模糊数学试题(A)
模糊数学试题
华南理工大学研究生课程考试《 模糊数学 》样卷注意事项:1. 所有答案请按要求填写在答题纸上; 2. 课程代码:(S0003006)3.考试形式:闭卷( √ ) 开卷( ) 开闭卷结合( ) 4. 考试类别:博士研究生(√ ) 硕士研究生(√ )5. 试卷共 十二大题,满分100分,考试时间150分钟。
一、填空题1.设论域U={u 1,u 2,u 3,u 4,u 5},F 集A=(0.5,0.1,0,1,0.8), B=(0.1,0.4,0.9,0.7,0.2),则(A ⋃B)C =_______________。
2.设论域R=[0,3],且01112(),()213323xx x x A x B x x x x x ≤≤-≤≤⎧⎧==⎨⎨-<≤-<≤⎩⎩ 则它们的黎曼贴近度N(A,B)=_______________________。
3.0.410.70.510.62,323=_______123234=++=++⨯设,则。
4. 设A =[3,9], B =[7,10],则A +B = ,A ⨯B = 。
5.设论域U={1,2,…,10},且 0.20.40.60.811110.80.60.40.2[],[]4567891012345=++++++=++++大小 则[不大也不小]=_____________________________。
二、判断题(请在每小题的括号内认为正确的打“√”错误的打“⨯”) 1.λ≤μ ⇒ A λ ⊇A μ ( )2(A λ)c =(A c )λ ( ) 3 若A ⊆ B ⊆ C , 则N (A ,C ) ≤ N (A ,B )∨N (B ,C ) ( ) 4 若R 1⊆S 1, R 2⊆S 2,则 R 1∪R 2 ⊆ S 1∪S 2 ( ) 5 R∪R c = E ( )三、简答题(10分)1. 请写出隶属度函数的确定有哪几种方法。
2. 比较普通集合与模糊集合的异同。
模糊综合评价法及例题
指标
很好
好
一般
差
疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )
东北大学模糊数学试题
东北大学考试试卷(A B 卷) 2007 — 2008学年 第2学期课程名称:模糊数学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 共计10分) 12345{,,,,}U u u u u u =,F 模糊集(0.5,0.1,0,1,0.8)A =,(0.1,0.4,0.9,0.7,0.2)B =,(0.8,0.2,1,0.4,0.3)C =。
则_________A B ⋃=___________A B ⋂=()____________A B C ⋃⋂=_________c A =2. 设论 域{,,,,}U a b c d e =,有{}0.70.8{,}0.50.7{,,}0.30.5{,,,}0.10.3{,,,,}00.1d c d A c d e b c d e a b c d e λλλλλλ<≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪≤≤⎪⎩F 集A =_________________5小题,每题12分) 设[0,10]U =为论域,对[0,1]λ∈,若F 集A 的λ截集分别为 [0,10]0[3,10]00.6[5,10]0.61[5,10]1A λλλλλλ=⎧⎪<≤⎪=⎨<<⎪⎪=⎩,求出:(1)(),[0,10]A x x ∈;(2)SuppA ;(3)KerA 2. 设F 集112340.20.40.50.1A x x x x =+++,212340.20.50.30.1A x x x x =+++,312340.20.30.40.1A x x x x =+++, 12340.60.30.1B x x x =++,21230.20.30.5B x x x =++,试用格贴近度判断12,i B B A 与哪个最接近。
3.设120.100.80.70.20.40.90.50,0.30.10.600.40.310.50.2R R ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求12121,,cR R R R R ⋃⋂4.设12345{,,,,}U u u u u u =,在U 上存在F 关系,使10.800.10.20.810.400.900.41000.10010.50.20.900.51R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求ˆR,并由此进行聚类分析,画出聚类分析图。
模糊数学例题大全
模糊数学例题大全标题:模糊数学例题大全模糊数学,又称为模糊性数学或者弗晰数学,是一个以模糊集合论为基础的数学分支。
它不仅改变了过去精确数学的观念,而且广泛应用于各个领域,从物理学、生物学到社会科学,甚至。
下面,我们将通过一些具体的例题来展示模糊数学的应用。
例1:模糊逻辑门在经典的逻辑门中,我们使用AND、OR和NOT等操作符来处理布尔值(0或1)。
然而,在现实世界中,很多情况并不是绝对的0或1。
例如,我们可以将“温度高”定义为大于25度,但24度是否算高呢?模糊逻辑门提供了更广泛的定义方式,允许我们使用模糊集合来描述这些边界情况。
例2:模糊聚类分析在统计学中,聚类分析是一种将数据集分类成几个组的方法,其中同一组内的数据点相似度高。
然而,在某些情况下,我们无法用精确的数值来描述数据点的相似度。
这时,模糊聚类分析就派上用场了。
它允许我们使用模糊矩阵来表示数据点之间的相似度,从而更准确地分类数据。
例3:模糊决策树在机器学习中,决策树是一种用于分类和回归的算法。
然而,在某些情况下,我们无法用精确的规则来描述决策过程。
这时,模糊决策树就派上用场了。
它允许我们在决策节点使用模糊规则来代替传统的布尔值规则,从而更好地模拟人类的决策过程。
例4:模糊控制系统在控制系统中,我们通常需要设计一个控制器来控制系统的行为。
然而,在某些情况下,系统的输入和输出并不是绝对的0或1。
这时,模糊控制系统就派上用场了。
它允许我们使用模糊集合来描述系统的输入和输出,从而更准确地控制系统的行为。
例5:模糊图像处理在图像处理中,我们通常需要分类、识别或分割图像中的对象。
然而,在某些情况下,图像中的对象边界并不清晰。
这时,模糊图像处理就派上用场了。
它允许我们使用模糊集合来描述图像中的对象边界,从而更准确地分类、识别或分割图像中的对象。
以上只是模糊数学众多应用的一小部分。
这个领域仍在不断发展,为解决各种复杂的现实问题提供了新的工具和方法。
通过学习模糊数学,我们可以更好地理解和处理那些边界模糊、难以用传统数学方法描述的问题。
模糊数学复习资料
2012/2013学年 第1学期 模糊数学 课程考核试卷 A □、B □课程代码:22000320 任课教师:陆秋君 考试形式: 开卷□、闭卷□ 课程性质:必修□、选修□、考试□、考查□、通识□、专业□、指选□、跨选□ 适用年级/专业 数学与应用数学 学分/学时数 2/32 考试时间 120 分钟 ……………………………………………………………………………………………………… 学号 姓名 专业 得分 1、 设X=[0,1],A(x)=X,试求(A ∪A c )(x) , (A ∩A c)(x)。
2、 已知: 2̃=0.41+12+0.73,3̃=0.52+13+0.64,而Z Z Z f →⨯:,2121*),(x x x x f ={},,,*⨯-+∈分别求出~~~~~~32,32,32⋅-+ 。
3、 已知A 、B ∈R ,A (x )={1,x =10,x ≠1,B (x )={1,x ∈[−1,1]0,x ∈̅[−1,1] ,对于α∈[0,1] ,求A α÷B α。
4、 设U 为无限域,A=⎰-Ux2ex,试求截集A 1e, A 1 , A 0 。
5、 ○1设A ,B ∈T (U ),A ⊆B ,λ∈[0,1],试证:A λ⊆B λ 。
○2设λ1,λ2∈[0,1],λ1<λ2,试证:λ1A ⊆λ2B ○3○1设A ∈T (U ),证明:A=A Uλλλ]1,0[∈6、已知A的λ-截集分别为A0.1={u1,u2,u3,u4,u5,u6,u7,u8}, A0.2={u2,u3,u4,u6,u7,u8},A0.3={u2,u3,u6,u7,}, A0.9={u3,u6,u7,},A1={u6},试用分解定理求出A的模糊集。
7、设A,B∈f(x),且A,B是凸fuzzy集,试证A∩B也是凸fuzzy集。
8、设论域U={2,1,7,6,9},A=0.12+0.31+0.57+0.96+19,分别计算其Hamming模糊度,Euclid模糊度,fuzzy熵。
模糊数学考试题
模糊数学考试题一、选择题(每题1分,共30分)1. 模糊集合最早由哪位数学家引入?A. George KlirB. Lotfi ZadehC. Zadeh LotfiD. George Boole2. 模糊逻辑的基本操作是?A. 与、或、非B. 加、减、乘、除C. 并、交、差D. 集合的包含与被包含3. 模糊集合的隶属函数的取值范围是?A. [0,1]B. [0,∞)C. (0,1)D. (0,∞)4. 以下哪个是模糊推理的方法?A. BP神经网络B. 遗传算法C. 最大似然估计D. 模糊推理算法5. 模糊数学最初的应用领域是?A. 人工智能B. 控制理论C. 图像处理D. 统计学...二、填空题(每题2分,共20分)1. 模糊数学是基于()集合理论的一种数学理论。
2. 模糊逻辑中,非真即()。
3. 模糊集合的隶属函数可用()函数来表示。
4. 模糊数学中,我们用模糊关系来描述()。
5. 模糊数学最重要的应用之一是在()理论中。
...三、问题解答题(每题15分,共60分)1. 简述模糊集合的定义和特点。
模糊集合是指在给定的范围内,每个元素都具有一定的隶属度,是介于完全属于和完全不属于之间的中间状态。
模糊集合的隶属度用隶属函数表示。
与传统集合不同,模糊集合的元素可以部分属于集合,这种模糊边界的概念反映了现实世界中存在的不确定性和模糊性。
2. 简述模糊逻辑的基本原理。
模糊逻辑是基于模糊集合理论的一种逻辑系统。
它以真值不再是二值(0或1)为基础,而是用模糊集合的隶属度来表示概率。
模糊逻辑中,逻辑运算包括模糊与、模糊或、模糊非等。
与传统逻辑相比,模糊逻辑更能应对真实世界中存在的不确定性和模糊性。
3. 简述模糊推理的基本方法。
模糊推理是根据给定的模糊规则和事实,通过运用模糊逻辑的方法进行推理推断。
模糊推理的基本方法包括模糊匹配、模糊推理和模糊控制。
其中,模糊匹配是将模糊规则中的条件与已知事实进行匹配;模糊推理是根据匹配的程度和隶属度进行推理;模糊控制是将推理的结果转化为对系统的控制动作。
模糊数学试卷
模糊数学(A 卷)一、填空题(5*5分)1、已知A={y|2x+1,x>0},B={y|y=-x*x+9,R x ∈},则cc B A )( =——。
2、 Nn n16∈+)(=_____。
3、设A={1,2,3,...,9},且A=~5=82.076.069.05149.036.022.0++++++,则 SuppA\KerA=_____.4、设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1.05.09.08.04.06.0S 3.07.01.02.08.01R ,,则S R =____. 5、设X={0,1,2,3,4,5},Y={a ,b ,c ,d}。
5x 4,3x 2,1,0x c b a x f ===⎪⎩⎪⎨⎧=,,,)(,A=48.034.023.0++,f(A)=____.二、判断题(5*3分)1、A 是fuzzy 集,X 是A 的论域,X A A C = 。
( )2、(a )→(b )是F 定理且(a )对x 为F 真,则(b )对x 为F 真。
( )3、若)(,X X F Q R ⨯∈,2121x x Q x R x Q R >∍∈∈∃⊆,,,。
( )4、若A 是自反的,则B A ⋃也是自反的。
( )5、若λ=0,则U A U A 一定等于,但∙=λλ。
( ) 三、(8分)~~~~~~3232,53.046.03125.011.03,41.037.021140.02.02∙+++++=++++=,求。
四、(8分)设U={a ,b ,c ,d},有1.003.01.05.03.07.05.08.07.018.0e}d c b {a e}d c {b e}d {c d}{c {d}A ≤≤≤<≤<≤<≤<≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧=λλλλλλφλ,,,,,,,,,,,,,,,,,求模糊集合A 。
五、(8分)设计一个压力控制器。
已知压力误差论域X={-3,-2,-1,0,1,2,3},控制量论域Y={-2,-1,0,1,2}。
模糊数学习题解答
3. 证明: (2) 设n m ij n m ij b B a A ××==)(,)(,则ij ij ij ij ij ij ij ij a b a b b a b a B A =∧⇔=∨⇔≤⇔⊆。
即A B A B B A B A =∩⇔=∪⇔⊆(4) 设,则,。
故,)(n m ij a A ×=,)()(n m ij a A ×=λλm n ij T c A ×=)()(λ11)(=⇔≥⇔=λλji ji ij a a c 00)(=⇔<⇔=λλji ji ij a a c T T A A )()(λλ=5. 证明:先用归纳法证A B B A k k o o =,事实上,k =1时成立,设k=n 时成立,即A B B A n n o o =, k=n+1时,B A B B B A B A n n n o o o o o ==+1,A B A B B n n o o o 1+==,故有A B B A k k o o =再证。
事实上,k =1时成立,设k=n 时成立,即k k k B A B A o o =)(n n n B A B A o o =)( k=n+1时, B B A A B A B A B A B A B A n n n n n n o o o o o o o o o o ===+)()()(111++=n n B A o 。
故有k k k B A B A o o =)(6. 证明:用归纳法。
m =1时成立,设m=n 时成立,m=n +1 时,11)()()()()(++∪∪∪=∪∪∪∪=∪∪=∪n n n n A A I A I A A I A I A I A I L o L o 故m=n +1 时成立。
所以有m m A A I A I ∪∪∪=∪L )(8. 证明:设,由A, B 都是模糊自反矩阵,,所以,,n n ij n n ij b B a A ××==)(,)(1,1==ii ii b a 1=∨ii ii b a 1=∧ii ii b a 1)()(=∧≥∧∨ii ii ki ik b a b a ,又,因此有1)(≤∧∨ki ik b a 1)(=∧∨ki ik b a 。
模糊数学R09A卷
模糊数学 (R09卷)注意:凡答题过程中涉及贴近度运算的,一律用公式c B A B A B A )()(),(⊙∧= σ一、填空题(本题共 10 个空,每空 3 分,共计 30 分)1.},,,,{54321u u u u u U =,模糊集)4.0,5.0,6.001(,,=A ,5325.06.01.0u u u B ++=,则 ______________,__________________________,__________====B A B A B A A c c ⊙ 2.设论域U 实数域,模糊集⎰-=Uxx e A 2,则截集1A =___________________ e A 1=______________。
3.论域},,{321x x x U =,三个模糊子集分别为:社交能力强)2.0,3.0,8.0(=A ,社交能力一般)3.0,6.0,2.0(=B ,社交能力弱)9.0,1.0,0(=C ,则三人中社交能力一般的是________4.设R R f →:( 实数域),2)(x x f =,且⎪⎩⎪⎨⎧≤<-≤<-=其他,043,432,2)(x x x x x A ,则=)(A f _____________5.设},,{321u u u U =,},,,{4321v v v v V =,如果论域U 到V 的模糊关系是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1.014.0019.03.01.005.012.0R ,则 =}),({21u u T R ______________________________________, 若3218.05.02.0u u u B ++=,则=)(B T R _________________________________ 二、解答题(本题共三小题,每小题 8 分,共计 24 分)1. 叙述并证明模糊集的分解定理。
2.三人参加考试,甲的考试成绩分为94,82,75,87;乙的考试成绩分为95,76,83,88;丙的考试成绩分为92,78,84,91,综合这四科成绩,择优录取应该录取谁?(90分以上为优秀,70--80为良好,60分以下为差)。
模糊数学例子
模糊识别作业一各个湖水评价等级(由极贫营养到极富营养)其隶属函数依次如下:44110341)(≥<<≤⎪⎩⎪⎨⎧-=x x x x x A μ ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=0192331)(xx x B μ 2323441≥<<≤<x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧--=087110194)(C x x x μ 其他234234<<≤<x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=0550660323)(D xx x μ 其他66011011023<<≤<x x其他66066011001550101)(>≤<⎪⎪⎩⎪⎪⎨⎧-=x x x x B μ试借助最大隶属原则,依据湖水总磷含量确定各个湖湖水的等级。
模糊识别作业二现有茶叶等级标准样品五种:EBA,其中放映茶叶质量的因素CD论域为U,{}条索=U。
假设各个等级的模糊色泽汤色香气滋味净度集为:5.0(=A4.05.03.0)4.06.03.0(B=2.02.02.0)2.01.02.02.0(=C2.0)2.01.01.00(=D1.02.0)1.01.01.00(E1.0=1.01.0)1.01.0现有一样品,其模糊集为:4.0(L=2.0)6.01.05.04.0试依据择近原则确定该样本属于哪一等级。
模糊聚类分析作业一下表表示的是某地区12个县从1981—1990年的降水量,试根据以下数据,按降水量将12个县进行分类。
通过数据标准化,构建模糊相似矩阵,合成模糊等价矩阵,基于模糊等价矩阵,选取适当的λ值,进行模糊聚类分析,给出分类结果。
模糊聚类分析作业二下表是2002年安徽省各地市工业企业效益指标利用C均值进行聚类分析,给出分类结果。
模糊综合评价作业一下表反映的是上海,北京,天津,云南的科技技术进步情况,请进行综合评价,确定这四个地区的排名。
根据相对偏差模糊矩阵评价方法进行综合评价,确定排名。
模糊关系例题
选择题在模糊关系中,如果A与B的相似度为0.6,B与C的相似度为0.8,那么A与C的相似度可能为:A. 0.2B. 0.4C. 1.0D. 无法确定(正确答案)下列哪个选项不是模糊关系的特点?A. 精确性(正确答案)B. 不确定性C. 连续性D. 模糊性若两个元素在模糊关系中的隶属度为0.5,这意味着:A. 两个元素完全相关B. 两个元素完全不相关C. 两个元素部分相关(正确答案)D. 两个元素关系未知在模糊集合中,一个元素对于集合的隶属度取值范围是:A. {0, 1}B. [0, 1](正确答案)C. (-∞, +∞)D. {0} 或{1}模糊关系矩阵中的元素表示的是:A. 元素之间的精确关系B. 元素之间的模糊关系(正确答案)C. 元素之间的逻辑关系D. 元素之间的数量关系如果A与B的模糊关系为“非常相似”,那么A与B的隶属度可能接近于:A. 0.0B. 0.5C. 1.0(正确答案)D. -1.0在模糊逻辑推理中,如果“A是B”的隶属度为0.7,“B是C”的隶属度为0.6,那么“A是C”的隶属度:A. 一定为0.42B. 一定小于0.6C. 无法确定具体值(正确答案)D. 一定大于0.7下列哪个选项描述了模糊关系与经典关系的区别?A. 模糊关系允许元素部分属于集合,经典关系不允许(正确答案)B. 模糊关系只涉及数字,经典关系只涉及文字C. 模糊关系没有实际应用,经典关系有广泛应用D. 模糊关系比经典关系更简单在模糊关系图中,如果两个节点之间的连线越粗,通常表示:A. 两个节点之间的距离越近B. 两个节点之间的相似度越低C. 两个节点之间的模糊关系越强(正确答案)D. 两个节点之间的逻辑关系越明确。
模糊数学试题精选全文
可编辑修改精选全文完整版华南理工大学研究生课程考试《 模糊数学 》样卷注意事项:1. 所有答案请按要求填写在答题纸上; 2. 课程代码:(S0003006)3.考试形式:闭卷( √ ) 开卷( ) 开闭卷结合( ) 4. 考试类别:博士研究生(√ ) 硕士研究生(√ )5. 试卷共 十二大题,满分100分,考试时间150分钟。
一、填空题1.设论域U={u 1,u 2,u 3,u 4,u 5},F 集A=(0.5,0.1,0,1,0.8), B=(0.1,0.4,0.9,0.7,0.2),则(A ⋃B)C =_______________。
2.设论域R=[0,3],且01112(),()213323xx x x A x B x x x x x ≤≤-≤≤⎧⎧==⎨⎨-<≤-<≤⎩⎩则它们的黎曼贴近度N(A,B)=_______________________。
3.0.410.70.510.62,323=_______123234=++=++⨯设,则。
4. 设A =[3,9], B =[7,10],则A +B = ,A ⨯B = 。
5.设论域U={1,2,…,10},且 0.20.40.60.811110.80.60.40.2[],[]4567891012345=++++++=++++大小 则[不大也不小]=_____________________________。
二、判断题(请在每小题的括号内认为正确的打“√”错误的打“⨯”) 1.λ≤μ ⇒ A λ ⊇A μ ( )2(A λ)c =(A c )λ ( ) 3 若A ⊆ B ⊆ C , 则N (A ,C ) ≤ N (A ,B )∨N (B ,C ) ( ) 4 若R 1⊆S 1, R 2⊆S 2,则 R 1∪R 2 ⊆ S 1∪S 2 ( ) 5 R∪R c = E ( )三、简答题(10分)1. 请写出隶属度函数的确定有哪几种方法。
模糊数学(学生)-论文试卷模板
命题人签字:系主任签字:审核院长签字:
聊城大学数学科学学院14—15学年第一学期期末考试2011级《模糊数学》试题(论文)
任课教师:李令强
学生人数:188
课程类型:专业方向课
教学内容:
1、模糊集理论综述、模糊集理论的基本概念、模糊集理论的扩展、模糊测度与模糊化的程度
2、操作系统部分:模糊集的扩张准则及其应用、模糊关系与模糊图、模糊分析、模糊集与概率
教学目的:
1、通过本课程的学习,使学生对模糊控制学的原理和思想方法有一个完整的认识
2、掌握应用模糊集理论分析和解决问题的基本技巧,并为理工科学生应用模糊控制学知识解决实际问题打下基
础。
论文题目:(要求有选择性,不少于三个题目)
1.模糊数学的产生与发展
2.模糊数学在其它学科中的应用
3.模糊数学之我见
4.模糊聚类分析
5.模糊综合评判
6.模糊决策………
论文要求:
1.以教材为基础,并积极利用图书馆和网络资源对内容进行拓展
2.结构严谨、语言流畅,能把握论文主题
3.字迹工整,字数不少于2500字,也不要太多,太多的话适当删减
选题不限, 只要与模糊数学有关的,最好是,模糊聚类或者模糊评判问题,但是一定是论文的形式.
相互之间尽量不要重复。
北京理工大学数学专业模糊数学期末试题(MTH17077)汇编
课程编号:MTH17077 北京理工大学2013-2014学年第二学期2011级模糊数学期末试题(本卷推断为2011级试题)一、(15分)设论域为实数集,(),A B F ∈,()(),011,122,12,3,230,0,x x x x A x x x B x x x ≤≤-≤≤⎧⎧⎪⎪=-≤≤=-≤≤⎨⎨⎪⎪⎩⎩其它其它,(1)写出0.60.7,A A ∙;(2)求,c AB A 的隶属函数;(3)求A 与B 的内积,外积,格贴近度。
二、(10分)设H 是实数集R 上的集合套,已知()(),0,1H λλ⎡=∈⎣,令()[]0,1A H λλλ∈=。
(1)求ker ,A SuppA ;(2)求A 的隶属函数()A x 。
三、(10分)设余三角范式S 的表达式为(),S a b a b ab =+-,求与S 对偶的三角范式T 的表达式(),T a b 。
四、(15分)已知{}123456,,,,,X x x x x x x =,R 是X 上的模糊关系。
110.70.40.60.60.610.60.40.60.60.70.710.40.60.60.60.60.610.60.60.610.60.410.60.60.70.60.40.61R ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1)判断R 是否是模糊拟序矩阵,说明理由;(2)依据R 对X 进行分类(要求写出对应各阈值λ的分类以及类间偏序关系)。
五、(10分)设{}{}1231234,,,,,,X x x x Y y y y y ==,R 是X 到Y 的模糊关系,0.70.510.90.20.40.60.810.20.60R ⎛⎫⎪= ⎪ ⎪⎝⎭。
(1)求R 在X 中的投影X R ,R 在3x 处的截影3x R ;(2)设R T 为R 诱导的模糊变换,{}23,A x x =,求()R T A 。
六、(15分)设论域为实数集R ,已知()()()2,,,x f x x A F A x e x -=∈=∈。
模糊综合评价法及例题62068
0 .80 .80 .70 .3
精选ppt
24
算子
▪ (4) M(•,)
skm 1 i,nmjrjk , k1,2, ,n
j 1
(0.3
0.3
0.4)
0.5 0.3
0.3 0.4
0.2 0.2
0 0.1
0.2 0.2 0.3 0.2
0 .80 .80 .70 .3
精选ppt
25
模糊综合评价
▪ 以上四个算子在综合评价中的特点是
精选ppt
26
模糊综合评价
▪ 最后通过对模糊评判向量S的分析作出综合结 论.一般可以采用以下三种方法:
▪ (1) 最大隶属原则 M mS a 1,S x 2, (,S n)
▪ (2) 加权平均原则
n
(
i
)
s
k i
u * i1 n
S 0 .3 ,0 .3 ,0 .3 ,0 .2
s
k i
i 1
评价等级集合为={很好,好,一般,差},各等级赋值分别为{4,3,2,
1}
40.330.320.310.22.64
0.30.30.30.2
n
ci
s
k i
(3) 模糊向量单值化
精选ppt
c
i1 n
s
k i
27
i1
模糊综合评价
▪ 某地对区级医院2001~2002年医疗质量进行 总体评价与比较,按分层抽样方法抽取两年 内某病患者1250例,其中2001年600例, 2002年650例.患者年龄构成与病情两年间 差别没有统计学意义,观察三项指标分别为 疗效、住院日、费用.规定很好、好、一般、 差的标准见表1,病人医疗质量各等级频数分 布见表2.
2014模糊数学考试题
西北工业大学研究生院学 位 研 究 生 课 程 考 试 试 题考试科目:模糊数学 课程编号:105012 考试时间:2014年1月13日 说 明:所有答案必须写在答题册上,否则无效。
共4页 第1页一.填空题 (14空×2分,共28分)1、设~~B A ,是论域U 上的模糊子集,则~~B A 和~~B A 的隶属函数分别是 =)(~~u B A μ ,=)(~~u B A μ 。
2、设[]10,=U ,~A ,2)(u u =则=)(u A c ~____________,( ~A c A ~)(u )=_____________,~(A c A ~)(u)=________________,~(A cA ~)(21)=_________。
3、设给定模糊矩阵R=(r ij ), 对于任意的λ∈[0,1],记R λ=(λr ij ) , 其中λr ij = ,则称R λ=(λr ij )为R 的λ截矩阵. 4、模糊矩阵R=n n ij r ⨯)(如果满足自反性 ,对称性 ,传递性 , 就称R 是一个 。
5、设论域U={n u u u ,...,,21},~A ,~B ∈)(U F ,其绝对欧氏距离、相对欧氏距离及欧氏模糊度分别定义为e(~A ,~B )= ,ε(~A ,~B )= ,=)(~A D .二、计算题(3题×10分,共30分)1、 设},,,,{54321u u u u u U =,)8.0,1.0,3.0,4.0,7.0(~=A ,)6.0,5.0,1.0,9.0,2.0(~=B , 请分别求出c A ~与~A c B ~。
2、设~A =ed c b a 17.06.05.03.0++++,求5.0A 与1A 。
3、已知论域},,{z y x U =,)1.0,7.0,4.0(~=A ,)8.0,6.0,5.0(~=B ,分别求出绝对海明距离),(~~B A d 和相对海明距离),(~~B A δ.三、证明题(2题×10分,共20分)1、设R ,S 同为m 行n 列的模糊矩阵,证明λλλS R S R =)(2、若Q ,R 是模糊等价矩阵,证明Q R 也是模糊等价矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京工业大学 模糊数学与控制 试题(A )卷(闭)
2009-20010学年 第一学期 使用班级 信科0701
班级 学号 姓名
一 填空题(共36分)
1 处理现实对象的数学模型可分为三大类: , , 。
2 设论域{}54321,,,,u u u u u U =,F
集5
3215
.017.02.0u u u u A +
++=
,F 集5
4217
.01.03.05.0u u u u B +
++=
,则=B A ,=B A , =C A 。
3 设论域[]1,0=U , ,)(u u A =则=)(C A A ,
=)(C A A 。
4 设U 为无限论域,F 集⎰-=U x
x e A 2
,则截集e
A 1= ,=1A 。
5设论域{}54321,,,,u u u u u U =,F 集5
43211
5.07.01.03.0u u u u u A +
+++=
,F 集5
4319
.04.08.03.0u u u u B +
++=
,则=B A ,=ΘB A ,格贴近度=),(B A N 。
6 设21,R R 都是实数域上的F 关系,2
)(1),(y x e y x R --=,)
(2),(y x e y x R --=,则
=)1,3()(21C R R ,=)1,3)((21C
C R R 。
7
设
论
域
{}
321,,u u u U =,
{}4321,,,v v v v V =,
)
(V U F R ⨯∈,且
⎪⎪⎪⎭
⎫ ⎝⎛=6.005.04.02.03.0101.007.02.0R ,3
217.03.01.0u u u B +
+=则=3
v R ,=)(B T R 。
8 设变量z y x ,,满足
⎩⎨
⎧
-≤≥1
11a z a x 且或⎪⎩
⎪
⎨⎧
≥-≤≥≥11111a
z a z a y a x 或且且时,为使
1),,(a z y x f ≥,此时函数),,(z y x f 的表达式为 。
二(12分) 设[]10,0=U ,对[]1,0∈λ,若F 集A 的λ截集分别为[][][][]1
1
53
530010,510,510,310,0=<<≤<=⎪⎪⎩⎪⎪⎨⎧=λλλλλλA
求出:(1)隶属函数)(x A ;(2)SuppA ;(3)KerA 。
三(10分) 在运动员心力选材中,以“内-克”表的9个指标为论域,即
{}t n v s s r r m m U ,,,,,,,,212121=,已知某类优秀运动员
t
n v s s r r m m E 99
.097.099.093.094.096.095.084.083.0212121+
+++++++=
以及两名选手t
n v s s r r m m A 86
.094.065.095.084.0178.096.086.02121211+
+++++++=
t
n v s s r r m m A 99
.077.088.092.093.09.089.099.099.02121212+
+++++++=
, 试按贴近度∑∑==∨∧=
n
k k k
n
k k k
x B x
A x
B x A B A 11
))
()(())
()((),(σ,对两名运动员做一心理选材。
四(12分) 根据某地区1972-1978年作物赤霉病的有关历史资料,可得模糊相似矩阵
⎪⎪
⎪
⎪⎪⎪
⎪
⎪⎪
⎭
⎫
⎝⎛=135.0136.044.0127.065.038.01
79.035.052.023.0101.052.066.081.015.0179.045.039.035.069.011.01R , 试用传递闭包法按病害程度对7年进行分类。
五 (10分)以高效教师晋升教授为例:
(1)因素集{}4321,,,u u u u U =,其中1u :政治表现及工作态度;2u :教学水平;3u :科研水平;4u :外语水平。
(2)评判集{}54321,,,,v v v v v V =,其中1v :好; 2v :较好;3v :一般;4v :较差;5v :差。
(3)评判矩阵⎪⎪⎪⎪⎪
⎭
⎫ ⎝⎛=14.014.014.029.029.014
.014.072.000000
14.086.000
14.029.057.0R 以教学为主的教师,给出权重()2.0,1.0,5.0,2.01=A ,现进行综合评判。
六(10分)化简(1)43211432132142x x x x x x x x x x x x x x f +++= (2)332113221132132x x x x x x x x x x x x x x x f +++=
七(10分) 证明:R 是传递的F 关系的充要条件是2
R R 。
.。