生物化学 酶_PPT幻灯片
合集下载
生物化学之酶ppt课件
非竞争性抑制剂
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选
生物化学 第三章 酶(共65张PPT)
概念: 抑制剂和底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
生物化学PPT课件 酶
2、非竞争性抑制
3、反竞争性抑制
七、酶活性测定:
难以测定,常用的衡量方式:
酶在最适条件下,单位时间内,单位体积中底 物的减少量或产物的生成量。
酶的活性单位: 国际单位(IU):每分钟转化1μmol底物所需的酶 量为一个国际单位(1IU),即1μmol/min
Kat单位:每秒钟转化1mol底物所需的酶量 1 Kat=1mol/sec 1 IU=16.67×10-9Kat
(2)酶的储存形式
(二) 别构调节
催化部位(活 性中心)
EE
(激活或抑制) 酶活性改变
酶结构改变
调节部位
别构效应剂
(三)酶促化学修饰调节
类型:
(1)磷酸化与脱磷酸(最常见) (2)乙酰化与脱乙酰 (3)甲基化与去甲基 (4)腺苷化与脱腺苷 (5)SH与-S-S互变
2ATP
2ADP
磷酸化酶b激酶
P
磷酸化酶 b(二聚体)
无活性
磷酸化酶a磷酸酶
P
磷酸化酶 a(二聚体)
高活性
2Pi
2H2O
磷酸化酶的活性调节
cAMP信号与糖原降解
二、酶蛋白含量的调节
1. 酶蛋白合成的诱导与阻遏 (1)诱导剂、诱导作用 (2)阻遏剂、阻遏作用
2. 酶蛋白的降解 (1)溶酶体蛋白酶降解途径 (2)泛素参与的降解途径
六、抑制剂(inhibitor, I)
——使酶活性下降但又不使酶蛋白变性的物质 与酶的必须基团结合,抑制酶的催化活性。去除 后,酶表现原有活性。
(一)不可逆抑制作用
• 概念:抑制剂与酶活性中心必需基团共价 结合,不能用透析、超滤等物理方法将其 除去恢复酶活性。
• 常见抑制剂:
巯基酶抑制剂(如某些重金属离子、路易士气等) ——解毒:二巯基丙醇
酶(生物化学)PPT课件
详细描述
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
生物化学检验中酶测定PPT课件
心脑血管疾病酶测定
要点一
总结词
心脑血管疾病酶测定有助于评估心脑血管系统的健康状况 。
要点二
详细描述
心脑血管疾病酶测定包括肌酸激酶(CK)、肌酸激酶同工酶 (CK-MB)、乳酸脱氢酶(LDH)等指标的检测,这些酶在 心肌和骨骼肌中有特定的生理功能,当心脑血管系统受损时, 酶的活性会发生变化,通过测定这些酶的活性,可以判断心 脑血管系统的健康状况,对于心脑血管疾病的诊断和治疗具 有重要的意义。
04
酶测定在临床诊断中的应用
肝病酶测定
总结词
肝病酶测定是生物化学检验中的重要部分,用于评估肝功能状况。
详细描述
肝病酶测定包括谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)等指标的检测,这些酶 在肝脏中有特定的生理功能,当肝脏受损时,酶的活性会发生变化,通过测定这些酶的活性,可以判断肝 脏的功能状况,对于肝病的诊断和治疗具有重要的意义。
酶测定的重要性
酶是生物体内重要的生物催化剂,参与生物体的代谢和调控过程 。通过酶测定可以了解酶的活性、含量以及性质,进而了解生物 体的代谢状态和生理功能,为疾病诊断、治疗和药物研发提供科 学依据。
酶测定在生物化学检验中的应用
01 02
临床诊断
酶测定在临床诊断中广泛应用,如肝功、肾功、心肌酶谱等检测项目, 通过对特定酶的活性检测,可以判断相应器官的功能状态,辅助医生进 行疾病诊断。
详细描述
比色法是一种通过测量酶催化 反应后生成物的颜色变化来计 算酶活性的方法。该方法操作 简便,设备简单,适合大批量 样本检测,因此在生物化学检 验中广泛应用。
总结词
对试剂要求高、误差较大
详细描述
比色法对试剂的质量和浓度要 求较高,否则会影响检测结果 的准确性和可靠性。同时,由 于不同颜色的生成与酶活性之 间可能存在非线性关系,因此 该方法可能存在较大的误差。
---酶----生物化学ppt课件
四氢叶酸。
H
N NH
H2N
H
N
N
CH2 NH H
OH H
COOH
CH2
O
CH2
C NH CH COOH
四氢叶酸的主要作用是作为一碳基团,如-CH3, -CH2-, -CHO 等的载体,参与多种生物合成过程。
维生素B12和B12辅酶 维生素B12又称为钴胺素。维生素B12分子中与
Co+相连的CN基被5’-脱氧腺苷所取代,形成 维生素B12辅酶。 维生素B12辅酶的主要功能是作为变位酶的辅酶, 催化底物分子内基团(主要为甲基)的变位反应。
立体异构专一性:这类酶不能辨别底物不同的立体异构体,只对其中的某一种 构型起作用,而不催化其他异构体。包括旋光异构专一性和几何异构专一性。
易变敏感性:易受各种因素的影响,在活细胞内受到精密严格的调节控制。
二、酶的化学本质及结构功能特点
1.发展史
(1)酶是蛋白质: 1926年,James Summer由刀豆制出脲酶结晶确立酶是蛋白质的观
(2) 转移酶 Transferase
转移酶催化基团转移反应,即将一个底物分子的 基团或原子转移到另一个底物的分子上。 例如, 谷丙转氨酶催化的氨基转移反应。
CH3CHCOOH HOOCCH2CH2CCOOH
NH2
O
CH3CCOOH HOOCCH2CH2CHCOOH
O
NH2
3) 水解酶 Hydrolase
2.酶的组成
单成份酶:脲酶、蛋白酶、淀粉酶、核糖核酸
(简单蛋白质)
酶等。
酶
酶蛋白
(apoenzyme)
双成份酶
辅酶
(结合蛋白质) 辅因子 (coenzyme)
H
N NH
H2N
H
N
N
CH2 NH H
OH H
COOH
CH2
O
CH2
C NH CH COOH
四氢叶酸的主要作用是作为一碳基团,如-CH3, -CH2-, -CHO 等的载体,参与多种生物合成过程。
维生素B12和B12辅酶 维生素B12又称为钴胺素。维生素B12分子中与
Co+相连的CN基被5’-脱氧腺苷所取代,形成 维生素B12辅酶。 维生素B12辅酶的主要功能是作为变位酶的辅酶, 催化底物分子内基团(主要为甲基)的变位反应。
立体异构专一性:这类酶不能辨别底物不同的立体异构体,只对其中的某一种 构型起作用,而不催化其他异构体。包括旋光异构专一性和几何异构专一性。
易变敏感性:易受各种因素的影响,在活细胞内受到精密严格的调节控制。
二、酶的化学本质及结构功能特点
1.发展史
(1)酶是蛋白质: 1926年,James Summer由刀豆制出脲酶结晶确立酶是蛋白质的观
(2) 转移酶 Transferase
转移酶催化基团转移反应,即将一个底物分子的 基团或原子转移到另一个底物的分子上。 例如, 谷丙转氨酶催化的氨基转移反应。
CH3CHCOOH HOOCCH2CH2CCOOH
NH2
O
CH3CCOOH HOOCCH2CH2CHCOOH
O
NH2
3) 水解酶 Hydrolase
2.酶的组成
单成份酶:脲酶、蛋白酶、淀粉酶、核糖核酸
(简单蛋白质)
酶等。
酶
酶蛋白
(apoenzyme)
双成份酶
辅酶
(结合蛋白质) 辅因子 (coenzyme)
第生物化学酶_PPT幻灯片
第1节 概述
一、酶的概念 酶是由活细胞合成的、对其特异底物起高效催 化作用的蛋白质。
目前将生物催化剂分为两类
酶 、 核酶(脱氧核酶)
酶(E)所催化的反应称为酶促反应, 反应中被酶作用的物质称为底物(S), 生成的物质称为产物(P)。 酶所具有的催化能力称为酶活性, 而酶失去催化能力称为酶失活。
E+S→ES→E+P
六、抑制剂
抑制作用的类型 1.不可逆抑制作用
竞争性抑制 2.可逆抑制作用: 非竞争性抑制
反竞争性抑制
1.不可逆抑制作用
* 概念
抑制剂以共价键与酶活性中心的必需基团相结合, 使酶失活。
* 举例 有机磷化合物 使羟基酶失活
解毒物质————解磷定(PAM)
重金属离子及砷化合物 使巯基酶失活
必需基团
活性中心的必需基团
活性中心以外的必需基团
活性中心
结合基团(与底物结合,决定专一性)
催化基团(影响化学键稳定性,决定催化能力)
活性中心以外 的必需基团
结合基团
底物 催化基团 活性中心
三、酶原及酶原激活
➢ 酶原 (zymogen) 有些酶在细胞内合成时或初分泌时是以无活性 酶的前体形式存在,此前体物质称为酶原。
E + S ES E + P
酶与底物结合的诱导契合学说示意图
2.邻近效应与定向排列
①邻近效应与定向排列
指E与S结合形成ES后,使各底物S1S2…Sn之间、 E的催化基团与S之间,结合为同一分子,使E 活中心有效[S]大大提高,从而使反应速度加 快的效应。
由于将分子间反应变为分子内反应,而使[S] 有效浓度增加了,反应速度也加大了。
4.酶促反应的可调节性
一、酶的概念 酶是由活细胞合成的、对其特异底物起高效催 化作用的蛋白质。
目前将生物催化剂分为两类
酶 、 核酶(脱氧核酶)
酶(E)所催化的反应称为酶促反应, 反应中被酶作用的物质称为底物(S), 生成的物质称为产物(P)。 酶所具有的催化能力称为酶活性, 而酶失去催化能力称为酶失活。
E+S→ES→E+P
六、抑制剂
抑制作用的类型 1.不可逆抑制作用
竞争性抑制 2.可逆抑制作用: 非竞争性抑制
反竞争性抑制
1.不可逆抑制作用
* 概念
抑制剂以共价键与酶活性中心的必需基团相结合, 使酶失活。
* 举例 有机磷化合物 使羟基酶失活
解毒物质————解磷定(PAM)
重金属离子及砷化合物 使巯基酶失活
必需基团
活性中心的必需基团
活性中心以外的必需基团
活性中心
结合基团(与底物结合,决定专一性)
催化基团(影响化学键稳定性,决定催化能力)
活性中心以外 的必需基团
结合基团
底物 催化基团 活性中心
三、酶原及酶原激活
➢ 酶原 (zymogen) 有些酶在细胞内合成时或初分泌时是以无活性 酶的前体形式存在,此前体物质称为酶原。
E + S ES E + P
酶与底物结合的诱导契合学说示意图
2.邻近效应与定向排列
①邻近效应与定向排列
指E与S结合形成ES后,使各底物S1S2…Sn之间、 E的催化基团与S之间,结合为同一分子,使E 活中心有效[S]大大提高,从而使反应速度加 快的效应。
由于将分子间反应变为分子内反应,而使[S] 有效浓度增加了,反应速度也加大了。
4.酶促反应的可调节性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
➢ 活性中心内的必需基团
结合基团 (binding group) 与底物相结合
催化基团 (catalytic group) 催化底物转变成产物
➢ 活性中心外的必需基团
位于活性中心以外,维持酶活性中心应有 的空间构象和(或)作为调节剂的结合部位所 必需。
目录
活性中心以外 的必需基团
结合基团
底物 催化基团 活性中心
心肌梗死和肝病病人血 清LDH同工酶谱的变化
举例 1
HH HH
LDH1 (H4)
HH HM
LDH2 (H3M)
HH MM
LDH3 (H2M2)
HM MM
LDH4 (HM3)
乳酸脱氢酶的同工酶
MM MM
LDH5 (M4)
目录
举例 2
BB
MB
CK1(BB) CK2(MB)
脑
心肌
MM
CK3(MM) 骨骼肌
酶的概念
➢目前将生物催化剂分为两类:
酶 、 核酶(脱氧核酶)
➢酶是一类对其特异底物具有高效催化作用 的蛋白质。
目录
酶学研究简史
➢1926年,Sumner首次从刀豆中提纯出脲酶 结晶 (deoxyribozyme)。
➢1982 年 , Cech 首 次 发 现 RNA 也 具 有 酶 的 催 化活性,提出核酶(ribozyme)的概念。
人LDH同工酶谱:
(LDH活性的百分数% )
LDH 亚基 红细 白细 血清 骨骼 心肌 肺
肾
肝
脾
同工 组成 胞
胞
肌
酶
LDH14 43 2
10
LDH2 H3M 44
49
34.7 0
24 34 44 4
25
LDH3 H2M3 12
33
20.9 5
3
35 12 11 10
烷基 二氧化碳
钴胺素辅酶类 生物素
维生素B12 生物素
氨基
磷酸吡哆醛
甲基、甲烯基、甲炔基、 四氢叶酸 甲酰基等一碳单位
吡哆醛(维生素B6之一) 叶酸
目录
辅酶中与酶蛋白共价结合的辅酶又称为辅基 (prosthetic group)。
辅基和酶蛋白结合紧密,不能通过透析或超 滤等方法将其除去,在反应中不能离开酶蛋 白,如FAD、FMN、生物素等。
溶菌酶的活性中心
➢ 溶菌酶的活性中心 是一裂隙,可以容 纳肽多糖的6个单 糖基(A,B,C, D,E,F),并与 之 形 成 氢 键 和 van derwaals力。
➢ 催 化 基 团 是 35 位 Glu,52位Asp;
➢ 101位Asp和108位 Trp是结合基团。
目录
三、同工酶
定义 同工酶 (isoenzyme)是指催化相同的化
目录
小分子有机化合物是一些化学稳定的小分子 物质,称为辅酶 (coenzyme)。 ➢ 其主要作用是参与酶的催化过程,在反应中 传递电子、质子或一些基团。 ➢ 辅酶的种类不多,且分子结构中常含有维生 素或维生素类物质。
目录
某些辅酶(辅基)在催化中的作用
转移的基团
小分子有机化合物(辅酶或辅基)
名称
➢1995年,Jack W.Szostak研究室首先报道了 具有DNA连接酶活性DNA片段,称为脱氧 核酶(deoxyribozyme)。
目录
第一节
酶的分子结构与功能
The Molecular Structure and Function of Enzyme
目录
目录
目录
全酶分子中各部分在催化反应中的作用: ➢ 酶蛋白决定反应的特异性 ➢ 辅助因子决定反应的种类与性质
目录
二、酶的活性中心是酶分子中执行 其催化功能的部位
必需基团(essential group) 酶分子中氨基酸残
基侧链的化学基团中, 一些与酶活性密切相关 的化学基团。
目录
酶的活性中心 (active center) 指必需基团在空间结构上彼此靠近,组
成具有特定空间结构的区域,能与底物特异 结合并将底物转化为产物。
目录
三、 同工酶(isoenzyme)
举例:
乳酸脱氢酶的五种同工酶
组成 名称
HH HH
H4 LDH1
HH HH H M MM
H3M LDH2
H2M2 LDH3
HM MM
MM MM
HM3 LDH4
M4 LDH5
什么是? 指催化相同的化学反应,而酶蛋白
(一同三不同) 的分子结构理化性质乃至免疫学性
质不同的一组酶。
学反应,而酶蛋白的分子结构理化性质乃 至免疫学性质不同的一组酶。
目录
➢ 根据国际生化学会的建议,同工酶是由不同基 因编码的多肽链,或由同一基因转录生成的不 同mRNA所翻译的不同多肽链组成的蛋白质。
➢ 同工酶存在于同一种属或同一个体的不同组织 或同一细胞的不同亚细胞结构中,它使不同的 组织、器官和不同的亚细胞结构具有不同的代 谢特征。这为同工酶用来诊断不同器官的疾病 提供了理论依据。
目录
金属离子是最多见的辅助因子 ➢ 金属酶(metalloenzyme) 金属离子与酶结合紧密,提取过程中不 易丢失。 ➢ 金属激活酶(metal-activated enzyme) 金属离子为酶的活性所必需,但与酶的 结合不甚紧密。
目录
➢ 金属离子的作用: 参与催化反应,传递电子; 在酶与底物间起桥梁作用; 稳定酶的构象; 中和阴离子,降低反应中的静电斥力等。
LDH4 HM3
1
6
11.7 16 0
5
1
27 20
LDH5 M4
0
0
5.7 79 0
12 0
56 5
意义:
生理及临床意义
➢在代谢调节上起着 酶
活
重要的作用
性
➢解释发育过程中阶
段特有的代谢特征
➢同工酶谱的改变有
助于对疾病的诊断
➢可以作为遗传标志 用于遗传分析研究
心肌梗死酶谱
正常酶谱 肝病酶谱
12
3
45
所含的维生素
氢原子(质子)
醛基 酰基
NAD+(尼克酰胺腺嘌呤二核 苷酸,辅酶I NADP+(尼克酰胺腺嘌呤二 核苷酸磷酸,辅酶II FMN(黄素单核苷酸) FAD(黄素腺嘌呤二核苷酸) TPP(焦磷酸硫胺素) 辅酶A(CoA) 硫辛酸
尼克酰胺(维生素PP)之一
尼克酰胺(维生素PP)之一
维生素B2(核黄素) 维生素B2(核黄素) 维生素B1(硫胺素) 泛酸 硫辛酸
肌酸激酶 (creatine kinase, CK) 同工酶
目录
第二节 酶的工作原理
The Mechanism of Enzyme Action
目录
酶与一般催化剂的共同点: ➢ 在反应前后没有质和量的变化; ➢ 只能催化热力学允许的化学反应; ➢ 只能加速可逆反应的进程,而不改变反应 的平衡点。
➢ 活性中心内的必需基团
结合基团 (binding group) 与底物相结合
催化基团 (catalytic group) 催化底物转变成产物
➢ 活性中心外的必需基团
位于活性中心以外,维持酶活性中心应有 的空间构象和(或)作为调节剂的结合部位所 必需。
目录
活性中心以外 的必需基团
结合基团
底物 催化基团 活性中心
心肌梗死和肝病病人血 清LDH同工酶谱的变化
举例 1
HH HH
LDH1 (H4)
HH HM
LDH2 (H3M)
HH MM
LDH3 (H2M2)
HM MM
LDH4 (HM3)
乳酸脱氢酶的同工酶
MM MM
LDH5 (M4)
目录
举例 2
BB
MB
CK1(BB) CK2(MB)
脑
心肌
MM
CK3(MM) 骨骼肌
酶的概念
➢目前将生物催化剂分为两类:
酶 、 核酶(脱氧核酶)
➢酶是一类对其特异底物具有高效催化作用 的蛋白质。
目录
酶学研究简史
➢1926年,Sumner首次从刀豆中提纯出脲酶 结晶 (deoxyribozyme)。
➢1982 年 , Cech 首 次 发 现 RNA 也 具 有 酶 的 催 化活性,提出核酶(ribozyme)的概念。
人LDH同工酶谱:
(LDH活性的百分数% )
LDH 亚基 红细 白细 血清 骨骼 心肌 肺
肾
肝
脾
同工 组成 胞
胞
肌
酶
LDH14 43 2
10
LDH2 H3M 44
49
34.7 0
24 34 44 4
25
LDH3 H2M3 12
33
20.9 5
3
35 12 11 10
烷基 二氧化碳
钴胺素辅酶类 生物素
维生素B12 生物素
氨基
磷酸吡哆醛
甲基、甲烯基、甲炔基、 四氢叶酸 甲酰基等一碳单位
吡哆醛(维生素B6之一) 叶酸
目录
辅酶中与酶蛋白共价结合的辅酶又称为辅基 (prosthetic group)。
辅基和酶蛋白结合紧密,不能通过透析或超 滤等方法将其除去,在反应中不能离开酶蛋 白,如FAD、FMN、生物素等。
溶菌酶的活性中心
➢ 溶菌酶的活性中心 是一裂隙,可以容 纳肽多糖的6个单 糖基(A,B,C, D,E,F),并与 之 形 成 氢 键 和 van derwaals力。
➢ 催 化 基 团 是 35 位 Glu,52位Asp;
➢ 101位Asp和108位 Trp是结合基团。
目录
三、同工酶
定义 同工酶 (isoenzyme)是指催化相同的化
目录
小分子有机化合物是一些化学稳定的小分子 物质,称为辅酶 (coenzyme)。 ➢ 其主要作用是参与酶的催化过程,在反应中 传递电子、质子或一些基团。 ➢ 辅酶的种类不多,且分子结构中常含有维生 素或维生素类物质。
目录
某些辅酶(辅基)在催化中的作用
转移的基团
小分子有机化合物(辅酶或辅基)
名称
➢1995年,Jack W.Szostak研究室首先报道了 具有DNA连接酶活性DNA片段,称为脱氧 核酶(deoxyribozyme)。
目录
第一节
酶的分子结构与功能
The Molecular Structure and Function of Enzyme
目录
目录
目录
全酶分子中各部分在催化反应中的作用: ➢ 酶蛋白决定反应的特异性 ➢ 辅助因子决定反应的种类与性质
目录
二、酶的活性中心是酶分子中执行 其催化功能的部位
必需基团(essential group) 酶分子中氨基酸残
基侧链的化学基团中, 一些与酶活性密切相关 的化学基团。
目录
酶的活性中心 (active center) 指必需基团在空间结构上彼此靠近,组
成具有特定空间结构的区域,能与底物特异 结合并将底物转化为产物。
目录
三、 同工酶(isoenzyme)
举例:
乳酸脱氢酶的五种同工酶
组成 名称
HH HH
H4 LDH1
HH HH H M MM
H3M LDH2
H2M2 LDH3
HM MM
MM MM
HM3 LDH4
M4 LDH5
什么是? 指催化相同的化学反应,而酶蛋白
(一同三不同) 的分子结构理化性质乃至免疫学性
质不同的一组酶。
学反应,而酶蛋白的分子结构理化性质乃 至免疫学性质不同的一组酶。
目录
➢ 根据国际生化学会的建议,同工酶是由不同基 因编码的多肽链,或由同一基因转录生成的不 同mRNA所翻译的不同多肽链组成的蛋白质。
➢ 同工酶存在于同一种属或同一个体的不同组织 或同一细胞的不同亚细胞结构中,它使不同的 组织、器官和不同的亚细胞结构具有不同的代 谢特征。这为同工酶用来诊断不同器官的疾病 提供了理论依据。
目录
金属离子是最多见的辅助因子 ➢ 金属酶(metalloenzyme) 金属离子与酶结合紧密,提取过程中不 易丢失。 ➢ 金属激活酶(metal-activated enzyme) 金属离子为酶的活性所必需,但与酶的 结合不甚紧密。
目录
➢ 金属离子的作用: 参与催化反应,传递电子; 在酶与底物间起桥梁作用; 稳定酶的构象; 中和阴离子,降低反应中的静电斥力等。
LDH4 HM3
1
6
11.7 16 0
5
1
27 20
LDH5 M4
0
0
5.7 79 0
12 0
56 5
意义:
生理及临床意义
➢在代谢调节上起着 酶
活
重要的作用
性
➢解释发育过程中阶
段特有的代谢特征
➢同工酶谱的改变有
助于对疾病的诊断
➢可以作为遗传标志 用于遗传分析研究
心肌梗死酶谱
正常酶谱 肝病酶谱
12
3
45
所含的维生素
氢原子(质子)
醛基 酰基
NAD+(尼克酰胺腺嘌呤二核 苷酸,辅酶I NADP+(尼克酰胺腺嘌呤二 核苷酸磷酸,辅酶II FMN(黄素单核苷酸) FAD(黄素腺嘌呤二核苷酸) TPP(焦磷酸硫胺素) 辅酶A(CoA) 硫辛酸
尼克酰胺(维生素PP)之一
尼克酰胺(维生素PP)之一
维生素B2(核黄素) 维生素B2(核黄素) 维生素B1(硫胺素) 泛酸 硫辛酸
肌酸激酶 (creatine kinase, CK) 同工酶
目录
第二节 酶的工作原理
The Mechanism of Enzyme Action
目录
酶与一般催化剂的共同点: ➢ 在反应前后没有质和量的变化; ➢ 只能催化热力学允许的化学反应; ➢ 只能加速可逆反应的进程,而不改变反应 的平衡点。