矩阵的分块与应用

合集下载

矩阵的分块及应用

矩阵的分块及应用

矩阵的分块及应用武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。

分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。

分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。

讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。

通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。

关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。

I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it isvery important for linear algebra. The paper discussed the concept of the partition matrix and the operation of the partition matrix and the property of the partition matrix and the block-elementary matrix. Then it summarized some applications of the partition matrix. Those applications were relative to the rank of matrix and inverse matrix and determinant and positive definite matrix and positive semi-definite matrix etc. By quoting a number of examples we could get that its convenientto solve many problems about calculation and provement by using block matrices. Key words: partitioned matrices; elementary transformation; caculate; inverse matrix; prove。

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用姓名:王红军 学号:200840510638 指导老师:李群摘要 分块矩阵是《高等代数》的一个重要内容。

为了研究一些问题的需要,适当地将矩阵进行分块,可以使矩阵的结构变得更加清楚,有关矩阵的很多问题也将迎刃而解。

关键词 分块矩阵 线性方程组 矩阵方程 逆矩阵 行列式计算 特征值 秩1.分块矩阵的概念及重要理论1.1分块矩阵的概念设A 是一个矩阵,我们将矩阵A 用若干条横线和若干条纵线按照某种需要将其划分为若干个小矩阵。

被这种分法分成若干个小矩阵的矩阵称为一个分块矩阵。

划分出的每个小矩阵称为A 的一个子块或子阵。

1.2分块矩阵的运算分块矩阵和一般矩阵一样,主要有四种运算:加法、数乘、乘法、转置。

但值得注意的是分块一定要满足一定的条件才可以实施加法和乘法运算。

1.3分块矩阵的初等变换分块矩阵有如下三种初等变换:(1)用一个可逆矩阵左(右)乘分块矩阵的某一行;(2)用一个非零的矩阵左(右)乘分块矩阵的某一行(列)加到另一行(列)上;(3)交换分块矩阵的两行或两列.1.4常见的分块方法(1)列分法A=(1a ,2a ,…,n a ) 其中i a (i=1,2,…,n )为A 的列向量;(2)行分法A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a 21 其中i a (i=1,2,…,n )为A 的列向量; (3)分成两块A=()21A A 其中1A ,2A 分别为A 的若干列;或者⎝⎛⎪⎪⎭⎫=21A A A 其中1A ,2A 分别为A 的若干列;(4)分成四块 ⎪⎪⎭⎫ ⎝⎛=4231A A A A A2.1分块矩阵与线性方程组2.1.1设n m A ⨯≠0,s n B ⨯的列向量组为1B ,2B ,…,S B 则有以下结论成立: AB=0⇔1B ,2B ,…,S B 都是齐次线性方程组AX=0的解证明:由题意AB=0(A 1B ,A 2B ,…,A S B )=0⇔A 1B =0,A 2B =0,…,A S B =0⇔1B ,2B ,…,S B 都是AX=0的解由上知我们可以利用分块矩阵的理论去解决齐次线性方程组的理论中的问题2..1.2已知A=2.1.3 设非齐次线性方程组2.2求解矩阵方程2.2.1 形如AX=B (A 为可逆矩阵)的矩阵方程易知解为X=1-A B ,计算格式如下:(A,B)→(E 1-A C) 2.2.2 形如XA=B (A 为可逆矩阵)的矩阵方程易知解为X=B 1-A ,计算格式如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1BA E 2.2.3 形如AXB=C (A 、B 分别为m 、n 阶可逆矩阵)的矩阵方程 易知解为X=1-A C 1-B ,计算格式如下:(A C )→(E 1-A C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-C A B 1 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11CB A E现在此基础上构造一个分块矩阵,将两步合为一步:⎪⎪⎭⎫ ⎝⎛O A B C →⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛--o E E CB A O E B C A m n m 11 例:求解下给矩阵方程。

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用
分块矩阵是由若干个子矩阵组成的大矩阵,通常将行和列分成若干块,每块均为矩阵,因而得名。

分块矩阵在数学和工程领域有广泛应用。

一些应用包括:
1.矩阵求逆:对于大规模矩阵求逆,可以先将矩阵分成较小的块,在每个块的范围内求逆并重新组合。

2.矩阵乘法:矩阵乘法的时间复杂度与矩阵的大小有关,但矩阵块的大小也会影响乘法的效率。

分块矩阵可以提高矩阵乘法的效率。

3.矩阵分解:对于某些特定类型的矩阵,如对称正定矩阵和稀疏矩阵,分块矩阵分解可以有效地降低计算复杂度。

4.图像处理:分块矩阵可以用于图像处理中的分块压缩和离散余弦变换等算法,以提高图像处理的效率和质量。

5.结构力学:分块矩阵广泛应用于结构力学和有限元方法中,可以描述复杂的结构系统和分析结构系统的动态行为。

(完整版)分块矩阵及其应用汇总,推荐文档

(完整版)分块矩阵及其应用汇总,推荐文档

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content.In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix11 ⎪1 引 言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义 1.1 [1] 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把 m ⨯ n 矩阵分割为如下形式的矩阵:⎛A 11A ⎫ 1n ⎪A m ⨯n = ⎪A m 1 A m n特别地,对于单位矩阵分块:⎝ ⎭ ⎛E 0 0 ⎫ ⎪ E n ⨯n = 0 0 0 ⎪ 0 E ⎝n n ⎭ 显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的A 所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.ij依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2.1 矩阵的相关概念2 分块矩阵在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵 的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.a 11 定义 2.1.1[2]n 级行列式a 21a 12 a 22 a 1n a 2n等于所有取自不同行不同列的a n 1 a n 2a nn 个元素的乘积a 1j a 2ja n j的代数和,这一定义又可写成:12na 11 a 21 a 12a 22a 1na 2n =(-1) (j 1j 2 j n )a aa .a n 1 a n 2a n∑j 1j 2 j n1j 1 2j 2n j n[2]定义 2.1.2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所O I ⎪ ⎪ ⎪1谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义 2.1.3 [2] n 级方阵称为可逆的,如果有n 级方阵 B ,使得A B = A -1 .BA = E (这里 E 是n 级单位矩阵),那么B 就称为 A 的逆矩阵,记为定义 2.1.4 [3] 对分块矩阵施行下列三种初等变换: (1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换. 定义 2.1.5 [3] m + n 2 ⨯ 2 ⎛I m O ⎫对 阶单位矩阵作 分块,即I m +n = O I ⎪ ,然后⎝ n ⎭对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵⎛I n O ;⎫ ⎝ m ⎭⎛P O ⎫ ⎛I m O ⎫(2) 分块初等倍乘阵 0 I ⎪ , ⎪ ;⎝ n ⎭ (3) 分块初等倍加阵⎛I m R 1 ⎫ O I ⎝ 0 Q ⎭ ,⎛I m O ⎫ ; S I ⎝ n ⎭ ⎝ n ⎭其中 P , Q 分别是m 阶和n 阶可逆方阵,且R ∈ R m ⨯n ,S ∈ R n ⨯m为非零阵.2.2 矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质: 定义 2.2.1 [4] 矩阵加法:设A = (a ) , B = (b ) 是两个同型矩阵,ij snij sn则矩阵C = (c i j )= (a i j+ b i j )称为 A 和 B 的和,记为C = A + B .元素全为零的矩阵称为零矩阵,记为O s n ,可简单记为O,对于矩阵 A 、 B ,有:(1) A + O = A(2) A + ( -A ) = 0(3) A - B = A + ( -B )(4) ( A + B ) + C = A + ( B + C )snsnn11 (5)A + B = 定义 2.2.2 [4] B + A矩阵乘法:设A = (a ) ,B = (b ) 是两个不同型矩阵,i k s nk j n m那么矩阵C = A B =(c i j ),称为矩阵 A 与 B 的乘积,其中:smc i j = a i 1b 1j + a i 2b 2j+ a i n b n j= ∑a i k b k jk =1在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质:(1) A ( B + C ) = A B + A C(2) ( B + C )A = B A + C A(3) (A B )D =A (B D )⎛k a 11 k a 1k a 1 ⎫定义 2.2.3 [4] 矩阵数乘: k a 21k ak a 2n ⎪ ⎪A = (a ) 与 数 22 ⎪称为矩阵 ⎪⎪ ij sn k a k a k a ⎝ s 1 s 2 s n ⎭k 的数量乘积,记为kA ,有以下性质:(1) 1 * A = A ;(2) k(l A ) = (k l )A ;(3) k ( A + B )= kA + kB ;(4) (k + l )A = kA +lA ; (5) k (A + B ) = kA +kB .2.3 分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设 A 、 B 是m ⨯ n 矩阵,若对它们有相同的划分,也就有:⎛A 11 + B A 1t + B 1t ⎫ ⎪ 加法:A + B = ⎪ . ⎪ A + B A + B ⎪ ⎝ s 1 s 1 st st ⎭乘法:C = A B , 其中:∑ ⎪ 1 C i j = A i 1B 1j + A i 2B 2j+ + A i n B n j⎛k A 11k A 1 ⎫⎪ n= A i k B k j .k =1数乘:k A =⎪ .⎪ k Ak A⎝s 1 s t ⎭总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质:定义 2.3.1 [2] 由单位矩阵 E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵 E 的i 行与 j 行的位置; (2) 用数域 P 中的非零数c 乘 E 的i 行; (3) 把矩阵 E 的 j 行的k 倍加到i 行.定义 2.3.2 [5] 将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵⎛ A B ⎫进行相应变换,只要应用矩阵的计算性质,左乘对⎝C D ⎭ 应分块矩阵: ⎛ O E m ⎫ ⎛ A B ⎫ ⎪⎪⎛C D ⎫ ⎪ ⎝E n O ⎭ ⎝C D ⎭⎝ A B ⎭ ⎛P O ⎫ ⎛ A B ⎫ ⎛P A = P B ⎫ O E ⎪C D ⎪ ⎪⎝ n ⎭ ⎝⎭ ⎝ C D ⎭ ⎛E m O ⎫ ⎛ A B ⎫ ⎛ = A B⎫P E ⎪C D ⎪ ⎪C + P AD + P B⎝ n ⎭ ⎝⎭ ⎝ ⎭2.4 矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法[6] :(1) 列向量分法,即A =(1,⎛ ⎫ ⎪, n ),其中j 为 A 的列向量.(2) 行向量分法,即A = ⎪ ,其中j 为 A 的行向量.⎪ ⎝ m ⎭=1⎪ (3)分两块,即A = (A 1, A 2 ),其中A 1 ,A 2 分别为A 的各若干列作成.或 A = ⎛B ⎫ ,其中B ,B 分别为 A 的若干行作成. B ⎪1 2 ⎝ 2 ⎭⎛C 1 C 2 ⎫(4) 分四块,即A =C C ⎪ .⎝ 3 4 ⎭我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5 常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下: (1) 单位矩阵:对角线元素都为1,其余元素为0 的n 阶方阵. (2) 对角矩阵:对角线之外的元素都为0 的n 阶方阵. (3) 三角矩阵:对角线以上(或以下)元素全为0 的n 阶方阵. (4) 对称矩阵:满足矩阵 A 的转置和 A 相等. (5) 若尔丹(Jordan )块:形如⎛ 0 1 0 0 ⎫ 0 ⎪J ( ,t ) ⎪= ⎪0 0 ⎪ 0 0 0 1 ⎝ ⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:⎛A 1 ⎫⎪ A 2⎪ ⎪ ⎪A ⎪ ⎝n ⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3.1 行列式计算的应用3 分块矩阵及其应用定理 3.1.1 [2] 拉普拉斯(Laplace )定理:设在行列式 D 中任意取定了k 个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式a ⎪ a 按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例 3.1.1 [7] :(爪形行列式)计算行列式:a 01 1 1 1 a 10 0 1 0 a 2 0 ,其中a i ≠ 0(i = 1, 2, , n ) .1 0 0 a n解:设Q =A D ,其中A = (a )C B a 1 B =,C = ( 1, 1, , 1)T ,D = ( 1, 1, , 1) .a n因为a i ≠ 0(i = 1, 2, , n ) ,所以 B 是可逆矩阵.-1⎛n 1 ⎫又易知: A - D B C = a 0 - ∑ ⎪ . ⎝ i =1 i ⎭根据分块矩阵乘法: ⎛ E0 ⎫ ⎛ A D ⎫ --1 ⎪ ⎪= ⎛A D ⎫-1 ⎝ C A E ⎭ ⎝C B ⎭ ⎝ 0 B - C A D ⎭A D -1 -1 ⎛ n 1 ⎫则:= AB - C A D =B A - D BC = a a a a-∑ a ⎪C B⎛n 1 ⎫ 12n 0⎝i =1 i ⎭故:原行列式=a 1a 2 a n a 0 - ∑ ⎪ . ⎝ i =1 i ⎭例 3.1.2 [7] :(对角行列式)计算行列式:adH 2n= a d.c bcb解:令⎪ a x A =⎛a ⎫⎪ ,B = ⎛b ⎫⎪ ,C = ⎛ c ⎫ ⎛ ,D = d ⎫⎪ ⎪ ⎪ ⎪ ⎪ a ⎪ b ⎪ c ⎪ d ⎪ ⎝ ⎭ 为n 阶方阵. 由于a ≠ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 0,故 A 为可逆方阵.⎛ b - c a -1d⎫⎪ 又易知:B - C A -1D =⎝ b - c a -1d ⎪ b - -1 ⎪ ca d ⎭故 H 2n= A D = C BAB - C A -1D = a n (b - c a -1d )n= (a b - c d )n .例 3.1.3 [8] :设 A 、 B 、C 、 D 都是n 阶矩阵,证明当 AC = CA 时, A 可逆时,有A D= A B - C DC B⎛ A D ⎫ ⎛E -A 1D-⎛ A 0 ⎪ ⎫,证明:若 A 可逆,⎪ ⎪ =-1 ⎝C B ⎭ ⎝OE ⎭ ⎝C B - C A D ⎭A D故:=C BAB - C A -1D = A B - A C A-1D = A B - C D .注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a d c b= a b - c d ,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2 线性方程组的应用对于线性方程组,我们有以下四种表述: (1) 标准型:⎧a 11x 1 + a 12x 2+ + ax = b ⎪ 1nn 1⎨ax + ax + + a x = b ; ⎪a 21 x 1+ 22 2 + + 2n n a x = b ⎩ m1 1 m2 2 m n n m (2) 矩阵型:令A = ⎣a i j ⎦m ⨯n,x = (x 1, x 2, , x n )' ,B = (b 1, b 2, b m )' 方程组可以表述为: Ax = B ;(3) 列向量型:令2⎢a ⎥ ⎝O O⎪ ⎪ ⎪ ⎡a 11 ⎤ ⎢21 ⎥⎡a 12 ⎤⎥ 22 ⎡a 1n ⎤ ⎢ ⎥ = , 1 ⎢ ⎥ 2 = , , ⎢ ⎥= ⎢a 2n ⎥ n ⎢ ⎥ ⎢ ⎥ ⎣a m 1 ⎦ ⎢ ⎥ ⎣a m 2 ⎦ ⎢ ⎥ ⎣a m n ⎦则方程组又可以表述为:x 11 + x22+ + x nn = B ;(4)行向量型: x ' + x ' + + x' = B ' .1 12 2n n可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例 3.2.1:(齐次线性方程组)求解方程组:⎧ x 1 + 2x 2 2x ⎪ + x + 2x 3 - 2x + x 4 = 0 - 2x = 0 ⎨ 1 x -2x - 4x 3 - 3x 4=0 ⎩ 1 2 3 4 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:⎛1 0 -25 ⎫ - 3⎪ ⎛ 1 2 2 1 ⎪⎫ ⎛ 1 2 2 1 ⎪⎫4 ⎪ ⎛E C ⎫ A = 2 1 -2 -2 0 -3 -6 -4 0 1 2 ⎪ = 2 ⎪ ⎪1 -1 -4 -3⎪ 0 -3 -6 -4⎪ 3 ⎪ 12 ⎭ ⎝ ⎭ ⎝ ⎭ 0 0 0 0 ⎪⎪ ⎝ ⎭R ( A ) = 2,基础解系含4 - 2 = 2 个.而方程又满足:相应的可以取:⎛E 2 C ⎫ ⎛1 ⎫ = ⎛ 0⎫⎪ ,⎝O 1 O 2 ⎭ ⎝2 ⎭⎝ 0⎭⎛ 5 ⎫ 2 3 ⎪ ⎛ -C ⎫⎪⎝ E 2 ⎭⎪ = -2 4 ⎪3 ⎪1 0 ⎪ ⎝ 0 1 ⎭-⎪ 0 3 ⎪⎭⎛ 2 ⎫ ⎛ 5 ⎫3 ⎪有通解: = k + k,其中= -2⎪1, =- ⎪ 4 ⎪ . 1 12 21 ⎪2 ⎪ ⎪ ⎝ 0 ⎭⎪ 1 ⎪ ⎝ ⎭例 3.2.2 [9] :(非齐次线性方程组)求解方程组:⎧⎪ x 1 + 2x 2- 3x 4 + 2x 5 = 1 x - x - 3x + x - 3x = 2 ⎪ ⎨ 1 2 3 4 52x - 3x + 4x - 5x + 2x = 7 ⎪ 9x ⎩ 1= 25 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:r ( A ) = 3,而r ( A ) = 4 , 故r ( A ) ≠ r ( A) . 从而方程组无解. ⎛ Λ45 -b ⎫事实上,我们可以利用分块矩阵叙述:经对分块矩阵 ⎝ E变换,都不能把最后一列变成0 ,所以该方程组无解.例 3.2.3:证明: n 阶方阵 A 的秩为n- 1,则r a n k ( A* )=1首先证明此例需要利用的一个引理: 4进行行列0 引理:A = (a i j )n ⨯n ,B = (b i j )n ⨯n ,r( A ) = r ,A B =0 ,则r ( B ) ≤ n - r证明:对矩阵 B 进行列向量的分块,B = (B 1, B 2, B n ) ,A B = 0 则有:A B i= 0 ,B i 是AX = 0 的解. 而A X =0 基础解系有n - r 个解.故:r ( B ) ≤ n - r 再证明本例: 因为r ( A )= n - 1,则 A = 0 ,A 至少有一个n -1级子式不为零,r a n k ( A* ) ≥ 1.而:A * =AE = 0 .利用引理得:r a n k ( A * ) ≤ 1,故r a n k ( A )=*.51 - 9 x +2 6x - 163 x4 + 2x 52 3 4 5⎝⎪ 1 2= ⎪ ⎪ 得证.3.3 求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、 利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例 3.3.1 [6] :设 A 、 B 是n 阶方阵,若 A + B 与 A - B 可逆,试证明: ⎛ A B ⎫可逆,并求其逆矩阵. B A ⎭ ⎪ 解:令D = ⎛ A B ⎫,由假设知 A + B ≠ 0 , A - B ≠ 0B A ⎪ .那么:D =A B⎝ ⎭A +B B =A + BB= A + B A - B ≠ 0 .B AB + A AA - B即 D 可逆. 再令D -1 ⎛D 1= D 2⎫ , 由D -1 = E ,即:可得:D D ⎝ 3 4 ⎭⎛ A B ⎫ ⎛D D ⎫ ⎛E 0 ⎫ ⎪ ⎪⎪ ⎝B A ⎭ ⎝D 3D 4 ⎭ ⎝ 0E ⎭⎪⎧A D 1 + B D 3 = E B D + A D = 0⎪12⎨A D +B D = 0 B D 2 + A D 4 = E ⎩ 2 4将第一行和第二行相加、相减,得:⎪D + D = ( A + B )-1 ⎨1 3⎩D 1 - D 3= ( A - B )-1 解之得:D = 1 ⎡( A + B )-1 + ( A - B )-1 ,D = 1⎡( A + B )-1 - ( A - B )-11 2 ⎣⎦ 2 2 ⎣⎦类似地:D 2所以: = D 3 ,D 4= D 1 .⎛ A B ⎫-11 ⎛( A + B )-1 + ( A - B )-1 ( A + B )-1 - ( A - B )-1 ⎫⎪ = 2 -1 -1 -1-1 ⎪ . ⎝B A ⎭ ⎝( A + B ) - ( A - B )( A + B ) + ( A - B ) ⎭ =⎝⎭ ⎝ - ⎪⎪ ⎪0 例 3.3.2 [6] :已知分块形矩阵M = ⎛ A B ⎫可逆,其中 B 为p ⨯ p 块, C 为C 0 ⎪ ⎝ ⎭q ⨯ q 块,求证: B 与C 都可逆,并求M-1 . 解:由0 ≠M = (-1)p qBC ,则: B ≠0 , C ≠ 0 ,即证 B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆: ⎛ A B E p0 ⎫ → ⎛ A B E 0 ⎫ → ⎛ 0B E -AC -1 ⎫⎪ ⎪ -1 ⎪ -1⎝C 0 0 Eq ⎭ ⎝E 0 0 C ⎭ ⎝E 0 0 E ⎭→ ⎛ 0 E B -1-B -1A C -1 ⎫ → ⎛E 0 0 C-1 ⎫E 0 0 C-1⎪ 0 E B -1-B -1A C -1 ⎪ ⎭-1⎛C -1 ⎫故 :M = B -1-B -1A C-1 ⎪ . ⎝⎭备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:⎛ 1 0 1 ⎫ 例 3.3.3 [10] :求矩阵A = 2 1 0 ⎪的逆矩阵.⎝ ⎭ 解:构造矩阵:⎛ 10 1 1 00⎫⎪⎛ 1 0 1 1 0 0⎫⎪2 0 0 1 -2 -2 1 0 D = ⎛ A E ⎫= -3 1 0 0 1 2 -5 0 0 1⎪ → 0 2 -2 3 0 1⎪ ⎪⎪ ⎪ ⎝E O ⎭6⨯6 1 0 0 0 00 1 0 0 0 0⎪ 1 0 0 0 0 0⎪ 0⎪ 0 1 0 0 0 0⎪0 0 1 0 0 0 0 1 0 0 0 ⎝ ⎭ ⎝ ⎭⎛ 1 0⎫⎪ 00 1⎪ →1 0⎪ ⎛ 1 0 1 1 0 0⎫ 0 1 -2 -2 1 0 0 1⎪ → 1 0⎪⎪ ⎪ 0 0⎪ 0 0⎪ 00⎪ 0 0⎪ ⎝⎭ ⎝ ⎭ 0 1 1 0 1 -2 -2 1 0 2 7 -2 0 0 0 0 1 0 0 0 0 1 0 00 2 7 -2 0 -1 0 0 1 0 0 0 0 1 0 0- - ⎪ ⎝ ⎭ ⎝ ⎭1 ⎛ 1 0 0 1 0 0⎫⎪0 1 0 2 1 0 ⎛ 10 0 1 0 0⎪⎫ 0 1 0 2 1 0 0 0 17 -2 1⎪0 0 2 7 -2 1⎪1 ⎪→ ⎪ → 10 - 0 0 0⎪ .1 0 -1 0 0 0⎪2⎪ 0 1 2 0 0 0⎪ 00 10 01 0 0 0⎪0 0 1 0 0 0⎪⎝所以;⎭⎪⎝2⎭⎛1 0 1 ⎫ ⎛ 5 1 ⎫- 2 ⎪⎛ 1 0 0⎫ - 2 -1 - 2 ⎪ A -1 = 0 1 1 ⎪ -2 1 0⎪ = 5 -1 1 ⎪ . ⎪ ⎪ ⎪ 1 ⎪ 7 -2 17 1 ⎪ 0 0 2 ⎪ ⎝ ⎭ 2 -1 2 ⎪ 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵, 有时比较简单.3.4 矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵 的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设 A 、 B 均为m ⨯ n 矩阵,则:r ( A + B ) ≤ r(A ) + r ( B ) .(2)矩阵乘积的秩不超过各因子的秩.即:设 A 是m ⨯ n 矩阵 , B 是n ⨯ s 矩(3)r ⎛A B ⎫阵,则:r ( A B ) ≤≥ r ( A ) + r ( B ) . m i n {r ( A ) , r ( B )}.(4)r ⎝ 0 C ⎭ ⎪ ⎛A ⎫ ⎪⎪ ≥ A i j .A ⎪ ⎝ m ⎭再来介绍由分块矩阵证明导出的两个基本不等式例 3.4.1[11] :(薛尔弗斯特不等式)设A = (a ) ,B = (b ) ,证明:ij s ⨯nij n ⨯mr a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) - n⎪ 证明:由分块矩阵的乘积⎛ E n 0⎪ ⎫ ⎛E B ⎫ ⎪⎛E n -B ⎫⎛E n 0 ⎫ -A E A n0 0 E ⎪ = ⎪0 - ⎝ s ⎭ ⎝ ⎭ ⎝ 知:m ⎭⎝ A B ⎭ r a n k⎛E n B⎫ = r a n k (E ) + r a n k ( -A B ) = n + r a n k ( A B )A 0 ⎪n.⎝ ⎭但,r a n k⎛E nB ⎫ A 0⎪= r a n k⎛B E n ⎫ ≥ r a n k ( A ) + r a n k ( B ) ⎪故:得证.⎝⎭ ⎝ 0 A ⎭.n + r a n k ( A B )≥ r a n k ( A ) + r a n k ( B )备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵: (1) 矩阵不等式中含两个不同矩阵:构造 ⎛A 0 ⎫⎪;⎝ 0 B ⎭(2) 矩阵不等式中含有两个不同矩阵及阶数:构造⎛ A E ⎫ ⎪ 或者 ⎛ A 0 ⎫ ⎪.⎝ 0 B ⎭ ⎝E B ⎭具体分块矩阵的元素则要看题目所给的条件.例 3.4.2 [6] :(Frobenius 不等式)设 A 、 B 、C 是任意3 个矩阵,乘积ABC 有意义,证明:r ( A B C ) ≥ r ( A B ) + r ( B C ) - r ( B )证明:设 B 是n ⨯ m 矩阵,r ( B ) = r那么存在n 阶可逆阵 P , m 阶可逆阵Q ,使B = ⎛Er0⎫ P ⎪ Q .⎝ 0 0⎭把 P 、Q 适当分块:P = (M , S ),Q =⎛N ⎫, 由上式有: T ⎝ ⎭故:r ( A B C )= r ( A M N C ) B = (M , S )⎛E r0⎫ ⎛N ⎫ = M N .⎪ ⎪ ⎝ 0 0⎭ ⎝T ⎭≥ r ( A M ) + r ( N C ) - r0 ≥ r ( A M N ) + r ( M N C ) - r ( B )得证.= r ( A B ) + r ( B C ) - r ( B ) .3.5 矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例 3.5.1[11] :设 A 为m ⨯ k 矩阵, B 为k ⨯ n 矩阵,则证明:r a n k ( A )+r ank( B ) - k≤ r ank( AB) ≤ m i n {r a n k ( A ) , r a n k ( B )}证明:先证明右边的不等式,由:(A 0)(E k0 B ) = ( A A B ) ;E n可得:⎛E k A E 0⎪ ⎫ ⎛B ⎪⎫ = ⎛ B A B ⎫⎪ ,⎝m ⎭ ⎝ ⎭⎝ ⎭r a n k ( A ) =r ank( A 0) = r a n k ( A A B ) ≥ r a n k ( A B ) ;r a n k ( B ) = r a n k ⎛ B ⎫ = r a n k ⎛ B ⎫≥ r a n k ( A B ) .⎪ ⎪⎝ 0 ⎭ ⎝AB ⎭ 再证左边的不等式.注意到下列事实:⎛E m -A ⎫ ⎛ A 0 ⎫ ⎛E ⎪k -B ⎫ = ⎛ 0 -A B ⎫⎪ 0 E ⎪E B 0E⎪ E 0 ⎝k ⎭ ⎝ k 则:⎭ ⎝ n ⎭⎝ k ⎭0 ⎫⎛ 0r a n k ⎛ A ⎪ = r a n k-A B ⎫ ⎪于是:⎝E kB ⎭ ⎝E k0 ⎭⎛ A 0 ⎫r a n k ( A ) + r ank ( B ) ≤r ank ⎪ = r a n k ( -A B ) + r a n k (E k )= r a n k ( A B ) + k⎝E kB ⎭ 从而: r a n k ( A ) + r a n k ( B ) - k ≤ r a n k ( A B ) .这里也是用到构造矩阵的方法.例 3.5.2 [6] :设n 阶矩阵 A 、 B 可交换,证明:r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B )→ → , ⎝ ⎭ 解:利用分块初等变换,有:⎛A O ⎫ ⎛A B ⎫ ⎛A + B B ⎫⎪ ⎪⎪ ⎝O B ⎭ ⎝O B ⎭ ⎝ B B ⎭ 因为 AB = BA ,所以:⎛ E O ⎫ ⎛A + B B ⎫ = ⎛A + B B ⎫ .B -A - ⎪ B ⎪ O- ⎪B B A B ⎝ 于是,有:⎭ ⎝ ⎭ ⎝ ⎭r a n k ( A ) + r a n k ( B )= r a n k⎛A + B B ⎫≥ r a n k ⎛A + B B ⎫B ⎪⎝ B ⎭ ⎝ ⎪O-A B ⎭即:r a n k ( A + B )得证.≥ r a n k ( A + B ) + r a n k ( A B ) .≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B ) .例 3.5.3:设 A 是n 阶方阵,且r ( A ) = r ( A 2 ,证明:对任意自然数k ,有r ( A k ) = r ( A )⎛A 2O ⎫证:构造分块矩阵 O A 2 ⎪,由 Frobenius 不等式: 2 2 2 ⎛A O ⎫ ⎛A 2 -A 3 ⎫ ⎛O -A 3 ⎫ 3 r ( A )+r( A ) ≤ r ⎪ = r A A 2 A O ⎪ = r A O ⎪ = r ( A ) + r ( A ) . 由:r ( A ) = r ( A 2 ) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭所以,r ( A3 ) = r ( A 2 * A )≤ r ( A2 ) .故: r(A 2 ) = r ( A 3 .由此可推得:r ( A3) = r ( A 4) , r ( A4) = r ( A5 ) , .故:对任意自然数k , 有:r ( A k ) = r ( A ) .3.6 综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例 3.6.1 [6] :(特征多项式的降阶定理)设 A 是m ⨯n 矩阵, B 是n ⨯ m 矩阵. 证明: AB 的特征多项式f A B ( ) 与 BA 的特征多项式f B A( ) 有如下的关系:nm1 2 s证:先要把上式改写为:n f () =m f () .A BB AnE -m A B =mEE 1 Bn - B A .用构造法,设 ≠ 0 ,令: H =n.A E m⎛1 ⎫ ⎛E 1 B ⎫对 ⎛E n 0⎪ ⎫ E n B ⎪= n ⎪ ⎝ -A E⎪⎪ 1 ⎪ 两边取行列式得: n ⎭ A E⎝ m ⎭ 0 E - ⎝A B ⎪⎭ H = E -1 A B = 1 m E - A B .⎛E 1 B ⎫ ⎛E nm 0 ⎫⎛ 1( ) m1 B ⎫ 再对 n ⎪ -A E ⎪ E - B A ⎪ 两边取行列式得: ⎪ ⎪ = n⎪⎝ A E m ⎭⎝ n ⎭ ⎝ H = E -0 1B A = E m ⎭ 1 n E - B A .故: 1nE n- B A =1Em mn- A B() nmE n - B A = nE m - A B .上述等式是假设了 ≠ 0 ,但是两边均为的n + m 次多项式,有无穷多个值使它们成立(0)≠ ,从而一定是恒等式,即证.这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用. 例 3.6.2 [6] :设 A 为m ⨯ n 矩阵, B 为n ⨯ m 矩阵,证明: AB 与 BA 有相同的非零特征值.证:由定理:m E - B A = n E - A B .设 E m- A B = m -s (- ) ( - ) ( - ) ,其中12 m ≠么有:0 ,即 AB 有s 个非零特征值:1, 2, , s , 由上面两式,那nE - B A = ( - 1) ( - ) 2 (- )n- s s即证 BA 也只有s 个非零特征值:1, 2, , s .m∑ 例 3.6.3 [6] :设 A 、 B 分别是m ⨯n 和n ⨯ m 矩阵,证明:t r A B = t r B A .解:由上例知,若E - A B = m -s ( - a ) ( - a )m1s其中a 1a 2 a s ≠ 0. 则 AB 的全部特征值为1 = a 1, , s= a s , s +1= = m = 0 ,且:E - B A = n -s ( - a ) ( - a ) .n1s即 BA 的全部特征值为:1 = a 1,2 = a2, ,s +1= = n = 0 .从而 t r A B =sa ii=1=t r B A .可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1] 上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982. [2] 北京大学. 高等代数{M}. 高等教育出版社, 1998.[3] 高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. ft 西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154. [6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7] 王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8] 张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. ft东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所,2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

矩阵的分块

矩阵的分块
目录 上页 下页 返回 结束
二、分块矩阵的运算
1、加法
设 A, B 是两个 m n 矩阵,对它们
用同样的分法分块:
A11 A A s1 A1r B11 , B B Asr s1 B1r Bsr
目录 上页 下页 返回 结束

A2 B2
A1 O A2 (2) 准对角矩阵 A 可逆 O As
A1 B1 O A2 B2 . AB O As BS
Ai 0,i 1, , s Ai 可逆,i 0, C B
设逆阵
∴ D 可逆.
1
X 11 X 12 , D X 21 X 22
目录
上页
下页
返回
结束
于是 即

A 0 X 11 X 12 Ek 0 , C B X 21 X 22 0 Er
0 . 1 B
目录 上页 下页 返回 结束
三、准对角矩阵
A1 O A2 形式如 A , O As
定义
的分块矩阵,其中 Ai 为 ni 阶方阵 ( i 1,2, , s ), 称为准对角矩阵.
目录
上页
下页
返回
结束
性质
其中子块 Aij与 Bij 为同型矩阵,则 A11 B11 A1r B1r A B . A B Asr Bsr s1 s1
目录 上页 下页 返回 结束
2、数量乘法
A11 A1r 设分块矩阵 A , P , 则 A A sr s1

分块矩阵应用

分块矩阵应用

例如
A11 A = A 21 A 31
1 3
A12 A 22 A 32
A13 A 23 A 33
A 32 A 22 A12 A 33 A 23 A13
A14 A 24 A 34
A 34 A 24 = B1 A14
A 31 R ← R → A → A 21 A 11
(2)分块矩阵的某行左乘某矩阵 ,表示为 i。需要 )分块矩阵的某行左乘某矩阵P,表示为PR 注意的是矩阵P的列数要等于R 的子块行数。 注意的是矩阵P的列数要等于Ri的子块行数。 的列数要等于 (3)分块矩阵的某列右乘某矩阵 表示为 jQ )分块矩阵的某列右乘某矩阵Q, 表示为C (4)分块矩阵的的某行的对应子块左乘某矩阵加到分 ) 块矩阵的另一行对应的子块上, 表示为R 块矩阵的另一行对应的子块上 表示为 i+PRj (5)分块矩阵的的某列的对应子块右乘某矩阵加到分 ) 块矩阵的另一列对应的子块上, 表示为C 块矩阵的另一列对应的子块上 表示为 i + CjQ
E1 L 0 E = L 0 L 0
L 0 L 0 L 0 O L L L L L L Ei L 0 L 0 L L O L L L L 0 L Ej L 0 L L L L O L L 0 L 0 L Et
进行一次分块矩阵初等变换得到的分块矩阵称为 分块初等矩阵 以下我们用二阶分块初等矩阵来定义这些分块初等矩阵
A12 + A14Q A13 A 22 + A 24Q A 23 A 32 + A 34Q A 33
A14 A 24 = B 6 A 34
Q的列数等于第二列子块的列数,行数为第四列子块的列数 的列数等于第二列子块的列数, 的列数等于第二列子块的列数

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。

而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。

本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。

【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式目录1引言 (2)2矩阵分块的定义和性质 (2)2.1 矩阵分块的定义 (2)2.2 分块矩阵的运算 (2)2.3 分块矩阵的初等变换 (3)2.4 n阶准对角矩阵的性质 (3)3分块矩阵在高等代数中的应用 (4)3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4)3.2 利用分块矩阵计算行列式 (7)3.3 分块矩阵在求逆矩阵方面的应用 (11)3.4 分块矩阵在解线性方程组方面的应用 (16)4总结 (19)参考文献 (20)1 引言矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。

在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。

比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。

利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。

本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。

矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

分块矩阵的原理和应用

分块矩阵的原理和应用

分块矩阵的原理和应用1. 原理分块矩阵是一种特殊的矩阵结构,将大型矩阵分割成更小的块状矩阵,以便进行更高效的运算和存储。

分块矩阵的原理主要包括以下几个方面:1.1 分块矩阵的定义分块矩阵由多个块状子矩阵组成,每个子矩阵都是相对较小的矩阵。

这些子矩阵可以是任意维度的矩阵,但通常都是方阵。

分块矩阵的维度取决于它所包含的子矩阵的维度和排列方式。

1.2 分块矩阵的运算分块矩阵可以进行各种矩阵运算,例如加法、减法和乘法等。

在进行这些运算时,可以利用分块矩阵的特殊结构,将运算过程分解为对各个子矩阵的运算,从而提高计算效率。

1.3 分块矩阵的存储分块矩阵的存储方式也与普通矩阵存储方式有所不同。

在分块矩阵中,每个子矩阵都被存储在一个相邻的内存块中,而各个子矩阵之间的存储空间可以是非连续的。

这种存储方式可以提高数据的局部性,进而提高计算效率。

2. 应用分块矩阵在科学计算和工程领域有广泛的应用,以下列举了一些常见的应用领域:2.1 计算机图形学在计算机图形学中,分块矩阵常用于表示和处理三维图形中的几何变换矩阵。

通过分块矩阵的运算,可以实现旋转、缩放和平移等常见的几何变换操作。

2.2 信号处理在信号处理中,分块矩阵常用于表示和处理信号的频谱信息。

通过分块矩阵的乘法运算,可以实现信号的卷积和相关等基本操作,进而实现滤波和频谱分析等应用。

2.3 优化算法在优化算法中,分块矩阵常用于表示优化问题的约束矩阵。

通过分块矩阵的运算,可以将大规模的优化问题分解为小规模的子问题,从而提高求解效率。

2.4 数据压缩在数据压缩领域,分块矩阵常用于表示和处理图像和视频数据。

通过分块矩阵的变换和压缩算法,可以实现图像和视频数据的无损或有损压缩,从而减小存储空间和传输带宽的需求。

3. 总结分块矩阵作为一种特殊的矩阵结构,在科学计算和工程领域有着广泛的应用。

它的原理包括定义、运算和存储等方面,通过合理利用分块矩阵的结构,可以提高计算效率和存储效率。

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其运用摘要分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。

对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。

有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。

本文先介绍了分块矩阵的概念、运算,几类特殊的分块矩阵,讨论了分块矩阵的初等变换,接着介绍了分块初等矩阵及其性质,最后分类举例说明了分块矩阵在高等代数中的一些应用,包括在在行列式计算中的应用,在证明矩阵秩的问题中的应用,在矩阵求逆问题中的应用,在解线性方程组问题中的应用,在线性相关性及矩阵分解中的应用,在特征值问题中的应用,在相似与合同问题中的应用以及在其他问题中的应用等。

大量的例体现了矩阵分块法的基本思想,说明了应用分块矩阵可以使高等代数中的很多计算与证明问题简单化,所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。

关键词矩阵分块矩阵初等变换应用Block Matrix and its ApplicationAbstract:Matrix is an important concept in high algebra,it's often used to deal with high order matrix and it's an instrument of math in many fields.Dividing matrix in a proper way can turn the operation of high order matrix into the operation of a low order matrix.At the same time,it makes the structure of the original matrix look simple and clear,so it can simplify the steps of the operation a lot or bring the convenience for the theory derivation of matrix.A lot of math problems solved or proved by using block matrix appears concise.At the beginning,this paper introduces the concepts and operations of block matrix and some special kinds of block matrix,then,it discusses the elementary transformation of block matrix and introduces the elementary block matrix and it's natures.At last,it explains the use of block matrix in high algebra by making examples in several kinds,including the use in the calculation of determinant,the testify of the problem of the rank of matrix,the answer of the inverse of matrix,the answer of system of linear equations,the linear correlation and the dividing of matrix,the problem of the eigenvalue,the similar matrix and Contract matrix and so on.A lot of example shows the basic theory of block matrix,It shows that using block matrix can make the calculation and the testify in high algebra easier.It is necessary that we must learn and analyse and grasp the skill of block matrix which is an important concept in high algebra.Key words: matrix block matrix elementary transformation application目录1前言 (1)2分块矩阵 (1)2.1分块矩阵的定义 (1)2.2分块矩阵的运算 (2)2.2.1加法 (2)2.2.2数乘 (2)2.2.3乘法 (2)2.2.4转置 (4)2.3两种特殊的分块矩阵 (4)2.3.1分块对角矩阵 (4)2.3.2分块上(下)三角形矩阵 (5)2.4两种常见的分块方法 (6)2.5分块矩阵的初等变换 (7)2.6分块初等矩阵及其性质 (7)3分块矩阵的应用 (8)3.1在行列式计算中的应用 (9)3.2在证明矩阵秩的问题中的应用 (17)3.3在逆矩阵问题中的应用 (25)3.3.1解线性方程组法 (26)3.3.2初等变换法 (27)3.3.3三角分解法 (29)3.4在解线性方程组问题中的应用 (30)3.4.1齐次线性方程组 (30)3.4.2非齐次线性方程组 (31)3.5在线性相关性及矩阵分解中的应用 (34)3.5.1关于矩阵列(行)向量的线性相关性 (34)3.5.2矩阵的分解 (34)3.6在特征值问题中的应用 (35)3.7分块矩阵在相似问题中的应用 (37)3.8分块矩阵在合同问题中的应用 (38)3.9分块矩阵在矩阵分解中的应用 (40)3.10分块矩阵的其他应用 (41)4结束语 (42)参考文献 (43)致谢 (44)1 前言矩阵作为重要的数学工具之一,有极其实用的价值。

矩阵分块方法的应用

矩阵分块方法的应用
证明 fA—E E × (2)+ (1)
\ o
所 以 r(A + B)≤ r(A)+ r(B).
命题 4 设 A 为 S× m 阵 ,B 为 m × n 阵 , 且 E— E ,则
收 稿 日期 :2008— 02— 28 基 金项 目:苏 州 科 技 大 学 重点 学 科基 金 资 助 .
r(AB )+ r(BC)≤ r(B)+ r( BC).
证( 明 A三【c ) c) A×(1)+(2)
命题 10 设
T 一( 三), 一( 三),
A,B,D 可逆 ,则
一 I—D一 cA一,D一 J,


1_
,B — BC 、
t A — E I \ A
— A 2
(E — A )× (2)+ (1)
A。= E ∞ r(A + E)+ r(A — E)一 ,z.
其 中 E 为 阶单 位矩 阵 .
(A A。 ).
证明 (A言E A E) E × (2)+ (1)
f A + E A — E 、 一 E × (1)+ (2)
命题 8 设 A、B为 阶方 阵 ,则 AB 与 BA 有相
另外 ,
r(三-EA)≤r( ) D
同的特 征 多项式 ,即
I E—AB I— I膳 一BA 1.
所 以 r(C)≤ r(E)十 min{r(A),r(B)},
因 此 , r(AB)≤ min{r(A),r(B)).

r(C)≥ r(A)+ r(B),
命题 9 设 A是 秩 为 r的 x 矩 阵 ,则存 在秩 为 r的 × r矩 阵 B 和秩 为 r的 r x 矩阵 C,使

分块矩阵的性质及其应用

分块矩阵的性质及其应用

分块矩阵的性质及其应用依宇天(吉首大学数学与计算机科学学院,湖南 吉首 416000)摘要:矩阵分块是解决矩阵问题的常用方法,矩阵分块适当可为解决问题带来极大方便。

关键词:分块矩阵、矩阵的分块、矩阵的计算、证明、应用Block matrix and its applicationYi Yu Tian(College of mathematics and computer science, jishou university,jishou hunan,416000)Abstract : Block matrix is a matrix to solve problem of the commonly used methods,block matrix suitable for solve the problem bring great convenience.Keywords: Block matrix, block matrix, matrix calculation, proof, application引言:本文详细、全面论述证明了矩阵的分块在《高等代数》中的应用。

包括用分块矩阵证明矩阵乘积的秩的定理问题,用分块矩阵求逆矩阵问题,用分块矩阵求矩阵的行列式问题,用分块矩阵求矩阵的秩的问题,利用分块矩阵证明一个矩阵是零矩阵的问题。

1.分块矩阵1.1分块矩阵的定义令A 为m ⨯n 矩阵,把A 分成如下形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=st s s t t A A A A A A A A A A 212222111211 其中A ij (i=1、2…S ,j=1、2…t )为m i ⨯n j 矩阵,且m 1+m 2+…+m s =m ,n 1+n 2+…+n t =n ,称其中的每一个小矩阵为A 的一个分块。

1.2分块矩阵的计算 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t A A A A A 1111,=B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡st s t B B B B 1111这里A 、B 的行列数相同,且分法一致,那么⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=+st st s s t t B A B A B A B A 11111111B A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t aA aA aA aA aA 1111.分块矩阵乘法运算复杂一些,但只要做到A 的列的分法与B 的行的分发一致,即设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=rs r s A A A A A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=st s t B B B B B 1111 那么⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=•rt r t i C C C C B A 111。

《矩阵分块法》课件

《矩阵分块法》课件
矩阵分块法的优缺点
矩阵分块法具有降低计算规模、提高计算效率和减少内存 占用的优点,但同时也存在分块方式选择不当可能导致计 算精度下降的缺点。
分块法未来的研究方向
优化分块算法
并行化与分布式计算
针对不同的应用场景,研究更加高效和稳 定的分块算法,以提高计算精度和效率。
利用并行化和分布式计算技术,实现大规 模矩阵分块计算的快速求解,以满足大规 模科学计算和工程应用的需求。
《矩阵分块法》 PPT课件
目录
• 引言 • 矩阵分块法的基本原理 • 矩阵分块法的算法实现 • 矩阵分块法的应用实例 • 矩阵分块法的优化与改进 • 总结与展望
01
CATALOGUE
引言
什么是矩阵分块法
矩阵分块法是一种将大型矩阵分 解为若干个小矩阵的数学方法。
通过将矩阵进行适当的分块,可 以简化计算过程,提高计算效率
03
CATALOGUE
矩阵分块法的算法实现
分块矩阵的存储方式
二维数组
将分块矩阵存储为一个二维数组 ,每个元素代表一个子矩阵。
稀疏矩阵格式
对于稀疏矩阵,可以使用特殊的 存储格式,如COO、CSR等,以 节省存储空间。
分块矩阵的算法步骤
分块
将原始矩阵按照一定的规 则划分为多个子矩阵。
计算子矩阵
对每个子矩阵进行所需的 操作,如求逆、求特征值 等。
简化计算
对于某些特殊类型的矩阵,如稀疏矩阵或结构矩阵,分 块法可以进一步简化计算,提高计算效率。
分块法可以将大型矩阵的特征值问题分解为若干个小矩 阵的特征值问题,简化计算过程。
分块法还可以用于预处理步骤,通过将大型矩阵分解为 小矩阵,可以更好地应用特征值计算的迭代方法。
分块法在图像处理中的应用

矩阵分块在证明中的应用讲解

矩阵分块在证明中的应用讲解
本文将在总结矩阵分块性质的基础上,比较系统的总结讨论矩阵分块在矩阵秩、矩阵存在性问题、矩阵分解、行列式相关问题、矩阵求逆、特征多项式证明方面的应用。
2预备知识
为了深入探讨矩阵分块的性质及其应用,我们有必要回顾一下矩阵分块的相关知识。
2.1定义
用纵线与横线将矩阵 划分成若干较小的矩阵:
其中每个小矩阵 叫做 的一个子块;分成子块的矩阵叫做分块矩阵。这种献...16
致谢...17
1引言
在数学名词中,矩阵(英文名Matrix)是用来表示统计数据等方面的各种有关联的数据。这个定义很好的解释了Matrix代码是制造世界的数学逻辑基础。数学上,矩阵就是方程组的系数及常数所构成的方阵。把它用在解线性方程组上既方便,又直观。例如对于方程组
我们可以构成一个矩阵
【Key Words】block matrixlinear algebrarank of matrixelementary matrix
1引言...1
2预备知识...1
2.1定义...1
2.2矩阵分块的法则...3
2.3矩阵分块的性质及推论...5
3矩阵分块在证明中的应用...9
3.1矩阵分块在秩的证明中的应用...9
为了说明这个方法,下面看一个例子,在矩阵
中, 表示2级单位矩阵,而
, .
在矩阵
中,
在计算 时,把 都看成是由这些小矩阵组成的,即按2级矩阵来运算,于是
,
其中

.
因之,
.
不难验证,直接按4级矩阵乘积的定义来计算,结果是一样的。
以下会看到,矩阵分块有很多方便之处,常常在分块之后,矩阵间相互的关系看得更清楚。用
至于左矩阵行的分法与右矩阵列的分法没有任何要求。本文讨论把矩阵按行向量或列向量分块,在满足上述分块法则条件下,指出它在某些命题中的应用。为此,设

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用矩阵分块(Matrix Partition)是一种将一个大矩阵分割成若干个块或子矩阵的方法。

这种方法在许多数学和工程应用中非常有用,因为它可以简化复杂的矩阵运算,并提供更高效的算法和快速的计算。

矩阵分块的方法具有广泛的应用,包括线性代数、微积分、信号处理、图像处理、统计学、优化等领域。

矩阵分块的方法可以根据不同的目的和要求采用不同的策略和分块方式。

一般来说,矩阵分块的方法分为两种类型:按行分块和按列分块。

按行分块是将矩阵按照横向划分为若干行向量子矩阵,而按列分块则是将矩阵按照纵向划分为若干列向量子矩阵。

除了按行和按列划分外,还可以将矩阵按照主对角线、次对角线、对称轴等方式进行分块。

矩阵分块的方法可以大大简化复杂的矩阵运算,使得问题的求解更加直观和高效。

一种常见的应用是矩阵乘法。

对于两个大型矩阵相乘的情况,采用普通的矩阵乘法算法的计算复杂度很高,但通过将大矩阵分块成若干小块矩阵,可以采用并行计算的方式,提高计算效率。

另一个常见的应用是矩阵求逆。

对于大型矩阵求逆的计算复杂度很高,并且可能出现数值不稳定的问题。

通过将大矩阵分块成若干小块矩阵,可以使用分块逆矩阵的方法来计算整体矩阵的逆矩阵,从而提高计算的稳定性和效率。

矩阵分块的方法还广泛应用于图像处理和信号处理领域。

在这些领域中,矩阵表示图像或信号的数据,通过将大矩阵分块为若干小块,可以对局部区域进行处理,从而实现对整体数据的处理和分析。

例如,对图像进行滤波操作时,可以将图像分为若干小块,分别进行滤波处理,然后将处理后的小块矩阵合并成一个大矩阵,从而得到滤波后的图像。

此外,矩阵分块的方法还可以应用于线性代数的求解和优化问题。

例如,在解线性方程组时,可以将系数矩阵和右侧向量分块,从而将问题分解为多个小规模的子问题,通过求解这些子问题,最终获得整个线性方程组的解。

类似地,在优化问题中,可以通过将大矩阵分块为若干小块,将复杂的优化问题分解为多个简单的子问题,从而更高效地求解问题。

第四节 分块矩阵

第四节 分块矩阵
A14 A4 = O O 52 O 54 2 4 , , ⇒ A1 = 4 而 A1 = A2 O 52 O
1 0 24 A2 4 = 24 = 6 4 1 2 0 , 4 2
上页 下页 返回 结束
3 4 4 −3 A= 0 0 0 0
上页 下页 返回 结束
A1n A1 , n 4) 若 A = O O ; 则A = As n As
As −1 A1 , 则 A −1 = N 5) 若 A = N ; A −1 A 1 s
O A B∗
上页 下页 返回 结束
例6 设
0 0 625 0 0 625 0 0 3 A1 O A4 = 4 , A = 2 0 ., 解 令 A= , 其中 A1 = 4 0−3 0 2 162 0 2 O A2 0 0 64 16 A18 O 8 8 8 8 8 8 16 A = , A = A1 A2 = A1 A2 = 10 O A2 8
0 0 0 0 1 2 0 0 1 2 0 0 3 0 0 2 1 0 0 1 35
A
B
A
0 0 0 1 0 0 3 都是分块对角阵. 都是分块对角 分块对角阵 0 0 1 0 2 2 0
B
上页
下页
返回
结束
分块对角矩阵具有下述性质: 分块对角矩阵具有下述性质: 1) A = A1 A2 L As ;
第二章 矩阵及其运算
第四节 分块矩阵
zxs
什么是分块矩阵 分块矩阵的运算 基本应用
上页
下页

分块矩阵的定义及应用

分块矩阵的定义及应用

分块矩阵的定义及应用分块矩阵,也称为块矩阵或子矩阵,是由多个小矩阵按照一定规则排列所组成的矩阵。

它的特点是矩阵中的各个元素被分成了若干个块,每个块是一个分离的矩阵。

分块矩阵的形式可以写为:A = [A11 A12 (1)A21 A22 (2)... ... ... ...An1 An2 ... Anm]其中,A11、A12、...、A1m是行向量组成的矩阵;A21、A22、...、A2m是行向量组成的矩阵;...;An1、An2、...、Anm是行向量组成的矩阵。

每一个Aij 都表示一个分块矩阵,大小及形状可以不同。

分块矩阵的应用非常广泛,主要体现在以下几个方面:1. 线性方程组求解:分块矩阵可以用于解决大规模线性方程组的求解问题。

通过将系数矩阵分块,可以降低计算复杂度,并且可以通过并行计算来提高求解效率。

2. 矩阵乘法加速:分块矩阵可以用于加速矩阵乘法运算。

将矩阵分块后,可以利用并行计算的优势,同时进行多个小矩阵的乘法运算,从而提高运算效率。

3. 特征值计算:分块矩阵可以用于求解大型矩阵的特征值和特征向量。

通过分块矩阵的分解,可以降低计算复杂度,并且可以采用迭代方法进行求解,从而提高求解效率。

4. 矩阵的逆和广义逆:分块矩阵可以用于求解矩阵的逆和广义逆。

通过分块矩阵的分解,可以减小计算量,并且可以采用迭代方法进行求解,从而提高求解效率。

5. 随机矩阵的分析:分块矩阵可以用于随机矩阵的分析。

通过分块矩阵的分解,可以对矩阵的结构和随机性进行分析,从而研究矩阵的统计特性和性质。

除了上述应用之外,分块矩阵还可以用于矩阵的分解、正交化、正则化等问题的求解。

分块矩阵的应用不仅仅局限于数学领域,也被广泛应用于工程、物理、计算机科学等领域。

总之,分块矩阵是将大型矩阵拆分为多个小矩阵,通过分块的方式来简化复杂的计算问题。

它在线性方程组求解、矩阵乘法加速、特征值计算、矩阵逆和广义逆求解、随机矩阵分析等方面有着广泛的应用。

矩阵分块求行列式

矩阵分块求行列式

矩阵分块求行列式摘要:一、矩阵分块的概念及应用二、分块矩阵的行列式求法1.三阶矩阵的分块求行列式方法2.高阶矩阵的分块求行列式方法3.分块矩阵行列式的性质三、应用实例与注意事项正文:一、矩阵分块的概念及应用在矩阵运算中,我们常常会遇到一些复杂的矩阵,难以直接求得其行列式。

此时,我们可以通过矩阵分块的方法,将复杂的矩阵分解为若干个较小的矩阵,从而简化问题。

矩阵分块就是将一个矩阵按照一定的规则划分为若干个矩阵块,这些矩阵块可以是连续的行、列或元素。

矩阵分块的目的是为了便于计算矩阵的行列式,同时它也是矩阵运算中一种重要的技巧。

二、分块矩阵的行列式求法1.三阶矩阵的分块求行列式方法对于三阶矩阵,我们可以通过如下方法进行分块求行列式:设矩阵A 为:```B CD EF G```我们可以将其分解为两个二阶矩阵的行列式之积:```A = (B C)(F G) - (D E)(F G)```其中,(B C)(F G) 表示矩阵B 和C 的行列式之积,(D E)(F G) 表示矩阵D 和E 的行列式之积。

2.高阶矩阵的分块求行列式方法对于高阶矩阵,我们可以采用类似的方法进行分块求行列式。

假设矩阵A 是一个m 阶矩阵,我们可以将其分解为如下形式:```A = (A11 A12...A1n)(A21 A22...A2n)...(An1 An2...Ann)```其中,Aij 表示矩阵A 的第i 行第j 列元素。

我们可以将矩阵A 分解为如下形式:```A = (A11 A21...An1) (A12 A22...An2)...(A1n A2n...Ann)```然后,我们可以将每一行或每一列的矩阵分解为二阶矩阵,从而求得原矩阵A 的行列式。

3.分块矩阵行列式的性质在分块矩阵求行列式的过程中,我们需要注意一些性质。

首先,如果分块之后至少有一块为零矩阵,那么原矩阵的行列式为零。

其次,分块矩阵的行列式等于各个分块矩阵行列式的乘积。

浅谈矩阵分块的技巧与应用

浅谈矩阵分块的技巧与应用

浅谈矩阵分块的技巧与应用作者:曾丹
来源:《新校园·上旬刊》2015年第02期
摘要:矩阵是高等代数中的一项重要内容,适当选择分块技巧,应用矩阵的分块思想简化计算过程,实现矩阵分解、求秩、线性相关性关系的应用。

关键词:矩阵;应用;技巧;分块
一、矩阵分块的相关定理简介
矩阵分块是指将一个行列数较多的大型矩阵,分别按照横竖分割成一些小的子矩阵,然后将每一个小矩阵看作一个元素。

总之,矩阵分块是解决高等代数问题的一个不可缺少的方法,无论是矩阵分解、求矩阵秩,还是研究矩阵列(行)间的线性相关性,都可以充分体现矩阵分块思想的优越性。

教师要引导学生学会分析矩阵中的相关问题,探索有效方法,提升自身的数学素养。

参考文献:
[1]陈文华.分块矩阵的初等变换及其应用[J].大理学院学报,2009(8):7-11.
[2]秦小二.分块矩阵的几种用法[J].考试周刊,2007(41):68-69.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此 , 任意 的正交 矩 阵 A, 对
l ( l≤ f (A1 I I A)I i f 中 )l
及 任意 的酉矩 阵 V
l ( l l ( l I V)l≤ l D l
由例 l西( 。 ( ≤ 西 f )。 (Af —) , A) A) ∑ l I “ (A 孙 。
(A + ) ≥ 以 吉+ 亏; a 专
(A+ ) ≤ 以 。 a 。 + 。 .
以类推的方法得到阿达玛积的例子 ,
( 。 ) ( 。 ( ・ ≤ ( A X y 。 A B) X y) X’ 一X)。( B一 . y)
3 正 线性 映射
设A是 矩阵, 有谱 正规 且 分解A一∑. ,其中 = ( 是A的 征值, 应 I 特 l ‘ 是对 的 征向 , 特 量) 则
(AI ) 西( ) (Al) ( ) I n ’ ≥ 。 A 。 1 。 。 A
进 而
10 6
辽 宁 师 范 大 学 学报 ( 自然科 学版 )
第3 4卷
(A I ≥ ( (A 1 ( ) I A) I A) )
由定 理
l ( )l ≤ I ( Al )Il ( AJ ) 1 A 1 I 1 。 1 1 I n 。
这样 , 对任 何 酉不变 范数 f I , I・ l 叫
I ; ≤ I [ ∑ BB } I ∑A B l l J ∑A A i " J
当 k一 1时 , 就是 C u h - c waz 数不 等式 a c yS h r 范 ≥ B I ≤ I A Il l I l A, l l A lI B 1 B
应 用 8 设 A ,×,正半定 矩 阵 , 是 ×,矩阵 , 得 X 的列分解 是 由 构 成的 ,= 12 . , 是 l l X l 使 i , '・ .



I I
A 示 矩阵 A 的 M0 r- e r s 逆 , 得 表 0eP n0 e 使
M 一


[ A[ ]‘ 。 A ] 。 = 。 。 o 警 [ B
这 个积 对 Hamian矩 阵 A 和 B r tr i
A 。B。≥ ( 。B) A 。
应 用 7 对任 意 的矩 阵 A, 的奇 异 值分 解 A = U 它 DV( 中 U, 是 酉 阵 , 是 i 半 定 的对 角 阵 , 其 V D F _
收 稿 日期 :0 10 -0 2 1 -21
作者简介 : 高振兴( 9 9 , , 1 5一) 男 辽宁锦州人 , 渤海船舶 职业学 院副教授.
18 5
辽 宁 师 范 大 学 学报 ( 自然科 学版 )
第3 4卷
( + z z)( A ( B = ) B B
对 任 意的酉 不变 范数 I I有 I・ I

I I≤ I l A+ l l l A+ l l zB l
应 用 3 设 ∈ C, ≥ 0 ( A , 一 1 2 …忌 , 由[ , ] , , )则 1P ,
Ie( A + A +…+ t 22 d 2 A1 I dt 1 I。 l : )≤ e( + l +…+ f I A 2A A)
J n 2 1 u. 01
文 章 编 号 :001 3 (0 10 -1 70 10 —75 2 1 )20 5 —4
矩阵的分块与应用
高振 兴
( 海 船舶 职业 学 院 基 础 部 , 宁 葫 芦 岛 1 50 ) 渤 辽 2 0 0
摘 要 : 针对矩阵的分块技巧在实际计算中的应用 , 运用矩阵的和与积 的计算结果 , 分析讨 论了若 干半正定矩阵 的线
关 键 词 : 块 矩 阵 ; 半 定 矩 阵 ; 数 ; 阵 不 等 式 分 正 范 矩
中 图分 类 号 : 5 . 1 01 1 2 文献标识码 : A
1 导 言
分块 矩阵 在矩 阵分 析 中起 着工具 的作 用 , 而正 半定 矩 阵 的阿达 玛 积 与 和 的定 义在 矩 阵分 析 的诸 多 问题 中 , 演着基 础 的 、 扮 重要 的角色. 本文 是通 过具 体 的实例 , 示矩 阵 的分块 技巧 及在矩 阵不 等式 中 的 展
A 一 ( A) J A。 T 1
( ) 暑 )[ : 。 吕 ) = 。 . ( ( .] ≥
第 2期
高振 兴 : 矩 阵的 分块 与 应 用
19 5
对任 意 的矩阵 A 和相应 大小 的 B, 由和 的结论 , 我们 有
[ : c 。] f 三 = :。 A ]耋 : [ +‘
性合行式性,明L李函 ,意,, ) (。(( L的 组的 的质证了是双 类 任的 L ≥ I) ,,类中 列 这 数 对 ∈( 。, l Ac : B ≤ ))
元 素 是 行 列 式 、 、 不 变 范数 . 迹 酉 以此 定 理 为 工 具 , 出 了一 些 矩 阵 的 分 块方 法 在 矩 阵 不 等 式 及 线 性 映 射 中 的应 用 . 给
【 … [B B。 } ‘ nJ 一 ≥
因为 是 正的线 性 的 , 由和 的结论
: () 卜 )[A 西 )。 z I‘ J ) (J J 【‘ l 。 ( 1 【 ’ r A /
O( i U u 一
由 Shr c u 补得
、,
Pr v d n e RI 1 6 4 8 - 6 o i e c , 9 0, 0: 7 1 9;
类 似地 , AA 一 由
__
\ ) A ) 。(D ) (A (A 和西 ( 。 和 ’/ ’ ( A , 西 。 ( \ 2
A 一 设 西是正 规 的 , 即 ( = I D ,

西( ’ )≥ ( ) A A A
( ) A
特别 的 , 如果 A 是 Hemt n的 , r i a
【 , ] ∑ X XAX 4 , J

且 设 口 +口 + … + : t一 1 其 中每个 口 ≥ 0 应 用和 的结论 , , , 有



∑ } aJ ≥ 。




∑ ;  ̄ X AX
由 S h r 得 cu 补
上 ^

( ∑a ) X
∑t =I t 铭 . II A。 =∑ l ( 任意 数a设 砧 对 的实 ) 是一 线 射, 果A e tn 则 A ) t, ‘ 个正 性映 如 是Hr i , ( ma
= ( 。 A) .
注意到, 对任意的 .∈ C 口∈ r ,] B≥ 0 = I , O1 和
下 面 的定理 是我 们讨论 问题 的 主要工 具 : .
定 理 设 L是 李 双 函数 类 , 任意 的 ,∈ L 对

2 应 用 实 例
。I f C f ( ( ) B A
类 L中 的元素 是行 列式 、 、 不变 范数 . 迹 酉
我们 应用 和 与积 的 结 论 , 展 示 某 些 矩 阵 不 等 式 的实 例 , 和 , 达 玛 积 , 列 式 , 不 变 范 数 , 来 ( 阿 行 酉 C u h - c waz a c yS h r 不等 式等 ) 这 些例子 和结 论散 落在 许多 文献 中 , 用这 些 结果 的作者 推 进 了不 等式 的 , 使
发展 .
应用 1 设 A, C是 阶复c≥0 B J
则 有
( ) + C ≥± ( + B) 1A B
( ) oC≥ 士 ( 2 A B -B)
应 用结 论 ()和 () 可 以完成 证 明. 1 2就
应 用 2 设 A, B≥ 0 则对 任意 ∈ C, , 由和 的结论
应用. 本 文 我们要 反 复用到 下 面 2个结 论 :
()和 的结论 : ≥ 0 B≥ 0 1 A , A + B≥ 0 ;
( )积 的结论 : ≥ 0 B≥ O A 。 2 A , B≥ 0 . 其 中 A ≥ 0表 示矩 阵 A 是 正半定 的 , 。 A B= ( 。 是 矩阵 A 与 B 的阿 达玛 积. 口 b)
它 的酉 不变 范数及 × ,矩 阵 A、 l B
。。 , ] ≥
l - ≤ lI I I IA。 + I 。 l I 4BI A J lAI l 专II I l 古 + B B l
≤-(lAf I -IA + I。 ) 去 I Bl I I … - +I 4 I I B
由和 的相关 结果

 ̄] i一 A i
应 用 4 设 A B 是 m 矩 阵 , = 1 2 … , 和 × i , , 则
[c [:;≥ A 一; 三 。 ; 会 盏 ], ] B
由和 的结论 , 有
lA B≥ 【 三 ∑ 至 蔓 。 ∑] A ; B 兰 : B J


● . I
西( )≥ ( 。 A A)
( )≥ ( 1 A)
() 2
如果 A是 正定 的

( )是 Ka i n 在 C。代 数 中 的推 广 . 2 ds [ o 当

参考 文献 :
是 非

[3 H T A R M txa a s [ ] e Y r : pi e- e a ,9 7 2 0 1 B A I . ar nl i M' N w ok S r g r r g 1 9 :7 . i y s . 异 n V l [ 3 H R . h ram r rd c P o e ig f y oi i A p e te a c [ ] J H S N C R A e Ma O 2 O N R A T eHa r adP o ut rce n s mp s p l dMah m t s R . O N O . m r t S C d an i i h 时 d o S
相关文档
最新文档