 压, 对电路 造成 影响 。
图3接地电 路图
由于这种干扰是由电缆与地线构
成的环路电流产生的,因此称为地环路干扰。外界磁场也会产生地环路干
这时可能出现公共阻抗
图4
耦合的问题, 如图4所示。
公 共阻 抗耦 合会 使电 路受 到严 重的 噪 声干 扰, 若忽 视了 公共 阻抗 的存
在, 电路 有可能 不能 正常工 作, 使抗干 扰的措 施成 为干扰 的原 因,从 而导 致 意想不 到的后果 。因此消除 公共阻抗耦 合的噪声 十分重要, 应给予重 视。
形成的 环路中感 戍出环路电 流,与原因 一的过程一 样导致干 扰。 ( 二) 公共阻抗干扰。当两个电路共用一段地线时,由于地线的阻
抗,一个电路的电位会受到另一 个电路1=作电流的调制。这样一
个电路中的信号会耦合到另一个 电路,称为公共阻抗耦合。在数 字电路 中,由于 信号的频 率较 高, 地线 往往 呈现较 大的 阻抗 。
[ 摘要】 系统阐述接 地系统的分类 及重要性。分 析电子应用 方面接地系统 引入干扰的 原因,提出相 应的抗干扰方 法。 [ 关键词] 接地系统抗干扰 中图分类号:TN7 文献标 识码: ^ 文章编号:167’一。7597(2008) 091∞13一01
一、 地线 和电 子系 统接 地
地 线的 一般 定义 是: 地线 是作 为电 路 电位 基准 点的 等势 体。 在高 频电 路 中这 个定 义是 不 符合 实际 情况 的。 实 际地 线上 的电 位 并不 是恒 定的 。如
gnd在电路中代表什么意思
gnd在电路中代表什么意思
“gnd”是电线接地端的简写,代表“地线”或“0线”。
这个地并不是真正意义上的地,是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。
电路图上和电路板上的gnd(ground)代表地线或0线gnd就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。
是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。
它与大地是不同的。
有时候需要将它与大地连接,有时候也不需要,视具体情况而定。
接地线的注意事项:
1、工作之前必须检查接地线。
软铜线是否断头,螺丝连接处有无松动,线钩的弹力是否正常,不符合要求应及时调换或修好后再使用。
2、挂接地线前必须先验电,未验电挂接地线是基层中较普遍的习惯性违章行为,在悬挂时接地线道体不能和身体接触。
3、在工作地点两段两端悬挂接地线,以免用户倒送电、感应电的可能,深受其害的例子不少。
4、在打接地桩时,要拨能借地体能快速疏通事故大电流,保证接地质量。
电线接地是什么意思?接地线是什么颜色
电线接地是什么意思?接地线是什么颜色
电线接地是什么意思?接地线是什么颜色
用颜色区分:在动力电缆中黄色绿色红色分别代表A相B相C相(三相火线)蓝色代表N 零线,黄绿双色代表E 接地线。
大陆普遍用棕色表示L 英文简写L(LIVE)线,也就是火线;蓝色代表N (NEUTRAL)线,也就是零线;黄绿相间(俗称花线)表示地线(E 线)
接地线一般是黄色带一条绿色
电线接地是一个系统。
讲的通俗一点,就是你家里的电器金属外壳,怕漏电,都必须要进行接地,为了达到接地的目的,就需要有一根电线直接与大地连通。
把万一外壳带的电由接地线引到大地里去,保护人身安全。
这就叫【电线接地】。
为了使交流电有很方便的动力转换功能,通常电力传输是以三相四线的方式,三相电的三根头称为相线。
三相电的三根尾连接在一起称中性线也叫'零线'。
叫零线的原因是三相平衡时刻中性线中没有电流通过了,再就是它直接或间接的接到大地,跟大地电压也接近零。
地线是把设备或用电器的外壳可靠的连接大地的线路,是防止触电事故的良好方案。
一般情况下,三相电路中火线使用红、黄、蓝三种颜色表示三根火线,零线使用黑色。
单相照明电路中,一般黄色表示火线、蓝色是零线、黄绿相间的是地线。
也有些地方使用红色表示火线、黑色表示零线、黄绿相间的是地线。
规范电线颜色:火线用红色,零线用兰色,地线用黄/绿双色的线,照明控制线用白色线。
如何快速找出电路板上的地线
如何快速找出电路板上的地线如何快速找出电路板上的地线2019-07-31 15:20:52电子说在分析或维修电路板时,往往需要找出电路板的地线(即GND),一般我们可以根据电路板上的电源滤波电容、集成电路、稳压二极管等元器件的正负引脚来快速找出电路板上的地线。
1、根据电源滤波电容找出地线找电路板上的地线时,一般我们可以根据电路板上电源滤波电容来寻找地线。
2、根据集成电路的正负电源端找出地线除了根据电源滤波电容来寻找地线,我们还可以根据电路板上很多集成电路的正负引脚来寻找地线。
对于78XX系列三端稳压集成电路,其②脚为GND端,在电路中一般该脚都是接地的,故电路板上与78XX的②脚相连的铜箔即为地线。
对于74LS00系列、CD4000系列的数字IC,其正负电源引脚都是固定的,若数字IC为14脚和16脚的,其7脚或8脚为电源负端(在电路中接地)、14脚或16脚为电源正端,故从上述数字IC的电源引脚即可快速找出电路板上的地线。
3、根据稳压管、三极管的引脚找出地线稳压管在电路中若是作为稳压使用,其正极一般都是接地的、若NPN型三极管作为电子开关使用,其发射极也大都是接地的,故根据上述元件的引脚亦可以快速找出电路板上的地线。
4、先看电路板有没有大面积的覆铜,如果有覆铜再观察元件的焊盘有没有连接在这块覆铜上的,如果有那么基本就可以判定这块覆铜就是GND,因为大部分低频电路设计的覆铜都是设计为GND;5、找电路板上一些常用元件比如带极性的电容、稳压模块或者带金属外壳的插座(比如网线插口),多看几个电容看它们的负极有没有好多个都是接在一条线路上的;文雅模块查引脚定找到GND脚的接线;金属外壳的接插件一般外壳焊在板子上的话一般都是GND6、查看电路板供电接口是什么接口的,圆形插口?USB?等等等等主流插口网上都能找到定义,定义中找到GND对应电路板上一般即为电路板GND。
7、还有一些电路设计会将产品外壳金属的部分通过线或者螺丝接在电路板上,那么接线或者螺丝孔位很可能就是GND。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路板接地概念
1.电路图上和电路板上的GND(Ground)代表地线或0线.GND就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。
是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。
它与大地是不同的。
有时候需要将它与大地连接,有时候也不需要,视具体情况而定。
B上的:VCC是电源接入;GND为接地;DP、DM是差分信号;PORT-、PORT+是数据负、正信号。
GND
VDD: 电源电压(单极器件);电源电压(4000系列数字电 路);漏极电压(场效应管)
VCC:电源电压(双极器件);电源电压(74系列数字电路);
VSS:地或电源负极
VEE:负电压供电;场效应管的源极(S)
VPP:编程/擦除电压。
(1)电气地 大地是一个电阻非常低、电容量非常大的物体,拥有吸收无限电荷的能力,而且在吸收大量电荷后仍能保持电位不变,因此适合作为电气系统中的参考电位体。
这种“地”是“电气地”,并不等干“地理地”,但却包含在“地理地”之中。
“电气地”的范围随着大地结构的组成和大地与带电体接触的情况而定。
(2)地电位 与大地紧密接触并形成电气接触的一个或一组导电体称为接地极,通常采用圆钢或角钢,也可采用铜棒或铜板。
图 1示出圆钢接地极。
当流入地中的电流I通过接地极向大地作半球形散开时,由于这半球形的球面,在距接地极越近的地方越小,越远的地方越大,所以在距接地极越近的地方电阻越大,而在距接地极越远的地方电阻越小。
试验证明:在距单根接地极或碰地处 20m 以外的地方,呈半球形的球面已经很大,实际已没有什么电阻存在,不再有什么电压降。
换句话说,该处的电位已近于零。
这电位等于零的“电气地”称为”地电位”。
若接地极不是单根而为多根组成时,屏蔽系数增大,上述 20m 的距离可能会增大。
图 1中的流散区是指电流通过接地极向大地流散时产生明显电位梯度的土壤范围。
地电位是指流散区以外的土壤区域。
在接地极分布很密的地方,很难存在电位等于零的电气地。
(3)逻辑地 电子设备中各级电路电流的传输、信息转换要求有一个参考的电位,这个电位还可防止外界电磁场信号的侵入,常称这个电位为“逻辑地”。
这个“地”不一定是“地理地”,可能是电子设备的金属机壳、底座、印刷电路板上的地线或建筑物内的总接地端子、接地干线等;逻辑地可与大地接触,也可不接触,而“电气地”必须与大地接触。
.接地:
将电力系统或电气装置的某一部分经接地线连接到接地极称为“接地”。
“电气装置”是一定空间中若干相互连接的电气设备的组合。
“电气设备”是发电、变电、输电、配电或用电的任何设备,例如电机、变压器、电器、测量仪表、保护装置、布线材料等。
电力系统中接地的一点一般是中性点,也可能是相线上某一点。
电气装置的接地部分则为外露导电部分。
“外露导电部分”为电气装置中能被触及的导电部分,它在正常时不带电,但在故障情况下可能带电,一般指金属外壳。
有时为了安全保护的需要,将装置外导电部分与接地线相连进行接地。
“装置外导电部分”也可称为外部导电部分,不属于电气装置,一般是水、暖、煤气、空调的金属管道以及建筑物的金属结构。
外部导电部分可能引入电位,一般是地电位。
接地线是连接到接地极的导线。
接地装置是接地极与接地线的总称。
超过额定电流的任何电流称为过电流。
在正常情况下的不同电位点间,由于阻抗可忽略不计的故障产生的过电流称为短路电流,例如相线和中性线间产生金属性短路所产生的电流称为单相短路电流。
由绝缘损坏而产生的电流称为故障电流,流入大地的故障电流称为接地故障电流。
当电气设备的外壳接地,且其绝缘损坏,相线与金属外壳接触时称为“碰壳”,所产生的电流称为“碰壳电流”。
除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:
(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:
(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。
利用低阻金属材料高导流而制成,可接大地。
磁场屏蔽用以防磁铁、电机、变压器、线圈等磁感应,其屏蔽方法是用高导磁材料使磁路闭合,一般接大地为好。
当信号电路是一点接地时,低频电缆的屏蔽层也应一点接地。
如果电缆的屏蔽层地点有一个以上时,将产生噪声电流,形成噪声干扰源。
当一个电路有一个不接地的信号源与系统中接地的放大器相连时,输入端的屏蔽应接至放大器的公共端;相反,当接地的信号源与系统中不接地的放大器相连时,放大器的输入端也应接到信号源的公共端。
对于电气系统的接地,要按接地的要求和目的分类,不能将不同类接地简单地、任意地连接在一起,而是要分成若干独立的接地子系统,每个子系统都有其共同的接地点或接地干线,最后才连接在一起,实行总接地。