第一章数字图像处理的基本概念
第一章 数字图像处理基础 ppt课件
2014年11月
教学安排
课堂授课、项目与实验安排
课堂授课,36学时 第一章 数字图像处理基础(5学时) 第二章 图像变换(4学时) 第三章 图像增强(9学时) 第四章 图像复原(5学时) 第五章 图像分割(5学时) 第六章 彩色图像处理(4学时) 习题分析与讨论(4学时)
14
显微成像
•Taxol 红豆杉醇 •cholesterol胆固醇 •Nickel oxide镍氧化物
•organic superconducting 有机超导
2020/12/2715Fra bibliotek多频谱成像
2020/12/27
16
光学成像
2020/12/27
•Intraocular implant: 眼内植入
首选教材:数字图像处理,自编讲义,2012 二选教材:K.R. Castleman, 数字图像处理, 电子工业出版社,2011 参考书目:(1) R.C.Gonzalez,数字图像处理(第3版),电子工业出版社,2011;(2)
W.K.Pratt,数字图像处理(原书第4版),机械工业出版社,2010
2020/12/27
5
什么是图像?
众所周知的事情正因为 众所周知而不为人所知
图像?这玩意儿,你不问我还清楚这是 什么;你要真问起来,我反倒不知道该 如何解释它了。
卡斯尔曼:一幅图像就是指某些事物的 表示,并包含关于目标的描述性信息。
你会如何定义?
2020/12/27
6
什么是图像?
图像的类型
图像以各种不同的形式出现:
2020/12/27
12
Gamma射线成像
2020/12/27
•PET(positron emission tomography): 正 电子射线层析 术 •Cygnus:天鹅座
数字图像处理复习提纲
4. 图像分辨率的单位dpi表示单位长度( )上包含的像素数目。 A.米 B.厘米 C. 寸 D.英寸
5.一幅大小为16*16,灰度级为2的图像,像素点有()个 A.256 B. 512 C. 1024
第2章 matlab软件 • 熟悉matlab界面:命令窗口、工作间、命令历史窗口、路
素少的灰度级,使灰度直方图均衡分布。
histeq,adapthisteq 2.直方图规定化:将直方图按照参考图像的直 方图进行均衡化
[hgram,x]=imhist(I1);
J=histeq(I,hgram) ; • 图像增强:突出有用的特征,便于分析和处理。
方法:直方图均衡化、图像平滑、图像锐化和伪彩色处理
• hold on/off
• grid on/off • 格式化:title,text, legend, label • 特殊字符:: \pi, \omega, \Theta, ^2
第4章 matlab工具箱 • 浏览工具箱:菜单栏-主页-?-image processing toolbox • 图像类型:RGB图像,索引图像,灰度图像,二值图像 • 各种图像的数据结构 • 图像的数据类型:uint8,uint16,double,im2double • 图像类型转换:rgb2gray; ind2rgb, rgb2ind; ind2gray,
• Fourier, DFT,FFT
• fft2, ifft2 • fftshift的作用 • 傅里叶变换的幅度谱和相位谱 • fft高频和低频滤波,字符识别 • 为什么引入DCT?保持傅里叶变换的功能有减少数据量。 • DCT主要用于图像压缩。
《数字图像处理》课程教学大纲
数字图像处理课程教学大纲课程简介数字图像处理是计算机科学与技术领域的一门重要课程,它研究如何使用计算机和算法来处理和分析数字图像。
本课程旨在介绍数字图像处理的基本原理、方法和应用,并培养学生的图像处理能力和技巧。
课程目标本课程的主要目标是让学生掌握数字图像处理的基本理论和方法,具备图像处理算法设计、图像增强、图像分割、图像压缩等技术的基本能力。
同时,通过实践项目的实施,培养学生的问题解决能力和团队合作能力。
课程安排第一周:课程介绍与基本概念•课程介绍•数字图像的基本概念与特点•数字图像处理的基本步骤第二周:图像预处理•图像采集与获取•图像灰度变换•图像噪声模型与去噪方法第三周:图像增强•直方图均衡化•空域滤波与频域滤波•边缘增强与锐化第四周:图像压缩•图像压缩的基本概念与方法•离散余弦变换(DCT)与JPEG压缩算法•小波变换与JPEG2000压缩算法第五周:图像分割与边缘检测•阈值分割•基于边缘的图像分割•基于区域的图像分割第六周:实践项目1 - 图像识别•项目需求分析与设计•图像特征提取与选择•分类器的训练与测试第七周:实践项目2 - 图像恢复•项目需求分析与设计•图像模型与图像去模糊•图像去噪与图像修复第八周:实践项目3 - 图像处理工具开发•项目需求分析与设计•图像处理算法的实现•图形界面设计与用户交互评估方式•平时成绩:30%•作业与实验报告:30%•期末考试:40%参考教材•Rafael C. Gonzalez, Richard E. Woods. 数字图像处理(第三版). 清华大学出版社,2018.•Richard Szeliski. 计算机视觉:算法与应用. 电子工业出版社,2014.参考资源•MATLAB图像处理工具箱文档•OpenCV计算机视觉库官方文档以上是《数字图像处理》课程的教学大纲,希望通过本门课程的学习,能够让学生对数字图像处理有一个全面的了解,并具备实践应用的能力。
数字图像处理
第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
《数字图像处理基础》课件
数字图像的表示与存 储方式
讨论数字图像的表示方法,包 括二进制表示、向量图像和光 栅图像等。
第三章:数字图像预处理
1
图像增强
2
探讨图像增强的方法和技术,如直方图
均衡化、增强对比度等。
3
图像边缘检测
4
介绍常用的边缘检测算法,如Sobel、滤波
解释图像滤波的概念和作用,介绍常用 的滤波器及其应用。
《数字图像处理基础》 PPT课件
数字图像处理基础PPT课件将帮助您深入了解数字图像处理的原理、方法和应 用。通过本课程,您将掌握数字图像处理领域的基本概念和技巧,为将来的 进一步学习和应用打下坚实的基础。
第一章:数字图像处理概述
数字图像处理介绍
了解数字图像处理的定义和基本原理,并掌握其在各个领域中的应用。
第五章:数字图像特征提取与识别
图像特征提取
介绍图像特征提取的目的和方 法,如灰度共生矩阵和尺度不 变特征变换(SIFT)。
模板匹配
解释模板匹配的原理和应用, 讨论常见的模板匹配算法。
目标检测
探讨目标检测的技术和方法, 如基于特征的方法和深度学习 方法。
第六章:数字图像处理算法优化
1
图像处理算法优化的意义
图像二值化
讲解图像二值化的原理和算法,介绍基 于阈值的二值化方法。
第四章:数字图像分割
图像分割概述
解释图像分割的概念和作用,并 探讨常见的图像分割方法。
基于边缘分割
介绍基于边缘检测的图像分割方 法,包括Canny边缘检测和Sobel 边缘检测。
基于区域分割
讨论基于区域的图像分割方法, 如区域生长和分水岭算法。
数字图像技术趋势
讨论数字图像处理技术的趋势,如增强现实和虚拟现实的发展。
数字图像处理
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像处理复习
数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
数字图像处理的基本概念(2)2022优秀文档
LOGO
1.1 什么是数字图像
一幅照片、一张海报、一幅画都是图像,然而这些都是传统的模 拟图像,这些图像的载体是“原子〞。
随着数字技术的不断开展和运用,现实生活中的许多信息都可以 用数字方式的数据进展处置和存储,也就是说,以“比特〞的方式进 展存储,数字图像就是这种以数字方式进展存储和处置的图像。数字 图像的载体是计算机的硬盘、光盘、U盘等数字存储器。
LOGO
1.2 获得数字图像的方法
1.2.1 数字是如何表示图像的 如表1.1,是一个矩形数字点阵,其中每个数字都在0和255之间
,计算机运用0-255之间的数表示黑白图像的浓度,称为灰度级。0表 示纯黑色,255表示纯白色.
LOGO
1.2 获得数字图像的方法
1中的每个点“翻译〞成图1. 假设允许R、G、B分量不一样,图像就会呈现出彩色信息,构成彩色图像。 计算机图像处置中常用的颜色模型是RGB模型,这里R表示红色,G表示绿色,B表示蓝色。 1中的每个点“翻译〞成图1. 指该图像在空间域上的采样数。 在U盘、硬盘、光盘等数字存储器中,数字图像是以表1. 4 图像处置的主要入门概念 获得数字图像的过程是上述“翻译〞过程的逆过程。 3 数字图像的优势 2 获得数字图像的方法 在加工、处置、印刷方面,数字图像的优势更为明显 。 每个像素都是介于黑和白之间的一个灰度颜色,没有彩色信息,这样的图像称之为灰度图像。 思索图像分辨率和图像文件大小的关系,并举例阐明。
模拟图像中的图像信号是以延续的方式存在于图像介质中。
1,是一个矩个形数像字点素阵点,其都中每很个小数字,都在看0和起25来5之就间,成计算为机一运用个0-2延55之续间的的数图表示像黑白。图假像的设浓度我,们称为将灰度这级样。 的
数字图像处理概述归纳总结
数字图像处理概述归纳总结数字图像处理是指将图像的像素信息进行数字化并对其进行处理的一门技术。
它广泛应用于计算机视觉、医学图像处理、工业检测等领域。
本文将对数字图像处理的基本概念、常见算法以及未来发展趋势进行归纳总结。
一、数字图像处理的基本概念数字图像由像素阵列组成,每个像素存储着图像的亮度信息。
在数字图像处理中,常用的表示方法是灰度图像和彩色图像。
灰度图像是指每个像素只包含一个亮度值,通常以8位表示,取值范围为0~255。
而彩色图像则包含了红、绿、蓝三个通道的亮度值,通常以24位表示,每个通道的取值范围也为0~255。
数字图像处理的主要任务包括图像增强、图像恢复、图像分割、图像压缩等。
二、数字图像处理的常见算法1. 图像增强算法图像增强旨在改善图像的视觉品质,常用的算法包括直方图均衡化、灰度拉伸、滤波等。
直方图均衡化可以通过调整图像的亮度分布来增强图像的对比度,从而使图像细节更加清晰可见。
2. 图像恢复算法图像恢复用于去除图像中的噪声,常见的算法有均值滤波、中值滤波、小波去噪等。
其中,中值滤波可以有效地去除椒盐噪声,而小波去噪能够在保持图像细节的同时消除高频噪声。
3. 图像分割算法图像分割旨在将图像划分为不同的区域,常用的算法有阈值分割、边缘检测、区域生长等。
阈值分割根据像素灰度值与设定阈值的大小关系将图像分为前景和背景,而边缘检测则可用于检测图像中的边界。
4. 图像压缩算法图像压缩是指通过减少图像的存储空间来实现数据压缩,常见的算法有无损压缩和有损压缩。
其中,无损压缩保证了图像的质量不受损失,而有损压缩通过舍弃图像中的冗余信息来实现更高的压缩比率。
三、数字图像处理的未来发展趋势1. 深度学习在图像处理中的应用随着深度学习的发展,其在数字图像处理中的应用越来越广泛。
通过深度学习算法,可以实现更精确的图像分类、目标检测等任务,从而提升图像处理的效果和准确性。
2. 多模态图像处理多模态图像处理是指处理多个不同模态的图像,比如红外图像、可见光图像等。
遥感数字图像处理基础知识点
遥感数字图像处理基础知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章数字图像处理基础1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。
3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为若干图像元素,兵赋予它们唯一的地址。
;离散化的小区域就是数字图像的基本单元,称为像元也称像素。
量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。
4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。
5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规则网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。
2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。
图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差 3颜色空间模型:RGB模型CMYK模型 HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色 1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规则映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。
数字图像处理课件ppt
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像模式识别
在图像分割的基础上提取特征,对图像中的内容 进行判决分类。
❖ 图像分析与理解 根据图像局部内容之间的关系,利用有关知识进行推理与联想, 对图像中所表现的内容进行理解。
重庆大学生物工程学院
医学图像处理讲义
1.3 数字图像处理的发展历程与主要应用领域
❖ (1)“物理图像” (physical images)
物质或能量的实际分布
“可见的图像”(visible image)
“图片” (picture),包括“照片” (photograph)、“图” (drawings指用线条画 成的)和“画” (paintings), “图片”等价于 “图像”,也就是说“picture”经常和“image” 一词混用;
重庆大学生物工程学院
医学图像处理讲义
狭义的计算机图像处理
❖ 几何处理
坐标变换:图像的放大与缩小、旋转、移动 图像畸变校正 几何特征计算等。
❖ 算术与逻辑运算
图像的加减乘除,与或非等运算
❖ 图像增强
根据任务目标突出图像中感兴趣的信息,消除干扰,改善图 像的视觉效果或增强便于机器识别的信息
长度包含的采样点数。 像素间距(pixel spacing)=1/采样密度
重庆大学生物工程学院
医学图像处理讲义
重要概念(续)
❖ 9、放大率(magnification):图像中物体与其 所对应的景物中物体的比例关系。
❖ 10、运算(operation):注意运算前后图像之 间的对应关系。
(1)全局运算:对整幅图像同时处理 (2)点运算:由对应点决定 (3)局部运算:由中心像素周围的有关像素决定
❖ 发展历程 ❖ 不断拓展的应用领域
重庆大学生物工程学院
医学图像处理讲义
1.3.1发展历程
❖ 改善视觉效果:
增强人类分析判断时采用的图像信息
❖ 生物视觉系统仿生:
计算机技术、人工智能技术 处理自动装置感受的景物数据(计算机视觉、模式识
别(Pattern Recognition)等)
重庆大学生物工程学院
标的一系列的动作或操作。 ❖ 3、数字图像处理:对一个物体的数字表示施加一
系列的操作,以得到所期望的结果。 ❖ 4、数字图像的限制性定义:一个被采样和量化后
的二维函数(该二维函数由光学方法产生),采 用等距离矩形网格采样,对幅度进行等间隔量化。
一幅数字图像是一个被量化的采样数值的二维矩阵。
重庆大学生物工程学院
❖ 此三项是图像预处理中常涉及的内容。
重庆大学生物工程学院
医学图像处理讲义
狭义的计算机图像处理2
❖ 图像复原 根据图像退化模型,消除退化因素,恢复原始的图像。 散焦,散焦模型,逆滤波。
❖ 图像编码 研究压缩图像数据的方法,需要研究并利用图像的冗余特征 如统计冗余、生理视觉冗余、知识冗余等。
重庆大学生物工程学院
医学图像处理讲义
1.1.1图像的分类
❖ “图像”(image)
一幅图像就是一个东西的视觉表示,它包含 了所表示物体的相关描述信息,出现形式 多种多样
可视的和不可视的; 抽象的和实际的; 适于和不适于计算机处理的。
重庆大学生物工程学院
医学图像处理讲义
1、按照图像的存在形式分
两种基本的图像数学模型
❖ 连续模型
一般的图像都是能量的连续分布
❖ 离散模型
就是把数字图像看成离散采样点的集合,每个点具 有其各自的属性。
处理运算就是对这些离散单元的操作。
重庆大学生物工程学院
医学图像处理讲义
图像数学模型的应用原则
❖ 在图像处理中,根据任务和目的的不同,经常会 采用不同的模型来处理图像,或者在不同的阶段 是用不同的模型,保证系统的最佳性能。
医学图像处理讲义
重要概念(续)
❖ 5、显示(display):由一幅数字图像生成一可 见的、直观的图像。 “回放”、“图像重建”、“硬拷贝”、“图 像记录” 显示设备有暂时的、永久的两类。
❖ 6、对比度(contrast):一幅图像中灰度反差 的大小。
❖ 7、噪声(noise):加性的或乘法性的污染。 ❖8、采样密度(sampling density):图像上单位
❖ 图像在数字化时必须满足采样定理,这样离散的 图像才能与它的连续形式对应。
❖ “数字图像处理”不是指“数字图像的处理”, 而是指“图像的数字处理”。
重庆大学生物工程学院
医学图像处理讲义
1.1.4数字图像处理的几个基本术语
❖ 数字化(digitizing)
将一幅图像从其原来的形式转换为数字形式的处理过 程,包括“扫描”、“采样”与“量化”三个步骤
每个像素点只有一个亮度值。 黑白照片 黑白电视画面。
重庆大学生物工程学院
医学图像处理讲义
3、按照图像的光谱特性分
❖ “可见光图像”; ❖ “红外光图像”; ❖ “雷达图像”; ❖ “声呐图像”。
重庆大学生物工程学院
医学图像处理讲义
4、按照图像的时间特性分
❖ “动态图像”
随时间变化的图像,如电视和电影画面。
地图中也包含大量符号,但需要关注颜色信息,因为 它们都有确定的物理含义,如蓝色一般表示湿地。
重庆大学生物工程学院
医学图像处理讲义
图像信息——(2)景物信息
❖ 是一种能够使人产生主观感觉,但不取决于人本 身的客观场景中包含的信息。景物信息内容丰富, 较难以表达,只有在明确目标的前提下,才能得 到正确处理
❖ 1946年第一台电子计算机 ❖ 60年代,第三代计算机
JPL 图像增强和图像复原 ❖ 70年代 遥感和医学图片 Rosenfeld ,1976 ❖ 80年代 3D图像获取设备以及分析系统 ❖ 90年代 人类生活和社会发展的各个方面
重庆大学生物工程学院
医学图像处理讲义
美国航天器传送的第一张月球照片,“旅行者7号”1964年7月31日9 点09分在光线影响月球前17分钟前摄取的图像
❖ 优点:精度高、处理内容丰富、可以进行复杂的非线性处理,处理方 式灵活,同样的图像硬件系统,在改变软件之后何以用于其它完全不 同的任务。
❖ 缺点:由于目前计算机性能的限制,数字图像处理的速度有限,对于 一些有实时性要求的任务,必须利用DSP加速或构建专用系统。
重庆大学生物工程学院
医学图像处理讲义
量化(quantization)
❖ 将采样时测量的灰度值转化成整数表示。 ❖ 模数转换器(ADC)
将电压值转化成一个整数。
一幅图像的数字表示,即数字图像f(x,y),
f(x,y)以及x、y都是整数。
重庆大学生物工程学院
医学图像处理讲义
几个重要概念
❖ 1、处理:让某个事物受到一个过程的作用 ❖2、过程( process ):指能导致某个所期望目
❖ 打印技术与半调技术相结合 ❖ 编码技术
医学图像处理讲义
1、改善视觉效果
重庆大学生物工程学院
医学图像处理讲义
用 15 种 色 调 的 设 备 , 从 伦 敦 到 纽 约 , 用 电 缆 进 行 传 送 的 Perihing 和Fozh两将军未经修饰的图片
重庆大学生物工程学院
医学图像处理讲义
2、计算机图像处理技术
对图像加工的各种技术方法的统称,它已被广泛地应 用于许多领域。
❖ 基本方法
模拟图像处理 数字图像处理
重庆大学生物工程学院
医学图像处理讲义
1、模拟图像处理
❖ 包括光学图像处理和电子图像处理(电子光学处理) ❖ 光学方法是图像处理发展的起源 ❖ 光学处理具有处理速度快、信息量大、分辨率高、经济等优点。 ❖ 模拟图像处理的缺点是精度差、灵活性差,器件具有专用性,并且缺
❖ “静止图像”
不随时间变化的图像,如各类图片。
重庆大学生物工程学院
❖三类
符号信息 景物信息 情绪信息
医学图像处理讲义
1.1.2图像信息的分类
重庆大学生物工程学院
医学图像处理讲义
图像信息——(1)符号信息
❖ 一般是用文字、符号、图形等表示的具体的或抽 象的事物。
电路图、机械图、打印的文件等,一般用二值图像表 示。
❖ 图像分割 根据图像的某些特征将图像划分为不同的区域,以便于对图像 中的物体或目标进行分析与识别。 如“机动车视觉系统”中根据图像中的灰度信息分割白色导引 线和路面。
重庆大学生物工程学院
医学图像处理讲义
狭义的计算机图像处理3
❖ 图像重建 输入的是非图像信息,如数据、公式等,输出为图像。
“光图像” (optical images),即用透镜、光 栅和全息术产生的图像,如荧幕、屏幕上出现的 影像。光(学)图像是光强度的空间分布。
“不可见的图像”,如温度、压力、高度以及人口
密度等的分布图。
重庆大学生物工程学院
医学图像处理讲义
图像类型
❖ (2)抽象图像
即“数学图像”,包括连续函数和离散函数。 离散函数图像就是计算机可以处理的形式。 物理图像必须要变成离散函数才能被计算机处理。
重庆大学生物工程学院
医学图像处理讲义
1.2数字图像处理技术
❖ 广义的数字图像处理是指从图像获取到图像信息输出 的全过程,即图像处理系统,
与计算机应用相关的设备 图像处理相关的方法 有效软件的实现 图像处理软件的应用 图像信息在计算机中的表示 图像数据库及检索 图像信息应用等。
乏判断分析能力,不具备非线性处理能力。 ❖ 趋势:将光学处理和计算机相结合的方法,如利用光学方法对图像进
行傅立叶变换,再用计算机对频谱分析。
重庆大学生物工程学院