用于锌离子检测和成像的比例探针和近红外分子探针

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用于锌离子检测和成像的比例探针和近红外分子探针

摘要:由于Zn2+在生理功能中起着重要作用,生物样品中Zn2+的检测和成像引起了大家极大的兴趣。但是只有分子探针与Zn2+特异结合后引起的发射光谱变化,这一研究才成为可能。与Zn2+结合后,能“开启”发光或者荧光发射光谱移动的分子,是用于体内成像的理想的分子。在这篇文章中,我们特别关注了比例探针和近红外探针。因此,在化学传感器或分子探针领域,设计能在近红外区域比例感应或成像的荧光分子,引起了化学家的关注。这篇重点综述的目的是阐明这一领域的最新发展,并强调了为未来应用而进行进一步研究的重要性。

关键词:化学传感器,荧光探针,分子探针,比例传感器,锌

1. 引言

锌是人体内存在的第二大丰富的过渡金属离子,它在细胞内和细胞外功能中扮演多个角色。已查明大量的蛋白质和酶含有Zn2+。据报道,Zn2+与许多神经紊乱疾病有关,如帕金森病和癫痫病等。此外,锌在胰岛素分泌和凋亡的过程中起着关键的作用。据世界卫生组织估计,非洲和亚洲超过40%的儿童成长过程中的发育不良与饮食中锌的含量过低有关。锌离子缺乏的状况一直延续到今天并在很大范围内扩展,而且难以检测是因为缺乏合理的锌的生化标记物。

除了生长发育,包括免疫、内分泌和胃肠道系统在内的许多的身体机能都受到锌离子的影响。为了广泛的研究生物学中锌的多样化的生理功能,就需要灵敏的和无创的技术来实现实时探测和成像。生物细胞内Zn2+的相对浓度在1nM到1mM范围,在许多细胞的细胞质中只有1nM而在人类大脑中神经元突触囊泡内则达到1mM。虽然细胞中锌的总浓度较高,但不与蛋白质强烈结合的游离锌的浓度极低。因此很难用传统的方法测定的游离锌的浓度。这些问题使化学家优先考虑开发选择性和高效率的锌离子探针,即所谓的锌离子化学传感器最的问题。

由于锌对于大部分的分析技术是不可见的,所以荧光技术是一个很好的选择。这种方法利用能识别Zn2+的探针分子,探针分子与Zn2+结合后发出特定波长的光,于是就可以用荧光显微镜跟踪活细胞内的锌离子。荧光分子探针由荧光团以及与其相连的螯合剂或是带或不带空间基团的离子载体组成。当探针分子与分析物结合后会使荧光强度或波长发生变化,于是就产生了信号输出(Figure 1)。荧光信号传导机理通过荧光的变化过程发生的,如电荷转移,电子转移,能量转移,激发物的形成,或构象的变化。在这些机理中,光诱导电子转移(PET)因为能显著的影响荧光发射光谱而被广泛用于化学传感器的设计。

2. PET:优先选择的信号传导机理

许多荧光传感器是基于PET原理作为信号传导的过程来设计的。由于电子转移,荧光分子在初始状态时不发荧光。金属离子与受体结合后降低了供体向荧光团电子转移的效率,由PET引起的荧光猝灭就较难发生甚至是完全中断。因

此,荧光团的原始荧光就会恢复。这个荧光信号是高度灵敏的,可选择性的用于检测特定分析物。按照这个原理设计的传感器最有名的是CHEF(螯合作用增强型荧光)型传感器。

一种理想的Zn2+化学传感器应具有良好的化学和光稳定性,荧光选择性,快速感光性,对pH值不敏感,快速靶向性和良好的水溶性。对于生物应用,激发波长应在可见光区域。基于荧光团的化学传感器领域的最新进展大大促进了用于锌离子检测的各种荧光探针的发展。其中大部分探针是基于作为荧光团的喹啉(1),丹磺酰氯(2),蒽(3),和荧光素(4)的衍生物。其中,基于荧光素的探针由于其可见光吸收,水溶性好,对生物组织的渗透性好而被广泛的研究。

3. 二-(2-吡啶甲基)胺:锌离子的最佳配体

与Zn2+特异性结合离子团仅限于某些基团如喹啉,二-(2-吡啶甲基)胺(或二-2-氨甲基吡啶DPA),线性的和环状的多胺,以及有些生物配合物如锌指域等。在这些离子载体中,DPA是使用最广泛的结合Zn2+的配体。DPA胺基的氮原子是PET过程中的一个良好的电子供体。基于DPA的传感器5是一个典型的用于检测质子和Zn2+的PET传感器。与金属离子结合后,探针的电子转移过程中断,荧光量子产率增加。荧光素衍生物6和7有在可见光区域吸收的优点,这有利于在这些频率范围内的激发。只有荧光素的阴离子形式发出荧光强烈,这意味着pKa值是影响pH依赖型探针性能的一个很重要的因素。连有拉电子基团的荧光分子在广泛的pH值范围内呈现更好的性能。6和7是基于DPA的传感器,与锌结合后荧光增强。

近来,报道了几种属于ZnAF2(8)和Zinpyr-1(9和10)家族的用于Zn2+检测的新的传感器。ZnAF2型分子是基于PET的原理设计的,适合于生物应用。虽然这些第二代探针与第一代基于紫外的探针相比,对Zn2+具有较高的亲和力,且亮度更亮,但仍存在一些问题如易于合成,灵敏度,选择性,与生物样品的相容性,和稳定性仍需要加以改善。最近的一些综述讨论了用于生物样品中Zn2+检测和成像的探针的优缺点。在此,我们着重讨论比例及近红外(NIR)Zn2+探针设计和应用的最新进展。

4. 比例锌离子探针

目前研究的Zn2+特异性传感器是基于比例传导。当结合的分析物改变了发色团的电子特性而导致光在不同的波长吸收或发射时会有比例的行为发生。因此,一个荧光比例传感器对分析物的响应是通过最大发射位移来实现的,可能会伴随强度的变化,也可能不会。发射波长必须足够大才能区分共存的结合Zn2+和未结合Zn2+的探针,从而来测量这两个物种的最大发射波长的比例。结合已知的传感器的结合常数,就可以测量未知锌离子的浓度。比例信号是内参比,结合与未结合的传感器的信号比不受光源和光漂白的影响。

Maruyama等利用分子内电荷转移(ICT)的原理,将作为电子供体的DPA和作为电子受体的苯并呋喃衍生物连接起来,设计了Zn2+比例探针。探针11

(ZnAF-R1)和探针12(ZnAF- R2)与Zn2+络合后,最大激发波长蓝移,而发射波长保持不变。在水溶液中,传感器12比11水溶性好,荧光量子产率高,正如图巨噬细胞中Zn2+荧光比例成像所阐明的那样,它更适合于生物应用。由于12不能渗透细胞膜,更亲脂的乙酯衍生物(ZnAFR2 EE)用来穿透细胞,在胞浆中酯酶的作用下水解成12(Figure 2)。

Lim,BrMckner及其同事报道了一种用香豆素衍生物做的Zn2+比例传感器13(Scheme 1)。香豆素的内酯的氧原子是一个潜在的供电原子,参与螯合Zn2+,因此可使生色团的电子特性发生变化。虽然有各种金属离子可以与它结合,但是它们竞争不过Zn2+,因此13是一个适合于生物体系的Zn2+探针(Figure 3)。

相关文档
最新文档