八年级复习幂的运算知识点

合集下载

八年级数学上人教版《幂的乘方》课堂笔记

八年级数学上人教版《幂的乘方》课堂笔记

《幂的乘方》课堂笔记
一、知识点梳理
1.幂的乘方的意义:底数不变,指数相乘。

2.幂的乘方的运算法则:am×an=a(m+n)。

3.幂的乘方的符号规律:奇数个负数相乘为正,偶数个负数相乘
为负。

二、方法总结
1.观察底数和指数的变化,理解幂的乘方的意义。

2.利用运算法则进行计算,注意符号问题。

3.结合实例进行讲解和练习,加深对运算法则的理解和应用。

三、注意事项
1.底数可以是正数、负数或0,但在计算时要注意符号问题。

2.当底数为负数时,要注意幂的奇偶性对结果的影响。

3.要掌握符号规律,避免计算错误。

4.结合实例进行讲解和练习,帮助学生更好地理解和掌握知识。

四、例题解析与课堂练习
1.通过例题的解析,掌握幂的乘方的运算法则及其应用方法。

2.通过课堂练习,加深对幂的乘方的理解,并学会灵活运用运算
法则进行计算。

五、重点与难点解析
1.重点:掌握幂的乘方的运算法则及其应用方法。

2.难点:灵活运用幂的乘方的运算法则进行计算,解决实际问题。

3.解决难点的关键在于理解幂的乘方的意义和符号规律,并多加
练习。

六、课后作业与拓展任务
1.完成课后作业,巩固所学知识。

2.尝试解决一些与幂的乘方相关的实际问题,提高应用能力。

幂运算常用的8个公式初中

幂运算常用的8个公式初中

幂运算常用的8个公式初中好的,以下是为您生成的关于“幂运算常用的8 个公式初中”的文章:咱初中生学数学的时候,幂运算可是个重要的板块!今天就来好好聊聊幂运算常用的 8 个公式。

先来说说同底数幂相乘,公式是:$a^m×a^n = a^{m+n}$。

这就好比咱们排队买冰淇淋,原本有 m 个人在前面排着,又来了 n 个人,那现在一共不就是 m + n 个人在排队嘛。

同底数幂相除,公式为:$a^m÷a^n = a^{m-n}$ 。

这就好像你有 m个糖果,分给小伙伴 n 个,剩下的不就是 m - n 个嘛。

幂的乘方,公式是:$(a^m)^n = a^{mn}$ 。

这个啊,就像是你叠纸飞机,一张纸叠了 m 次,然后把这叠好的 m 层纸又一起叠了 n 次,那总共叠的层数不就是 mn 嘛。

积的乘方,$(ab)^n = a^n b^n$ 。

比如说,咱有 n 个盒子,每个盒子里都有 a 个红球和 b 个蓝球,那红球总数就是 a 的 n 次方,蓝球总数就是 b 的 n 次方。

零指数幂,$a^0 = 1$($a≠0$)。

这就好比你参加比赛,啥都没做也有个基础分 1 ,但前提是你得参赛,也就是 a 不能为 0 。

负整数指数幂,$a^{-p} = \frac{1}{a^p}$ ($a≠0$,p 为正整数)。

这就像你欠了 p 元钱,那你的资产就是负的 p 元,而还钱的时候就得用 1 除以欠的钱数。

还有一个很有趣的,就是完全平方公式:$(a ± b)^2 = a^2 ± 2ab + b^2$ 。

比如说咱们要给一个正方形花园围篱笆,边长是 a 米,如果在一边增加 b 米,那新的面积不就是原来的加上增加的部分嘛。

最后是平方差公式:$(a + b)(a - b) = a^2 - b^2$ 。

这就像你有一块大巧克力,长是 a ,宽是 b ,把它从中间切开,大块的面积减去小块的面积,就是这个公式啦。

初二数学上-幂的运算

初二数学上-幂的运算

幂的运算一、数学家的幽默一名统计学家遇到一位数学家,统计学家调侃数学家说道:你们不是说若X=Y且Y=Z,则X=Z吗!那么想必你若是喜欢一个女孩,那么那个女孩喜欢的男生你也会喜欢罗!?"数学家想了一下反问道:那么你把左手放到一锅一百度的开水中,右手放到一锅零度的冰水里想来也没事吧!因为它们平均不过是五十度而已!"二、幂的运算性质知识要点◆要点1 同底数幂的乘法:a m ·a n =a m +n (m ,n 都是正整数) 可扩展为a m ·a n ·a p =a m+n +p ★说明:幂的底数相同时,才可运用此法则。

◆要点2 幂的乘方与积的乘方(1) 幂的乘方:(a m )n =a mn (m ,n 都是正整数),可推广为()[]mnp p n m a a =(2) 积的乘方:(ab )n =a n b n (n 为正整数),可扩展为(abc )n =a n b n c n易错易混点(1) 将幂的意义与乘法的意义相混淆; (2) 不能正确理解幂的运算性质,而导致错误; (3) 忽略零指数幂、负整数指数幂的规定中底数不等为零的条件。

◆要点3 同底数幂的除法a m ÷a n =a m -n (a ≠0,m ,n 都是正整数,并且m >n )◆要点4 零指数与负整数指数的意义(两个规定)(1) 零指数: a 0=1 (a ≠0)(2) 负整数指数:p p aa 1=-(a ≠0,p 是正整数) 即任何一个不等于0的数的-p (p 为正整数)次幂等与这个数的p 次幂的倒数。

也可变形为:pp p a a a ⎪⎭⎫ ⎝⎛==-11 (观察前后幂的底数、指数变化) ★说明:(1)在幂的性质运算中,幂的底数字母a 、b 可以是单项式或多项式,运算法则皆可逆向应用;(2) 零指数幂和负整数指数幂中,底数都不能为0,即a ≠0;(3) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂;(4) 在运算当中,要找准底数(即要符合同底数),如果出现底数互为相反数,或其他不同,则应根据有关理论进行变形,变形要注意指数的奇偶性。

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册

专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数)(2)逆用公式:()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅n n n n abc a b c(n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................3;【题型3】积的乘方运算及逆运算.................................................3;【题型4】幂的混合运算.........................................................4;【题型5】幂的运算的应用.......................................................4;【题型6】直通中考.............................................................5;【题型7】拓展与延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即______.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【变式2】.若25 3 0x y +-=,则432⋅=x y .【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab+=【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224n n a a -的值为()A .4B .16C .64D .192【变式2】已知2232336x x x ++-⋅=,则x =.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n n x x x x x .【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0。

初中数学专题复习资料-----幂的运算性质

初中数学专题复习资料-----幂的运算性质

初中数学专题复习资料-----幂的运算性质【知识梳理】1、知识结构2、知识要点(1)同底数幂相乘,底数不变,指数相加,即 ←→a m+n =a m ·a nnm nma a a +=⋅(2)幂的乘方,底数不变,指数相乘,即←→a mn =(a m )n =(a n )m()mnnm aa=(3)积的乘方,等于每个因式分别乘方,即←→a n b n =(ab)n()nn nb a ab =(4)同底数幂相除,底数不变,指数相减,即 ←→a m-n =a m ÷a n (a ≠0)nm n ma a a -=÷(5)零指数和负指数:规定,(其中a ≠0,p 为正整数)(其中,m 、n 均为整数)10=a ppa a1=-3、中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。

(一)同底数幂的乘法【解题讲解-------基础训练】【例1】 1、(-)2×(-)3= 。

2、(-b )2·(-b )4·(-b)= ,(m+n )5·(n+m )8= 1212。

3、a 16可以写成( ) A .a 8+a 8; B .a 8·a 2 ; C .a 8·a 8 ; D .a 4·a 4。

4、下列计算正确的是( ) A .b 4·b 2=b 8 B .x 3+x 2=x 6 C .a 4+a 2=a 6 D .m 3·m =m 4【解题讲解-------能力提升】【例2】1、下面的计算错误的是( )A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x 2m+2可写成( ) A .2x m+2 Bx 2m +x 2 C .x 2·x m+1 D .x 2m ·x 23、若x ,y 为正整数,且2x ·2y =25,则x ,y 的值有( )对。

初中数学幂的运算性质公式

初中数学幂的运算性质公式

初中数学幂的运算性质公式
幂的运算性质是指在进行幂的运算过程中,幂与幂之间、幂与数之间
可以进行一系列的运算操作,满足一定的规律和公式。

下面将介绍幂数的
运算性质公式,包括幂数的乘积、幂数的积的幂、幂数的幂的乘积、除法、负指数、零指数等各个方面。

一、幂数的乘积:
在幂数的乘积中,如果底数相同,则指数相加。

例如:a^m*a^n=a^(m+n)
二、幂数的积的幂:
在幂数的积的幂中,先对每一个幂数求幂,再把结果相乘。

例如:(a^m*b^n)^p=(a^m)^p*(b^n)^p=a^(m*p)*b^(n*p)
三、幂数的幂的乘积:
在幂数的幂的乘积中,如果底数相同,则指数相乘。

例如:(a^m)^n=a^(m*n)
四、幂数的除法:
在幂数的除法中,如果底数相同,则指数相减。

例如:a^m/a^n=a^(m-n)
五、负指数:
一个数的负指数等于其倒数的正指数。

例如:a^(-m)=1/a^m
六、零指数:
一个非零数的零指数等于1
例如:a^0=1(其中a不等于0)
七、唯一性:
幂运算满足唯一性,即一个数的幂运算结果只有唯一确定的值。

如果
一个数有两个不同的幂运算结果相等,则这两个幂运算结果必定相等。

例如:若a^m=a^n,则m=n
八、法则的运用:
在运用幂运算性质公式时,可以根据需要将多项幂运算结合起来,进
一步简化计算。

以上是初中数学中幂的运算性质公式的一些基本内容。

在实际运用中,还需要综合运用这些公式,灵活应用于解决各种具体问题。

八年级上册数学幂的乘方知识点

八年级上册数学幂的乘方知识点

八年级上册数学幂的乘方知识点稿子一嗨呀,亲爱的小伙伴们!今天咱们来聊聊八年级上册数学里超有趣的幂的乘方知识点哟!啥是幂的乘方呢?简单说就是,一个幂再去做乘方运算。

比如说,(a 的 m 次方)的 n 次方,这就是幂的乘方啦。

那它的运算规则是啥呢?记住咯,底数不变,指数相乘。

就像(a 的 m 次方)的 n 次方等于 a 的(m×n)次方。

来,咱们举个例子。

比如说(2 的 3 次方)的 2 次方,底数 2 不变,指数3×2 = 6,结果就是 2 的 6 次方,也就是 64 哟。

这知识点在做题的时候可有用啦!比如说让你计算(3 的 2 次方)的 3 次方,那就是 3 的 6 次方,等于 729 。

而且哦,幂的乘方还能和同底数幂的乘法、除法结合起来考呢。

这时候可别晕头转向,只要牢记规则,就能轻松应对。

怎么样,是不是觉得幂的乘方也没那么难啦?多做几道题,熟练掌握,数学就能变得超简单哟!稿子二嘿,小伙伴们!咱们又见面啦,今天来唠唠八年级上册数学的幂的乘方。

你想啊,幂的乘方就好像给幂穿上了一层又一层的“魔法外衣”。

比如说(a^m)^n ,这就是幂的乘方。

那这“魔法外衣”怎么穿呢?记住哦,底数 a 可不会变,变的是指数,要把 m 和 n 相乘。

举个好玩的例子,(5^2)^3 ,底数 5 不动,2×3 = 6 ,所以结果就是 5^6 。

幂的乘方用处可大啦!做题的时候,它能帮咱们快速算出复杂的式子。

再比如说,给你个式子(x^3)^4 × x^5 ,先算幂的乘方,得到x^12 × x^5 ,然后同底数幂相乘,底数不变指数相加,就是x^17 。

还有哦,如果遇到像(2^4)^(1/2)这样的,也别害怕。

指数4×(1/2)= 2 ,结果就是 2^2 = 4 。

学会了幂的乘方,数学的世界就像打开了一扇新的大门,是不是很有趣呀?加油多练习,数学会越来越好玩的!。

八年级数学(上)14.1幂的运算

八年级数学(上)14.1幂的运算

八年级数学(上)14.1幂的运算知识网络重难突破知识点一整式乘法幂的运算性质(基础):●a m·a n=a m+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

3)乘数a可以看做有理数、单项式或多项式(整体思想)。

4)如果底数互为相反数时可先变成同底后再运算。

典例1(2019·新蔡县期末)若2x=5,2y=3,则22x+y=_____.典例2(2017·洪泽县期中)已知,则x的值为____________.典例3(2018·台州市期末)已知,则n的值是________________.●(a m)n=a mn (m、n为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

典例1(2018·长春市期末)若,,则的值为_____.典例2(2019·中山市期末)已知m+2n+2=0,则2m•4n的值为_____.典例3(2019·襄樊市期末)若,则的值是_______.●(ab)n=a n b n(n为正整数)积的乘方等于各因式分别乘方,再把所得的幂相乘.典例1(2019·富阳市期末)(-2)2018×(-)2019 =____________。

典例2(2019·临潼区期末)若,,则__________.典例3(2017·成都市期末)(﹣2ab2)3=_____.●a m ÷a n=a m-n (a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。

人教版数学八年级上册29幂的运算(基础)知识讲解

人教版数学八年级上册29幂的运算(基础)知识讲解

幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】解:(1)原式234944++==. (2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数). 【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、(2016春•湘潭期末)已知a x =3,a y =2,求a x +2y 的值.【思路点拨】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案. 【答案与解析】 解:∵a x =3,a y =2,∴a x +2y =a x ×a 2y =3×22=12.【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b x x x x x +===⨯=⨯=g g .【变式2】已知84=m ,85=n ,求328+m n的值.【答案】 解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555. 【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.。

幂的运算总结及方法归纳

幂的运算总结及方法归纳

幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用n m n m a a a +=•(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n aa 1=-(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。

◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。

换句话说,将底数看作是一个“整体”即可。

◆注意上述各式的逆向应用。

如计算20052004425.0⨯,可先逆用同底数幂的乘法法则将20054写成442004⨯,再逆用积的乘方法则计算11)425.0(425.02004200420042004==⨯=⨯,由此不难得到结果为1。

◆通过对式子的变形,进一步领会转化的数学思想方法。

如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。

◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。

一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例题:例1:计算列下列各题(1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅- 简单练习: 一、选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。

【重点梳理】-初二数学-幂的运算

【重点梳理】-初二数学-幂的运算

核心知识点一:同底数幂的乘法同底数幂相乘,底数不变,指数相加,即m n m n a a a +⋅=(m ,n 都是正整数).推导过程:一般地,对于任意底数a 与任意正整数m ,n ,核心知识点二:同底数幂的除法同底数幂相除,底数不变,指数相减,即m n m n a a a -÷=(m ,n 都是正整数,并且m n >).推导过程:一般地,对于任意底数a 与任意正整数m ,n ,幂的运算の重点梳理一、基础知识梳理核心知识点三:幂的乘方幂的乘方,底数不变,指数相乘,即()nm mn a a =(m ,n 都是正整数). 法则的推导过程:一般地,对于任意底数a 与任意正整数m ,n ,核心知识点四:积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即()n n n ab a b =(n 为正整数)法则的推导过程:一般地,对于任意底数a 、b 与任意正整数n ,核心知识点五:0次幂 01(0)a a =≠.核心知识点六:负整指数幂一般地,当n 是正整数时,1(0)n na a a -=≠.()m n a n m m nm m m m m m mn a a a a a a +++=⋅⋅⋅==个个()()()()n ab n n a n b n n ab ab ab ab a a a b b ba b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=个个个1、同底数幂的乘法:m n m n a a a +⋅=(m ,n 都是正整数).2、同底数幂的除法:m n m n a a a -÷=(m ,n 都是正整数m >n ).3、幂的乘方:()nm mn a a =(m ,n 都是正整数)4、积的乘方:()nn n ab a b =(m ,n 都是正整数)5、0次幂:01a =(0a ≠)6、负整指数幂:一般地,当n 是正整数时,1(0)n n a a a -=≠.二、知识体系梳理。

幂的运算知识点及考点复习总结

幂的运算知识点及考点复习总结
2 比较 3
55
).
、4
44
、5
33
的大小.
分析:这类问题通常都是将参加比较的两个数转化为底数相同的或指数相同的形式,根据 观察,本体用作商法比较大小。 例题 4: 3
2001
的个位是:
变式练习:求 7
2005
32007 的末位数字.
分析: 逆用同底数幂的乘法及积的乘方的法则解答此题
类型三
跟踪练习: 用简便方法计算: (1) (
5 1999 3 2000 ) .(2 ) ; 13 5
1 2 3 3 (2) ( ) ( 2 ) . 2
3
(3) 8 4
2
1997
(0.25) 2001.
例题 3:已知 M
999 119 , N , 那么 M、 N 的大小关系怎样? 999 990
2
变式练习: 生存的世界中处处有氢原子和氧原子,让 1 亿个氧原子排成一行,它们的总长度只有 lcm 多一点, 1 个氧原子的质量约为 2. 657×10
23
g; -个氢原子的直径大约为 0. 000 000 000
05m,它的质量约为 0. 000 000 000 000 000 000 000 000 001 673kg. (1)试比较氢原子和氧原子谁大谁小?谁重谁轻? (2)利用计算器计算,大约把多少个氢原子紧排在一个平面上时,它们所占的面积相当于 1 枚一元硬币的面积(1 枚一元硬币的直径约为 2. 46cm).
跟踪练习:
(2 x ) ( (1)
3n 2
1 2n 2 x ) ( x 2n ) 3 2
(2) ( 2 a ) (a ) (a ) (a )
5 2 2 2 2 4

人教版八年级(上)数学幂的乘方

人教版八年级(上)数学幂的乘方

金融理财中的复利计算
复利公式
在金融理财中,复利是一种重要的计算方式。复利公式为$A=P(1+r/n)^{nt}$, 其中$A$为最终金额,$P$为本金,$r$为年利率,$n$为每年计息次数,$t$为 时间(年)。
幂运算在复利计算中的应用
在复利计算中,需要将利率和时间进行幂运算,以得到最终的收益金额。例如, 如果年利率为5%,时间为10年,每年计息一次,则最终收益金额可以通过公式 $A=P(1+0.05)^{10}$计算得出。
分数指数幂表示的是开方和乘方的复合运算。即a^(m/n) = √n(a^m)(n为正整数,且a>0)。
在进行幂的运算时,应遵循先乘方、后乘除、最后加减的运算 顺序;同级运算从左到右依次进行;有括号时先算括号里面的

02
幂的乘方运算
同底数幂的乘法
乘法公式
当底数相同时,指数相加。即a^m × a^n = a^(m+n)。
典型例题解析
通过解析典型例题,学生应能够掌 握幂的乘方的计算方法和技巧。
学生自我评价报告
知识掌握情况
学生应能够熟练掌握幂的 乘方法则和性质,并能够 运用它们进行简单的计算 。
解题能力
学生应能够独立思考并解 决与幂的乘方相关的数学 问题,包括计算、证明和 应用题等。
学习态度与方法
学生应积极参与课堂活动 ,认真听讲、思考和练习 ,及时总结和归纳所学知 识。
例1
计算 (2^3)^2。
• 解析
根据幂的乘方法则,当底数相同 时,指数相乘。所以 (2^3)^2 = 2^(3×2) = 2^6 = 64。
例2
计算 [(a+b)^2]^3。
• 解析
首先计算内层幂 (a+b)^2 = a^2 + 2ab + b^2,然后再进行外层

八年级上册数学幂的知识点

八年级上册数学幂的知识点

八年级上册数学幂的知识点幂的概念幂是指以底数为因数的连乘积。

其中,底数为幂的底,指数为幂的指。

幂通常表示为an,表示n个a的乘积。

其中,a为实数,n为自然数。

幂的性质1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

例如:4的2次方乘以4的3次方等于4的5次方,即4的2次方乘以4的3次方=4的5次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(m>n)。

例如:6的5次方除以6的3次方等于6的2次方,即6的5次方除以6的3次方=6的2次方。

3.幂的乘方法则:(a的m次方的n次方)等于a的m×n次方。

例如:3的4次方的2次方等于3的8次方,即(3的4次方的2次方)=3的8次方。

4.幂的0次方等于1,即a的0次方=1。

例如:2的0次方等于1,即2的0次方=1。

5.幂的负次方等于其倒数的幂,即a的-n次方等于1÷a的n次方(a≠0)。

例如:4的-2次方等于1÷4的2次方,即4的-2次方=1÷4的2次方。

幂的应用在实际生活中,幂的应用很广泛。

以下是几个常见的应用场景。

1.计算长方形面积。

长方形的面积可以看作是长和宽的乘积,即s=a×b。

其中a和b都是实数,也可以是整数或分数。

2.计算立方体的体积。

立方体的体积可以看作是长度、宽度和高度的乘积,即V=a×b×h。

其中a、b和h也都是实数,也可以是整数或分数。

3.计算复利。

复利是利滚利的一种形式,也是幂的一种应用场景。

复利的计算公式为A=P×(1+r/n)的nt。

其中,A是最终的本利和,P是本金,r是年利率,n是年复利次数,t是时间(以年为单位)。

总结在学习数学幂的知识点时,需要掌握幂的概念和性质,以及幂的应用场景。

幂是数学中的重要概念,应用非常广泛。

熟练掌握幂的知识,有助于我们更好地理解和应用数学。

幂的运算知识点总结初中

幂的运算知识点总结初中

初中幂的运算知识点总结如下:
1. 任何非零的数的若干次幂统称叫做这个的幂。

2. 整数指数幂运算的运算性质:
(1)底数不变,指数相加或相减;
(2)乘积的幂等于它们的乘积形式不变,指数相加;
(3)幂的乘方,底数不变,指数相乘;
(4)对于任何实数a,a^0=1(a≠0).
3. 同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

4. 幂的乘方法则:底数不变,指数相乘。

5. 对于零次幂(负数的零次幂),规定:$a^{0} = 1$(a≠0).特别提醒:正确理解$a^{0}$的意义。

当a≠0时,是存在的;当a≠-1时,当a≠1时,;当a=1$0$时(分两种情况)。

6. 积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘。

以上就是初中幂的运算的一些知识点,掌握这些知识点对于进行幂的运算有很大的帮助。

八年级上册数学幂的运算知识点和典型习题分类汇总附答案

八年级上册数学幂的运算知识点和典型习题分类汇总附答案

第9讲 幂的运算❖ 基本知识(熟记,会推导,会倒过来写,要提问.) 1、运算顺序,乘方开方,再乘除,最后加减。

nm nma a a +=⋅2、同底数幂相乘【推导】:【推导】n m nmaa a -=÷3、同底数幂相除:【推导】4、0的任何非0次幂等于0)0( 00≠=n n, 5、0的0次幂没有意义6、任何不等于0的数的0次幂都等于1)0( 10≠=a a , n naa 1=-7、负指数:,其实就是取倒数!【物理上用!】 mnn m a a =)(8、幂的乘方:【推导】mm m b a ab =)(9、积的乘方:【推导】n n nb a b a =⎪⎭⎫⎝⎛10、商的乘方:【推导】❖ 基本计算训练 【同底数幂相乘】 1、计算下列各题 52x x ⋅(1)6a a ⋅(2)34)2()2()2(-⨯-⨯-(3)13+⋅m m x x (4)2、计算下列各题 b b ⋅5(1)32212121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)62-⋅a a (3)12+⋅n ny y (4)参考答案1、(17x );(27a );(3)256;(414+m x )2、(15b );(2641);(34-a );(413+n y )【同底数幂相除】 1、计算下列各题 28x x ÷(1)25)()(ab ab ÷(2)64xx (3)32-nn (4)2、计算下列各题 57-÷x x (1)88m m ÷(2)710)()(a a -÷-(3)35)()(xy xy ÷(4)3、计算下列各题431010-(1)32--yy (2)64nn (3)641010-(4)参考答案1、(16x );(233b a );(32-x);(35n )2、(112x );(2)1;(33a -);(422y x )3、(1710);(2y );(32-n );(41010-)【幂的乘方】 1、计算下列各题53)10((1)44)(a (2)2)(m a (3)34)(x -(4)2、计算下列各题33)10((1)23)(x (2)5)(m x -(3)532)(a a ⋅(4)参考答案1、(11510);(216a );(3ma2);(412x -) 2、(1910);(26x );(3mx 5-);(411a )【积的乘方】 1、计算下列各题 3)2(a (1)3)5(b -(2)22)(xy (3)43)2(x -(4)2、计算下列各题 4)(ab (1)321⎪⎭⎫ ⎝⎛-xy (2)32)103(⨯-(3)32)2(ab (4)参考答案1、(138a );(23125b -);(342y x );(41216x ) 2、(144b a );(23381y x -);(37107.2⨯-);(4)638b a【幂的运算综合】1、判断下面计算的对错,并把错误的改正过来。

专题15 幂的运算(知识点串讲)(解析版)八年级数学上册期中期末考点大串讲(人教版)

专题15 幂的运算(知识点串讲)(解析版)八年级数学上册期中期末考点大串讲(人教版)

专题15 幂的运算重点突破幂的运算性质(基础):● a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

3)乘数a 可以看做有理数、单项式或多项式(整体思想)。

4)如果底数互为相反数时可先变成同底后再运算。

● (a m )n =a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

● (ab)n =a n b n (n 为正整数) 积的乘方等于各因式乘方的积.● a m ÷a n =a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。

3.注意指数为1的情况,如x 8÷x = x 7 ,计算时候容易遗漏或将x 的指数当做0.4.多个同底数幂相除时,应按顺序计算。

● a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .考查题型考查题型一 同底数幂相乘典例1.(2020·阳泉市期末)下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【提示】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确;62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误; 故选:A .【名师点拨】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.变式1-1.(2019·石家庄市期末)43()()x y y x -•-可以表示为( )A .7()x y -B .7()x y --C .12()x y -D .12()x y -- 【答案】B【提示】根据同底数幂的乘法法则计算即可得出结论.【详解】(x ﹣y )4•(y ﹣x )3=﹣(x ﹣y )4•(x ﹣y )3=﹣(x ﹣y )7.故选B .【名师点拨】本题考查了同底数幂的乘法法则.掌握同底数幂的乘法法则是解答本题的关键.变式1-2.(2019·杭州市期中)若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14【答案】A【提示】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可.【详解】∵2n +2n +2n +2n =2,∴4×2n =2, ∴2×2n =1, ∴21+n =1,∴1+n=0,∴n=﹣1,故选A.【名师点拨】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).变式1-3.(2019·苏州市期中)已知x+y﹣4=0,则2y•2x的值是()A.16 B.﹣16 C.18D.8【答案】A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.名师点拨:a m·a n=a m+n.考查题型二同底数幂乘法的逆用典例2.(2020·河池市期末)已知a m=3,a n=4,则a m+n的值为()A.7 B.12 C.D.【答案】B【提示】根据同底数的幂的乘法法则,代入求值即可.【详解】.故选:.【名师点拨】本题考查了同底数的幂的乘法法则,理解指数之间的变化是关键.变式2-1.(2019·仁寿县期末)若3⨯9m⨯27m=213,则m的值是()A.3 B.4 C.5 D.6 【答案】B【解析】∵3⨯9m⨯27m=3⨯32m⨯33m=31+2m+3m∴1+2m+3m=21∴m=4变式2-2.(2018·南昌市期中)计算20162017(2)(2)-+-的结果是( )A .2B .-2C .20162D .20162-【答案】D【提示】先提取公因式2016(2)-,再进行计算,即可.【详解】20162017(2)(2)-+-=[]20161(2)(2)-+-⨯=201612)()(⨯--=20162-.故选D .【名师点拨】本题主要考查含乘方的有理数的加法运算,掌握同底数幂的乘法运算的逆运用,是解题的关键.变式2-3.(2020·成都市期末)已知2,3a b x x ==-,则2a b x +的值为( )A .12B .2C .12-D .3-【答案】C【提示】利用同底数幂的乘法及幂的乘方的逆用将原式变形,然后代入求值即可.【详解】解:222()a b a b a b x x x x x +==当2,3a b x x ==-时,原式=22(3)12⨯-=-故选:C【名师点拨】本题考查幂的乘方及同底数幂的乘法,熟记公式灵活应用是本题的解题关键.考查题型三 幂的乘方运算典例3.(2020·惠州市期末)计算3()a a •- 的结果是( )A .a 2B .-a 2C .a 4D .-a 4【答案】D直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:34()=a a a •--,故选D .【名师点拨】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.变式3-1.(2020·青岛市期中)计算(-a 3)2的结果是 ( )A .-a 5B .a 5C .a 6D .-a 6【答案】C【提示】根据幂的乘方法则:幂的乘方,底数不变,指数相乘.即可得出结果【详解】()236a a -=,故选C.【名师点拨】本题考查幂的乘方,本题属于基础应用题,只需学生熟练掌握幂的乘方法则,即可完成.变式3-2.(2019·合肥市期中)如果(a n •b m b)3=a 9b 15,那么( )A .m =4,n =3B .m =4,n =4C .m =3,n =4D .m =3,n =3【答案】A【提示】根据(a n b m b )3=a 9b 15,比较相同字母的指数可知,3n=9,3m+3=15,即可求出m 、n.【详解】解:∵(a n b m b )3=a 9b 15,∴(a n )3(b m )3b 3=a 3n b 3m+3=a 9b 15,∴3n=9,3m+3=15,,解得:m=4,n=3,∴m 、n 的值为4,3.所以A 选项是正确的.【名师点拨】本题考查了积的乘方的性质和幂的乘方的性质,根据相同字母的次数相同列式是解题的关键.变式3-3.(2019·南京市期末)若33×9m =311 ,则m 的值为 ( )A .2B .3C .4D .5【答案】C【提示】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m 的方程,解方程即可求得答案.【详解】∵33×9m =311 ,∴33×(32)m =311,∴33+2m =311,∴3+2m=11,∴2m=8,解得m=4,故选C .【名师点拨】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.考查题型四 幂的的乘方的逆用典例4.(2020·无锡市期中)计算2015201623()()32⨯的结果是( )A .23 B .23- C .32 D .32-【答案】C【提示】 将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得.【详解】2015201623()()32⨯=(23)2015×(32)2015×32=(23×32)2015×32 =32.故选C.【名师点拨】本题主要考查幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法则是解题的关键.变式4-1.(2019·德州市期中)9m ·27n 可以写为( )A .9m+3nB .27m+nC .32m+3nD .33m+2n【答案】C【解析】原式=2323333m n m n +⋅= ,故选C.变式4-2.(2019·宿迁市期中)计算3n · ( )=—9n+1,则括号内应填入的式子为( )A .3n+1B .3n+2C .—3n+2D .—3n+1【答案】C【详解】解:∵-9n+1=-(32)n+1=-32n+2=-3n+n+2=3n (-3n+2),∴括号内应填入的式子为-3n+2.故选C.变式4-3.(2018·洛阳市期中)已知23×83=2n ,则n 的值为( )A .18B .7C .8D .12【答案】D【提示】根据幂的乘方和积的乘方的运算法则求解.【详解】解:∵23×83=23×29=212=2n ,∴n =12.故选D .【名师点拨】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.考查题型五 积的乘方典例5.(2019·马龙区期中)若3915()m n a b a b =,则,m n 的值分别为( )A .9,5B .3,5C .5,3D .6,12【答案】B【解析】根据积的乘方法则展开得出a 3m b 3n =a 9b 15,推出3m=9,3n=15,求出m 、n 即可.解:∵(a m b n )3=a 9b 15,∴a 3m b 3n =a 9b 15,∴3m=9,3n=15,∴m=3,n=5,故选B .变式5-1.(2020·扬州市期中)下列运算错误的是( )A .2363(2)8a b a b -=-B .243612()x y x y =C .23282()()x x y x y -⋅=D .77()ab ab -=-【答案】D【提示】原式各项利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.【详解】A 、(-2a 2b )3=-8a 6b 3,本选项正确;B 、(x 2y 4)3=x 6y 12,本选项正确;C 、(-x )2•(x 3y )2=x 2•x 6y 2=x 8y 2,本选项正确;D 、(-ab )7=-a 7b 7,本选项错误.故选D .【名师点拨】此题考查了幂的乘方与积的乘方,以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.变式5-2.(2020·张家口市期中)下列计算正确的是( )A .a 3-a 2=aB .a 2·a 3=a 6C .(3a)3=9a 3D .(a 2)2=a 4【答案】D【解析】A.a 3与a 2不能合并,故A 错误;B. a2⋅a 3=a 5,故B 错误;C. (3a)3=27a 3,故C 错误;D. (a 2)2=a 4,故D 正确.故选D.变式5-3.(2019·邵阳市期中)计算()4233a b --的结果是( )A .81281a bB .81281a b -C .6712a bD .6712a b -【答案】B【提示】直接利用积的乘方运算法则计算得出答案.【详解】解:()4233a b --= 81281a b - 故应选B.【名师点拨】此题主要考查了积的乘方运算,正确掌握相关运算法则是解题关键.考查题型六 积的乘方的逆用典例6.(2019·大庆市期中)2012201253()(2)135-⨯-=( ) A .1-B .1C .0D .1997【答案】B【提示】根据积的乘方公式进行简便运算.【详解】 解:20122012532135⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ =20122012513()()135⨯ =2012513()135⨯ =1.故选B【名师点拨】此题主要考查了积的乘方,解题时,先对分数变形,然后根据特点,找到规律,再根据积的乘方的逆用,直接计算即可.变式6-1.(2020·揭阳市期中)2101×0.5100的计算结果正确的是( )A .1B .2C .0.5D .10 【答案】B【解析】试题提示:首先将其化成同指数,然后进行计算得出答案.原式=()100100100220.5220.52⨯⨯=⨯⨯=,故选B .变式6-2.(2019·南京市期中)已知32m =8n ,则m 、n 满足的关系正确的是( ) A .4m=n B .5m=3n C .3m=5n D .m=4n【答案】B【解析】∵32m =8n ,∴(25)m =(23)n ,∴25m =23n ,∴5m=3n .故选B .变式6-3.(2018·昆明市期末)已知a m =2,a n =3,则a 3m+2n 的值是( )A .24B .36C .72D .6【答案】C【解析】试题解析:∵a m =2,a n =3,∴a 3m+2n=a 3m •a 2n=(a m )3•(a n )2=23×32=8×9=72.故选C.考查题型七 同底数幂的除法典例7.(2019·金华市期末)计算63a a ,正确的结果是( )A .2B .3aC .2aD .3a【答案】D【提示】根据同底数幂除法法则即可解答.【详解】根据同底数幂除法法则(同底数幂相除,底数不变,指数相减)可得,a 6÷a 3=a 6﹣3=a 3. 故选D .【名师点拨】本题考查了整式除法的基本运算,必须熟练掌握运算法则.变式7-1.(2018·晋江市期中)计算255m m 的结果为( )A .5mB .5C .20D .20m【答案】A【提示】把25m 写成52m ,然后利用同底数幂相除,底数不变指数相减解答.【详解】解:25m ÷5m =52m ÷5m =52m-m =5m .故选A .【名师点拨】本题考查了同底数幂的除法,幂的乘方的性质,熟记运算性质是解题的关键.变式7-2.(2020·杭州市期末)下列计算正确的是( )A .a 6+a 6 = a 12B .a 6·a 2 = a 8C .a 6÷a 2 = a 3D .(a 6)2= a 8【答案】B【提示】根据合并同类项、同底数幂乘除法和幂的乘方法则逐项计算即可.【详解】解:A. a 6+a 6=2a 6,故错误;B. a 6·a 2 = a 8,正确;C. a 6÷a 2 = a 4,故错误;D. (a 6)2= a 12,故错误;故选:B.【名师点拨】本题考查了合并同类项、同底数幂乘除法和幂的乘方,熟练掌握运算法则是解题关键.变式7-3.(2020·合肥市期中)a 11÷(﹣a 2)3•a 5的值为( )A .1B .﹣1C .﹣a 10D .a 9【答案】C【提示】根据同底数幂的乘除法法则以及幂的乘方运算法则计算即可.【详解】解:a 11÷(﹣a 2)3•a 5=a 11÷(﹣a 6)•a 5=﹣a 11﹣6+5=﹣a 10.故选:C .【名师点拨】本题主要考查了同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.考查题型八 同底数幂除法的逆用典例8.(2019·连云港市期中)若a x =6,a y =4,则a 2x ﹣y 的值为( )A .8B .9C .32D .40【答案】B【解析】因为a 2x-y =a 2x ÷a y =(a x )2÷a y =62÷4=9,故答案为B.变式8-1.(2020·达州市期末)如果3a =5,3b =10,那么9a -b 的值为( )A .12 B .14 C .18 D .不能确定【答案】B【解析】∵3a =5,3b =10, ∴2(a-b)2a 2b 19(3)=33=25100=4a b -=÷÷,故选B.变式8-2.(2019·南阳市期末)已知3,5a b x x ==,则32a b x -=( )A .2725B .910 C .35 D .52【答案】A【提示】直接利用同底数幂的除法和幂的乘方运算法则将原式变形得出答案.【详解】∵x a =3,x b =5,∴x3a-2b=(x a)3÷(x b)2 =33÷52=27 25.故选A.【名师点拨】考查了同底数幂的乘除运算和幂的乘方运算,正确将原式变形是解题关键.变式8-3.(2020·常州市期末)已知2a=3,2b=6,2c=12,则a,b,c的关系为①b=a+1②c=a+2③a+c=2b④b+c=2a+3,其中正确的个数有()A.1个B.2个C.3个D.4个【答案】D【提示】根据整式的运算法则(同底数幂相乘,幂的乘方,积的乘方等)进行提示即可.【详解】因为,2a=3,2b=6,2c=12,所以,2ⅹ2a=2a+1=6= 2b,22×2a=12=2a+2=2c,2a×2c=3×12=2c+a=36=(2b)2,2b×2c=6×12=72=2b+c=9×8=(2a)2×23=22a+3, 所以,①b=a+1②c=a+2③a+c=2b④b+c=2a+3,故选D【名师点拨】本题考核知识点:整式乘法. 解题关键点:熟记并运用整式乘法法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八 年 课 级 时 数 三 学 上 册

•第 12章 整式的乘除 •(1)幂的运算 同底数幂相乘,底数不变,指数相加。 am an= a m +n (m、n为正整数) •(2)幂的乘方 •幂的乘方,底数不变,指数相乘。 • m n mn a a • (m、n为正整数)•源自• (3)积的乘方
注意: 计算时要先观察底数是否相同(若不同先化 成相同的底数)再确定正负号 ①底数为正数时,任何次幂结果均为正 (次数为正整数) ②底数为负数时,奇次幂为负,偶次幂为正
•② (a m )n a p=a m n +p( m, n, p为正整数)
•③(a m )n ÷a p=a m n –p •( m, n, p为正整数且m n>p ,a≠0) •④am ÷an÷ a p=am -n –P •( m, n, p为正整数且m >n +p ,a≠0 ) •⑤(a+ b)m.(a+ b)n=( a+ b )m +n •( m, n为正整数)
•积的乘方,等于把积中每一个因式分别乘方, 再把所得的幂相乘。 • abn a n b n (n为正整数)
•(4)同底数幂的除法
•同底数幂相除,底数不变,指数相减。 •am ÷an= a m -n
•(m、n为正整数,m>n,a≠0)
(5)混合运算
•①am .an .a p=am +n +P( m, n, p为正整数)
相关文档
最新文档