结构力学第三章习题及答案

合集下载

结构力学 朱慈勉 第3章课后答案全解

结构力学 朱慈勉 第3章课后答案全解

结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。

(a)2P F a 2P F a4P F Q34P F 2P F(b)aa aaa2m6m2m4m2m2020Q10/326/310(c)18060(d)3m2m2m3m3m4m3m2m2m2mA2m 2m2m2m7.5514482.524MQ3-3 试作图示刚架的内力图。

(a)242018616MQ18(b)4kN ·m3m3m6m1k N /m2kN A CBD6m10kN3m3m 40kN ·mABC D30303011010QM 210(c)45MQ(d)3m3m6m6m2m 2m444444/32MQN(e)4481``(f)4m4m2m3m4m222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。

(a)F P(b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。

lx l lx28ql M2221()222116121618c B C BC C q ql M l x x qx xM M M M ql ql x ql x l=-+===∴=∴=∴=中F D()2ql x -3-6 试作图示刚架的弯矩和剪力图。

(a)9090405M2B 209(4.53)645()0.5209459405,135()453135,0.5209900.520990F F E E CF CD BA R R M R M M M ⨯⨯-=⨯∴=↑=⨯⨯-⨯==↑=⨯==⨯⨯==⨯⨯=对点求矩14.25424213.5 1.50.2525.75A 72425 2.50.5()C 420.524 4.25()3.5(),0.25()5.752.1,24 4.253.752.5E K B B B B A A EF K M M R R H H V H Q Q =⨯-⨯⨯==⨯+⨯=⨯+⨯⨯=⨯→=-↓⨯⨯+⨯=⨯→=→∴=↑=←===⨯-=左对点求矩:对点求矩:2 2.1(c)80/3Q8080380,61603330():(2023304)/2120():61201030420211320()380()3DA ED C C B B A M M H F V A V V V =⨯==⨯==←=⨯⨯+⨯=↑⨯+⨯=⨯+⨯⨯∴=-↓∴=↑对点求矩对点求矩(d)8/34/388414233:41614284()4:441426()38(),03DAB BB BA AMA V VC H HH V=⨯-⨯⨯=⨯⨯+⨯⨯=⨯→=↑⨯-⨯⨯=⨯→=←∴=←=对点求矩对点求矩(e)2FaF2Fa2FaF F F2F----+2Fa2Fa2FaM Q02(),020322222(),2()4(),0C B p E B FB P H P FH P F PD P DM V F M H VM F a a H F a V aH F V FH F V=→=↑=→==→⨯+⨯=⨯+⨯∴=←=↓∴=→=∑∑∑(f)进一步简化BHIH8:4(),4()4(),4(),42810B BI I AH KN V KNH KN V KN M N m=→=↓=-←=-↑=⨯=•可知84 (g)2aqa22221.5()21.50 1.5()0,, 1.5C CA AGF GHHqaqa H a H qaqa a H a H qaH M qa M qa+=⨯→=→⨯+⨯=→=-←===对点求矩:对F点求矩:。

结构力学 第三章 作业参考答案

结构力学 第三章 作业参考答案

B
M图(kN m)
(1) (2)
解: (1)求支座反力
∑M = 0 ∑F = 0
A y
取左边或者右边为隔离体,可得:
∑M ∑F
x
C
=0
⇒ FBx =
M h
(3) (4)
=0
最后容易做出结构的弯矩图。
3—18 试作图示刚架的 M 图。
C 0.8kN/m 0.5kN/m D E
14.625 4.225 12.8375
3—19 试作图示刚架的 M 图。
20kN
24 16
C
24
16
B FAx A FBy FAy
FBx
1m
2m
2m
2m
M图(kN m)
(1) (2) (3)
解:对整体:
∑M ∑F
y
A
=0
FBy × 4 + FBx ×1 = 20 × 2 FAy + FBy = 20 FAx − FBx = 0 FBx × 2 − FBy × 2 = 0
40kN m
10kN m M图(kN m)
32.5kN
20kN
20kN F(kN) S
解:求支座反力。取整体:
47.5kN
∑M ∑F
A
=0
FB × 8 − 20 ×10 − 10 ×10 × 3 − 40 = 0 FAy + FB − 10 ×10 − 20 = 0
然后即可做出弯矩图,利用弯矩图即可作出剪力图。
然后即可做出整个刚架的弯矩图。结点受力校核如下图。
D
qL 4 qL 2 qL 2
qL 4
qL 4
E
qL 2 qL 2

结构力学(王焕定第三版)教材习题第三章答案全解——哈工大老师提供

结构力学(王焕定第三版)教材习题第三章答案全解——哈工大老师提供

结构力学(王焕定第三版)教材习题答案全解第三章习题答案3-1 (a) 答:由图(a )、(b )可知结构对称(水平反力为零)荷载对称,因此内力对称。

所以可只对一半进行积分然后乘以 2 来得到位移。

如图示F P R (1−cos θ)M P = θ∈[0,π/2];M =R sin θ θ∈[0,π/2]2 代入位移计算公式可得M P M1 π2 M P M2 π2 F P R (1−cos θ)∆Bx = ∑∫ EId s = 2⋅ EI ∫0EI R d θ= EI ∫02 R sin θR d θ=F P R 3 =(→)2EI3-1 (b) 答: 如图(a )、(b )可建立如下荷载及单位弯矩方程EIBARRF P( a )1pR ∆Bx =∑∫ MEIM d s =∫0π2 MEI P M R d θ= q EI 4∫0π2(1−2cos θ+cos 2 θ)R d θqR 4 ⎡ θ 1⎤3π⎞ qR 4= EI ×⎢θ−2sin θ+ 2 + 4sin2θ⎥⎦0 =⎝⎜ 4 − 2⎠⎟ 2EI (→)2 ⎣3-2 答:作M P 图和单位力弯矩图如下图: 由此可得内力方程根据题意EI (x ) = EI (l + x )代入位移公式积分可得 2 2 P 0s i n ( ) d (1 c o s ) (1 c o s ) q M R q R M R θθ α α θθ − = = − = − ∫AqRBα θ1( a ) θ( b )ABlq 03 0 p 6 x q M M xl = = xP M 图2 0 6q l1lM 图 x5 83 82l 代入位移公式并积分(查积分表)可得M P M l 2 q0x4∆Bx =∑∫ EI d x =∫0 6EI(l + x) d x7q0l40.07 ql4= (ln 2−)× = (→)123EI EI3-3 答:分别作出荷载引起的轴力和单位力引起的轴力如下图所示:由此可得C 点的竖向为移为:F NP F N1F NP F N1 ∆Cy =∑∫EA d s=∑ EA l =65112.5 kN× ×6 m+2×(62.5 kN× ×5 m+125 kN× ×5 m+75 kN× ×6 m)= 88EA=8.485×10−4 m当求CD 和CE 杆之间的夹角改变使:施加如图所示单位广义力并求作出F N2 图,则F∆=∑∫ F NP EA F N2 ds =∑ NP EAF N2 l2×62.5 kN ×(−0.15)×5 m +(−112.5 kN)×0.25×6 m =EA=−1.4×10−4 rad( 夹角减小)3-4 (a)答:先作出M p和M 如右图所示。

结构力学下册第三章(部分)

结构力学下册第三章(部分)

D MB B
Me y1
FBx
AC 段:
FBy
M (x)
=
FA x

MA
=
⎜⎛ ⎝
F0
+
Me
+
MA 2a
+
MB
⎟⎞x ⎠

MA
∂M (x) = x ∂F0
∂M (x) = x −1 ∂M A 2a
∂M (x) = x ∂M B 2a
BD 段: M ( y1 ) = FBx y1 + M B = F0 y1 + M B
∫ ∫ (b)非线性杆的应变能密度

=
σdε
ε
=
Bε 1 2dε
ε
= 2 Bε 3 2 3
ΔAy
D
G ΔAx
相应的应变能表达式
∫ Vε
=
V vε dV
=
2 Bε 3 2 Al = 3
2BAl ⎜⎛ ε l ⎟⎞3 2 3 ⎝l⎠
=
2BAl ⎜⎛ Δl ⎟⎞3 2 3 ⎝l⎠
杆的变形和节点位移间的关系与(a)情况相同,故结构的应变能
Δ Ay
− Δ Axctg30°
sin 30° =
Δ Ay 2

3Δ Ax 2
∑ Vε =
应变能:
EA 2li
(Δli
)2
=
EA 2(2a)
⎜⎜⎝⎛
Δ Ay 2

3 2
Δ Ax
⎟⎟⎠⎞ 2
+
EA 2( 3a)
Δ2Ax
[( ) ] = EA 48a
9+6
3 Δ2Ax − 6

结构力学第三章习题参考解答

结构力学第三章习题参考解答

FAy 6 FAx 2 0
1 ql 2A
1 ql 4
取整体:M A 0
Fy 0
取AC: MC 0
取整体: Fx 0
l
l
0.45ql
FBy
1 2l
ql 3l 2
3 ql 4
FAy
ql
3 4
ql
1 4
ql
FAx
2 ql 2 l4
1 ql 2
FBx
1 ql 2
l 2
1 ql B2 3 ql 4
取左段
FNK
ql cos
3l 4
1 q 3 l 2 2 4
9 ql 2 32
D
C
q
3 ql
4
A
1 ql
l
4
1 ql
4
1 ql 4
3 ql
4
FQ KN
1 ql 2
E
4
1 ql 2 4
9 ql2 32
1 ql
B
4
ql 2 8
M KNm
l
1 ql
4
1 ql
4
1 ql
4
FN KN
1 ql2 4
1 ql 4
3-12解:
q C
q
3 ql
4
A
l
1 ql
B
4
Fy 0
FAy
1 ql 4
1 ql 4
l
l
1 ql
4
取BC:
MC 0
FBx
1 4
ql
取整体:
Fx 0
FAx
ql
1 ql 4
3 ql 4
AD段的最大弯矩 M x 3 qlx 1 qx2 dM 3 ql qx 0

结构力学章节习题及参考答案

结构力学章节习题及参考答案
(7)习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题2.1(6)图
习题2.2填空
(1)习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2)习题2.2(2)图所示体系为__________体系。
习题2-2(2)图
习题2.2(5)图
(6)习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题2.2(6)图
(7)习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题2.2(7)图
习题2.3对习题2.3图所示各体系进行几何组成分析。
习题2.3图
第3章静定梁与静定刚架习题解答
习题7.2(4)图
习题9.3用力矩分配法计算习题7.3图所示连续梁,作弯矩图和剪力图,并求支座B的反力。
(1)(2)
习题7.3图
习题9.4用力矩分配法计算习题7.4图所示连续梁,作弯矩图。
(1)(2)
习题7.4图
习题9.5用力矩分配法计算习题7.5图所示刚架,作弯矩图。
(1)(2)
习题7.5图
第11章影响线及其应用习题解答
习题11.1是非判断题
(1)习题8.1(1)图示结构BC杆轴力的影响线应画在BC杆上。( )
习题8.1(1)图习题8.1(2)图
(2)习题8.1(2)图示梁的MC影响线、FQC影响线的形状如图(a)、(b)所示。
(3)习题8.1(3)图示结构,利用MC影响线求固定荷载FP1、FP2、FP3作用下MC的值,可用它们的合力FR来代替,即MC=FP1y1+FP2y2+FP3y3=FR 。( )

结构力学第3章习题及参考答案

结构力学第3章习题及参考答案
(1)在 作用下A点的转角为
由此解得
按上述思路,再求C截面两侧的转角,为此作出单位弯矩图,如图(c)所示,则
3-15已测得在图示荷载作用下各点竖向位移为H点1.2 cm,G、I点0.1 cm,F、C、J点0.06 cm,D、B点0.05 cm。试求当10 kN竖向力平均分布作用于15个结点上时,H点的竖向位移。
3-6 (a)
解将悬臂梁在K截面切开,取左边部分,并将K截面内力作为荷载作用在K截面上,如图(a-1)所示。(a-1)所示结构悬臂端的竖向位移就是原结构K截面的竖向位移。作出(a-1)所示结构的Mp和 图,并将Mp图按荷载分解。图乘结果为
3-6 (b)

3-6 (c)

3-6 (d)

3-6 (e)

3-9试求图示刚架在温度作用下产生的D点的水平位移。梁为高度h=0.8m的矩形截面梁,线膨胀系数为 =10-5 oC-1。

3-10图示桁架各杆温度上升t,已知线膨胀系数 。试求由此引起的K点竖向位移。(画出需要的图)

*3-11图示梁截面尺寸为b×h=0.2m×0.6m,EI为常数,线膨胀系数为 ,弹簧刚度系数k=48EI/l3(l=2m)。梁上侧温度上升10℃,下侧上升30℃,并有图示支座移动和荷载作用。试求C点的竖向位移。

3-6 (f)
解(1)相对水平位移
(2)相对竖向位移
对称结构在对称荷载作用下的反对称位移等于零

3-7试求图示结构在支座位移下的指定位移。
3-7 (a)

3-7 (b)

3-8图示结构各杆件均为截面高度相同的矩形截面,内侧温度上升t,外侧不变。试求C点的竖向位移。线膨胀系数为 。

结构力学第五版03章习题课

结构力学第五版03章习题课
(a)① 分析体系的几何组成 次序,确定基本部分和附属部分。 该体系的组成次序为先固定 AC ,再固定 CE ,最后固定 EF 。 因此基本部分为 AC ,附属部分为 CE和EF。 ② 求支座反力 先计算 EF ,求出 E 点的反力, 将其作为外荷载反向作用在 CE上。 然后再计算 CE ,求出 C 点的反力, 将其作为外荷载反向作用在 AC 。 最后计算AC。
ql 2 8
3-2
q
ql 2 8 ql 2 8
A
l 2
C
B
l 2 B1
ql 2 8
A1
ql 2 8 极值点 M图
ql 2 8 3-3
3kN / m 2 kN m A 2m C 2m B 2m D
6.0 1.5 2.0 M 图(kNm) 2 6
3-4
3 kN / m
A 2m
B 2m
C 2m
RF = 4.5kN 4 RD = 10 kN 9 5 RB = 15 kN 72 71 RA = 8 kN 72 ()
() () ()
A
20 kN B C
10 kN D
2 kN / m
F E 4.5m 3m 3m 1.5 2m 2.5m1.5 6m 6m 6m
题3-5(a)
6.08 8.11 26.96 8.99 4.06 4.50 6.75 5.06
31一本章主要内容回顾一本章主要内容回顾二习题解答二习题解答32二习题解答二习题解答31用分段叠加法作下列梁的m图
第三章 习题课
一、本章主要内容回顾 二、习题解答
3-1
二、习题解答
3-1 用分段叠加法作下列梁的M图。
q ql 2 8
A
l
C

结构力学第五版课后习题答案

结构力学第五版课后习题答案

结构力学第五版课后习题答案结构力学第五版课后习题答案结构力学是工程学中的一门重要学科,它研究物体在受力作用下的变形和破坏行为。

对于学习结构力学的学生来说,课后习题是巩固知识和提高能力的重要途径。

本文将为大家提供结构力学第五版课后习题的答案,希望能对大家的学习有所帮助。

第一章:引言第一章主要介绍了结构力学的基本概念和基本原理。

习题一般涉及力的分解、合成、平衡条件等内容。

以下是一道典型的习题及其答案:习题1.1:一个物体受到一个力F,该力可分解为两个力F1和F2,方向如图所示。

已知F1=3N,F2=4N,求F的大小和方向。

解答:根据力的平衡条件,可以得到F1+F2=F。

代入已知数据,得到3N+4N=F,即F=7N。

根据力的合成,可以得到F的方向与F1和F2的方向相反,即向左。

第二章:静力学基本原理第二章主要介绍了静力学的基本原理,包括力的作用点、力的大小、力的方向等。

习题一般涉及受力分析、力矩计算等内容。

以下是一道典型的习题及其答案:习题2.1:一个杆AB长2m,质量为10kg。

在杆的中点C处施加一个力P=20N,方向向上。

求杆的重力作用点与杆的中点C之间的距离。

解答:首先计算杆的重力,即重力=质量×重力加速度=10kg×9.8m/s²=98N。

由于杆是均匀杆,所以重力作用点在杆的中点C处。

因此,重力作用点与杆的中点C之间的距离为0。

第三章:平面结构的受力分析第三章主要介绍了平面结构的受力分析方法,包括平衡方程、约束条件等。

习题一般涉及平面结构的受力分析和计算等内容。

以下是一道典型的习题及其答案:习题3.1:一个桥梁由两个杆组成,杆AB和杆BC的长度分别为3m和4m。

桥梁的两端A和C分别受到一个力Fa和Fc,方向如图所示。

已知Fa=10N,Fc=15N,求桥梁的重力。

解答:根据平衡方程,可以得到力的合成关系:Fa+Fc=重力。

代入已知数据,得到10N+15N=重力,即重力=25N。

结构力学第三章习题及答案

结构力学第三章习题及答案

静定结构计算习题3—1 试做图示静定梁的M 、F Q 图。

解:首先分析几何组成:AB 为基本部分,EC 为附属部分。

画出层叠图,如图(b )所示。

按先属附后基本的原则计算各支反力(c)图。

之後,逐段作出梁的弯矩图和剪力图。

36.67KN15KN •m 20KNM 图(单位:KN/m )13.323.313.33F Q 图(单位:KN )3—3 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力F AX =48kN (→) M A =60 KN •m (右侧受拉) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。

(略)3—7 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力F AX =20kN (←) F AY =38kN(↑) F BY =62kN(↑) (2)逐杆绘M 图BCM 图(单位:KN/m ) F Q 图(单位:KN )3030F AX F N图(单位:60)20)(3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。

(略)3—9 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力F AX =0.75qL (←) F AY =-0.25qL( ) F BY =0.25qL(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。

(略)3—11试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力F BX =40KN (←) F AY =30KN (↑) F BY =50kN(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图(5)校核: 内力图作出后应进行校核。

(略)C(a )qBY 23—17 试求图示抛物线三铰拱的支座反力,并求截面D 和E 的内力。

南京航空航天大学结构力学课后习题答案第3章

南京航空航天大学结构力学课后习题答案第3章

第三章 能量原理(习题解答)3-1 写出下列弹性元件的应变能和余应变能的表达式。

(a )等轴力杆;(b )弯曲梁;(c )纯剪矩形板。

解:(a )等轴力杆 应变能{}{}2220111()2222T VV VEf U AdV d dV dV E Lf E Lf L L εσεεσεε∆∆⎡⎤======⎢⎥⎣⎦⎰⎰⎰⎰余应变能22*21()2222V V fL fL N N L U BdV dV E E f Efσεσ=====⎰⎰其中L 为杆的长度,f 为杆的截面积,Δ为杆的变形量,E 为材料的弹性模量。

(b )弯曲梁 应变能{}{}{}{}222222222220111()()22211()()22TTx V V V V l V d w d w U dV dV z dV Ez dVdx dxd w d w E z dydzdx EJ dx dx dxσεσεσ==-===⎰⎰⎰⎰⎰⎰⎰⎰线性余应变能222*220111111()2222l x x V V V My M y M U dV dV dzdydx dx J E E EJJ σε===⋅=⎰⎰⎰⎰⎰⎰(c )纯剪矩形板 应变能{}{}t b a G dV G dV dV U V V VT⋅⋅⋅⋅=⋅=⋅==⎰⎰⎰22212121γγγτεσ 余应变能Gtfq t b a G dV G dV U V V 222*21212121=⋅⋅⋅==⋅=⎰⎰ττγτ3-2 求图3-2所示桁架的应变能及应变余能,应力—应变之间的关系式为 (a ) E σε= (b )σ=解:取节点2进行受力分析,如图3-2a 所示。

根据平衡条件,有132131122113cos 45cos 45sin 45sin 4522N N P N N P N N ︒︒︒︒⎧+=⎨=+⎩⇒== (1)311313N Nf f σσ== (2)(a ) E σε=时311313N N Ef Ef εε==(3) 0VU AdV fl d εσε==⎰⎰ (4) 0VU BdV fl d σεσ*==⎰⎰ (5)联立(1)、(2)、(3)、(4),得到桁架的应变能为()()2222121231131322P P P P N N l l U f f f f ⎤+-⎫=+=+⎥⎪⎢⎥⎝⎭⎣⎦联立(1)、(2)、(3)、(5),得到桁架的余应变能为()()222212123113132224P P P P N N l l U E f f E f f *⎡⎤+-⎛⎫=+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦(b ) σε=223113222213N N E f E f εε== (6)联立(1)、(2)、(4)、(6),得到桁架的应变能为()()331221222133P P P P l U E f f ⎡⎤+-=+⎢⎥⎢⎥⎣⎦联立(1)、(2)、(5)、(6),得到桁架的应变能为()()331221222136P P P P l U E f f *⎡⎤+-=+⎢⎥⎢⎥⎣⎦3-3 一种假想的材料遵循如下二维的应力—应变规律()()222x x y y y x xy xy EE εσμσεσμσγτ=-=-= 其中E 、G 和μ是材料常数。

西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

Q
对于结点 2:
2
N2-4
N 2 −4 = Q
F4
N 2-4
4
对于结点 4:
N 1-4
2
杆件 内力
2
N 1− 4 = − N 2 − 4 = − Q
1-2 0 1-4
N1−4 = − 2Q
2-3 0 2-4 3-4 0
− 2Q
Q
3-2 平面桁架的形状、尺寸和受载情况如图所示,求桁架中 3 个指定元件的内力。
N 1− 2 = 0
N 9-10
N 9-8
9
对于结点 9:
N 9-11
N 9 −10 + 2
杆件 内力 杆件 内力 杆件 内力 7-8 1-2 0 3-8
2
× N 9 −11 = N 9 −8
2-3 0 4-5 0
N 9 −10 = − 2
2-8 0
2
P
3-4 3-7
2-9
2
5-6
2
P
−P
6-7 0
2P
− 5P
P
2P
1 a
2
3
4
5
10 a
9
8
7
6
P
11 a a a a
(e) (d)解: ( 1) f = 16 + 3 × 2 − 11 × 2 = 0 故该结构为无多余约束的几何不变结构。 ( 2)零力杆:杆 4-5,杆 5-6,杆 4-6,杆 7-6,杆 2-3,杆 2-8,杆 2-9,杆 1-2,杆 9-11, 杆 8-9,杆 9-11.
拉力图:
8P/√3
+ +
-
P/3
17P/3
+

结构力学 第三章 作业参考答案

结构力学 第三章 作业参考答案

∑M = 0 ∑F = 0 ∑F = 0
A
FBy × l − q × l ×
l =0 2
(1) (2) (3)
y
FAy + FBy = 0 FAx + FBx − q × l = 0
FBx × l − FBy × l =0 2
x
取右边部分为隔离体:
∑M
C
=0
(4)
解以上方程可得:
ql ⎧ ⎪ FAx = 4 ⎪ 3ql ⎪ => ⎨ FBx = 4 ⎪ ql ⎪ ⎪ FAy = FBy = 2 ⎩
3—10 试不计算反力绘出梁的 M 图。
16
12
4
A
B
8 2m 2m 4m 4m
12 4m
6m
2m
解:从悬臂端和 AB 开始作图。利用区段叠加法和铰结点的弯矩为零,即可做出全部的弯矩图。
3—12 试不计算反力绘出梁的 M 图。
5
华南农业大学 水利与土木工程学院(College of water conservancy and Civil Engineering, SCAU)
1m
D 80
30
40 E
20 40
40 C F
80 E
40
A
解: (1) 求支座反力
B
40
∑F = 0 ∑M = 0 ∑F = 0
y A x
FC − 10 × 4 − 20 = 0 FA − FB = 0
⇒ FC = 60 kN ⇒ FC = 10 kN
(1) (2) (3)
FB ×1 − 50 − 10 × 4 × 6 − 20 × 10 = 0 ⇒ FB = 10 kN
(1)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

结构力学第三章习题解析

结构力学第三章习题解析

§3.1 概述
一、结构地震反应
1.结构地震反应 : 由地震动引起的结构内力、变形、 位移及结构运动速度与加速度等
2.结构地震位移反应 :由地震动引起的结构位移
结构地震反应 影响因素
地面运动 结构动力特性:自振周期,振型和阻尼
结构的地震作用效应就是指在地震作用下在结构中产生的弯矩、剪力、轴向力 和位移等。
所谓“欠”阻尼,说明阻尼不够大,因此这个阻尼并不足以阻止振动越过平 衡位置。此时系统将做振幅逐渐减小的周期性阻尼振动。系统的运动被不断 阻碍,所以振幅减衰,并且振动周期也是越来越长。经过较长时间后,振动 停止。此时的振动方程是正弦函数、指数函数的积。振动曲线如图所示。
图所
欠阻尼
过阻尼
临界阻尼
所谓“过”阻尼,说明阻尼太大,振动根本无法越过平衡位置,只能以非周期运动形 式缓慢地向平衡位置移动。为什么又要“缓慢地”?是因为阻尼过大,所以这阻碍了 振动向平衡位置的移动,导致这种阻尼振动的停止也很缓慢。此时已经没有振幅、周 期一说了。这种振动的方程是双曲正弦函数、指数函数的积。振动曲线如图所示。
冲量等于动量的增量 Pdt mv mv0
v Pdt m
自由振动
x(t) et[x(0)cost x(0) x(0) sint]
x(0) 0 x(0) Pdt
m
x(t) et Pdt sint m
4.方程的特解III —— 一般强迫振动
S(t) kx(t)
阻尼力D是一种使结构振动不断衰减的力,即结构在振动过程中,由于材料的内 摩擦、构件连接处的摩擦、地基土的内摩擦以及周围介质对振动的阻力等,使得 结构的振动能量受到损耗而导致其振幅逐渐衰减的一种力。阻尼力有集中不同的 理论,目前应用最广泛的是所谓的粘滞阻溺理论,它假定阻尼力的大小与质点的 速度成正比

结构力学第三章习题解析

结构力学第三章习题解析

T
有阻尼时的自振频率小于无阻尼时的自振频率,这说明由于阻尼的存在,将使结构 的自振频率减小,周期增大。 在实际结构中,阻尼比的数值一般都很小,其值大约 0.01 ~ 0.1 在之间。因此有 阻尼频率与无阻尼频率相差不大,在实际计算中可以近似地取
2
1 2
§3.1 概述
二、地震作用
作用
:能引起结构内力、变形等反应的各种因素
直接作用 ——各种荷载:如重力、风载、土压力等
作用分类
间接作用 ——各种非荷载作用:如温度、基础沉降、地震等
等效地震荷载 :工程上,可将地震作用等效为某种形式的荷载作用
结构的地震作用:地震时,由于地面运动使原来处于静止的结构受到动力作 用,产生受迫振动,由于地面的强迫振动在结构上产生的惯性力
第三章 结构地震反应分析 与抗震计算
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 概述 单自由度体系的弹性地震反应分析 单自由度体系的水平地震作用与反应谱 多自由度弹性体系的地震反应分析 多自由度弹性体系最大地震反应与水平地震作用 竖向地震作用 结构平扭耦合地震反应与双向水平地震影响 结构非弹性地震反应分析 结构抗震验算
4.方程的特解III —— 一般强迫振动
求解方法:
(t ) 2x (t ) 分解为很多个脉冲运动
t
0 ( )d x 时刻的地面运动脉冲
引起的体系反应为:
x(t ) e t
dx(t ) e
厂房各跨质量 (b)
单质点体系 (c) 多、高层建筑
(d) 烟囱
集中化描述举例 (a) 水塔 (a) 水塔 c、多、高层建筑
(b) 厂房 厂房 (b) d、烟囱

结构力学教材习题第三章答案全解——哈工大老师提供

结构力学教材习题第三章答案全解——哈工大老师提供

结构力学(王焕定第三版)教材习题答案全解第三章习题答案3-1 (a) 答:由图(a)、(b)可知结构对称(水平反力为零)荷载对称,因此内力对称。

所以可只对一半进行积分然后乘以 2 来得到位移。

如图示F P R(1−cos θ)M P = θ∈[0,π/2];M=R sin θθ∈[0,π/2]2 代入位移计算公式可得M P M 1 π2 M P M 2 π2 F P R(1−cos θ)∆Bx = ∑∫ EI d s = 2⋅EI ∫0 EI R dθ= EI ∫0 2 R sin θR dθ=F P R3 =(→)2EI3-1 (b) 答:如图(a)、(b)可建立如下荷载及单位弯矩方程pR ∆Bx =∑∫ MEIM d s =∫0π2 MEI P M R dθ= qEI 4 ∫0π2 (1−2cosθ+cos 2 θ)R dθqR 4 ⎡ θ 1 ⎡3π ⎡ qR 4= EI ×⎡θ−2sinθ+ 2 + 4sin2θ⎡⎡0 =⎡⎡ 4 − 2⎡⎡ 2EI (→)2 ⎡3-2 答:作M P 图和单位力弯矩图如下图: 由此可得内力方程代入位移公式积分可得2 2 P 0s i n ( ) d (c o s ) (c o s )q M R q R M R θθ α α θ θ − == − = − ∫AqRBα θ( a θ( b )根据题意 EI (x ) = EI (l + x )2l 代入位移公式并积分(查积分表)可得M P M l2 q 0x 4∆Bx =∑∫ EI d x =∫0 6EI (l + x ) d x7 q 0l 4 ql 4= (ln 2− )× =(→)12 3EI EI3-3 答:分别作出荷载引起的轴力和单位力引起的轴力如下图所示:由此可得 C 点的竖向为移为:1 lM 图 x3 0 p x q M M xl= = xP M 图2 0 6q lABl q 05 83 8F NP F N1 F NP F N1 ∆Cy =∑∫EA d s=∑ EA l =6 5kN× ×6 m+2× kN× ×5 m+125 kN× ×5 m+75 kN× ×6 m)= 8 8EA=×10−4 m当求CD 和CE 杆之间的夹角改变使:施加如图所示单位广义力并求作出F N2 图,则F∆=∑∫ F NP EA F N2 ds=∑ NP EA F N2 l2× kN×(−×5 m+(− kN)××6 m =EA=−×10−4 rad ( 夹角减小)3-4 (a)答:先作出M p和M 如右图所示。

结构力学第3章习题答案

结构力学第3章习题答案

3-2 试作图示多跨静定梁的弯矩图和剪力图。

(a) 4P F a2P F a 2P F aM4PF Q34P F 2P F(b) 42020M Q10/326/3410A B C a a a a a F P a D E F F P 2m 6m 2m 4m 2m A B C D 10kN 2kN/m (c) 21018018040M1560704040Q(d) 7.5514482.524MQ3m 2m2m AB C E F15kN 3m 3m 4m 20kN/m D 3m 2m 2m 2m2m 2m 2m ABC D E FG H 6kN ·m 4kN ·m 4kN 2m 3-3 试作图示刚架的内力图。

试作图示刚架的内力图。

(a) 242018616MQ1820(b) 3030301101010QM 2104kN ·m 3m 3m 2kN A CBD 6m 10kN 40kN ·m ABC D(c) 664275MQ(d) 444444/32MQN2kN/m 6kN 6m 4kN AB CD2kN 6m 2kN 4kN ·m ACB D E(e) 44814``(f) 2222200.815MQN4m ABC4m D4kN A B C2m 3m 4m 2kN/m 3-4试找出下列各弯矩图形的错误之处,并加以改正。

(a) F P(b) (c) F P(d) M(e) (f) F PF P3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。

B C EFDA28ql M2221()222116121618c B C BC C qql M l x x qx xM M M M ql ql x ql x l=-+===\=\=\= 中FD()2ql x -lBC EFxDAql lx3-6 试作图示刚架的弯矩和剪力图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静定结构计算习题
3—1 试做图示静定梁的M 、F Q 图。

解:首先分析几何组成:AB 为基本部分,EC 为附属部分。

画出层叠图,如图(b )所示。

按先属附后基本的原则计算各支反力(c)图。

之後,逐段作出梁的弯矩图和剪力图。

3—3 试做图示静定刚架的内力(M
、F Q 、F N )图,并校核所得结果。

36.67KN
15KN •m 20KN
M 图(单位:KN/m )
13.3
23.3
13.33
F Q 图(单位:KN )
解:(1)计算支反力
F AX =48kN (→) M A =60 KN •m (右侧受拉) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。

(略)
3—7 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力
F AX =20kN (←) F AY =38kN(↑) F BY =62kN(↑) (2)逐杆绘M 图 (3)绘F Q 图
B
C
M 图(单位:KN/m ) F Q 图(单位:KN )
30
30
F AX F N
图(单位:
60

20

(4)绘N 图
(5)校核: 内力图作出后应进行校核。

(略)
3—9 试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力
F AX =0.75qL (←) F AY =-0.25qL( ) F BY =0.25qL(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。

(略)
3—11试做图示静定刚架的内力(M 、F Q 、F N )图,并校核所得结果。

解:(1)计算支反力
F BX =40KN (←) F AY =30KN (↑) F BY =50kN(↑) (2)逐杆绘M 图 (3)绘F Q 图 (4)绘N 图
(5)校核: 内力图作出后应进行校核。

(略)
C
(a )
q
BY 2
3—17 试求图示抛物线三铰拱的支座反力,并求截面D 和E 的内力。

解:1、由已知设抛物线方程为y=ax 2
+bx+c
坐标系如图(a )所示,有图可以看出, x=0 y=0;x=10 y=4;x=20 y=0 可以求得
B
C
D
E
100K
5m
5m
5m
5m
20KN/m
4m
Y
X
(a)
40KN
m
y y m x x y x x y D D D 34.0'554252'542512===+
-=+-=20KN/m
A B
C
D
E
F
4m
2m
2m
2m 80
80
120
120
80
M 图(单位:KN/m )
30
50
40
40
F Q 图(单位:KN )
40
50
F N 图(单位:KN )
2、计算支反力
首先,考虑三铰拱的整体平衡。

由 ∑MB=0 及∑MA=0 得F AY =F BY =100KN 由 ∑X=0 可得 H AX =H BX =F H
取左半拱为隔离体,由∑MC=0 H AX =H BX =F H =125KN 3、
4、求D 、E 点的内力
3—18 试用节点法计算图示桁架中各杆的内力。

解:(1)首先由桁架的整体平衡条件求出支反力。

(2)截取各结点解算杆件内力。

m
y y m
x E E E 34.0'15=-==928
.0cos 371.0sin ==D D ϕϕ928
.0cos 371.0sin =-=E E ϕϕKN 1000=左QD F KN 00=右QD F KN
500E -=Q F KN
5005100M 0D =⨯=KN
3755.25101010015100M 0
E
=⨯⨯-⨯-⨯=KN y F M D H D 1253125-500*M 0D =⨯=-=KN F F F D H D QD QD 4.46sin cos 0=-=ϕϕ左左KN y F M E H E 03125-375*M 0
E =⨯=-=KN
F F F D H D QD QD
4.46sin cos 0-=-=ϕϕ右右KN F F F D H D QD D 1.153cos sin 0N =+=ϕϕ左左116cos sin 0N =+=D H D QD D F F F ϕϕ右右KN F F F E H Q Q 0sin cos E 0E E =-=ϕϕKN
F F F H E Q 6.134cos sin E 0E NE =+=ϕϕ
F N78=
F N81=-5
F N12N81
F X17
分析桁架的几何组成:此桁架为简单桁架,由基本三角形345按二元体规则依次装入新结点构成。

由最后装入的结点8开始计算。

(或由8结点开始)
然后依次取结点7、2、6、3计算。

到结点5时,只有一个未知力F N54,最后到结点4时,轴力均已求出,故以此二结点的平衡条件进行校核。

3—19 试用截面法求3—18中杆23、62、67的内力。

解:支反力已求出。

作截面Ⅰ-Ⅰ,取左部分为隔离体。

由06=∑M 得
031545.22432=⨯+⨯-⨯-N F 得 F N32=-11.25KN
同理由02=∑M 得 得 F N67=3.75KN
把F N62 沿力的作用线平移到2点,并分解为水平力F X62和竖向力F Y62 由0=∑X F 0=∑Y F 得F X62=7.5KN F Y62=10KN
F 4X F 5X 5kN 5kN 5kN
F 4X F 5X
Y62。

相关文档
最新文档