第1章 质点运动学讲解
第1章-质点运动学
位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率
第1章质点运动学讲解
第1章 质点运动学一、基本要求1.理解描述质点运动的位矢、位移、速度、加速度等物理量意义;2.熟练掌握质点运动学的两类问题:即用求导法由已知的运动学方程求速度和加速度,并会由已知的质点运动学方程求解位矢、位移、平均速度、平均加速度、轨迹方程;用积分法由已知的质点的速度或加速度求质点的运动学方程;3.理解自然坐标系,理解圆周运动中角量和线量的关系,会计算质点做曲线运动的角速度、角加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。
二、基本内容(一)本章重点和难点重点:掌握质点运动学方程的物理意义,利用数学运算求解位矢、位移、速度、加速度、轨迹方程等。
难点:将矢量运算方法及微积分运算方法应用于运动学解题。
(提示:矢量可以有黑体或箭头两种表示形式,教材中一般用黑体形式表示,学生平时作业及考试必须用箭头形式表示)(二)知识网络结构图⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧相对运动总加速度法向加速度切向加速度角加速度角速度曲线运动轨迹方程参数方程位矢方程质点运动方程运动方程形式平均加速度加速度平均速度速度位移位矢基本物理量,,,,:)(,,(三)基本概念和规律1.质点的位矢、位移、运动方程(1)质点运动方程()(t r ):k t z j t y i t x t r)()()()(++=(描述质点运动的空间位置与时间的关系式)(2)位矢(r ):k z j y i x r ++= (3)位移(r ∆):k z j y i x r ∆+∆+∆=∆(注意位移r ∆和路程s ∆的区别,一般情况下:S r ∆≠∆ ,r r r∆∆≠∆或; 位移大小:()()222)(z y x r ∆+∆+∆=∆;径向增量:21212122222212z y x z y x r r r r ++-++=-=∆=∆(4)参数方程:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x(5)轨迹方程:从参数方程中消去t ,得:0),,(=z y x F 2.速度和加速度 直角坐标系中(1)速度(v):k dt dz j dt dy i dt dx dt r d v++==(2)平均速度(v):tr v ∆∆=(3)加速度(a ):k dt z d j dty d i dt x d dt r d dt v d a22222222++===(4)平均加速度(a):tv a ∆∆=(注意速度和速率的区别:dt rd v =,但一般情况下dtdr dt r d ≠) 3.曲线运动描述质点的曲线运动,常采用自然坐标系(由切向和法向组成),在自然坐标系中,质点的(线)速度和加速度为:(1)速度:t t e dtds e v v== (2)加速度:n n t t n t e a e a a a a+=+= 其中:切向加速度(t a )t t e dtdv a=,量度速度量值的变化; 法向加速度(n a )n n e v aρ2=,量度速度方向的变化,ρ为曲率半径。
大学精品课件:01第一章质点运动学
第二节 质点运动的描述
一、参考系 坐标系
参考系(Reference Frame) :
确定一个物体的位置总是相对于某一物体或某一物体系来确定,那 么这—物体或物体系就作为描述物体位置的基准,称为参考系。
坐标系(Coordinates) :
确定了参考系后,为了能够定量地描
r
r
r
第4页
运动方程(Motion Equation):
矢量形式:
rv(t)
v x(t)i
y(t)
v j
v z(t)k
x x(t)
参数形式:
y
y(t)
z z(t)
轨道方程( Track Equation ):
F (x, y, z) 0 G (x, y, z) 0
一般情况:Q rv s, vv v
当t0时:Q rv drv , s ds, drv ds, vv v
第 12 页
三、加速度(Acceleration)
t1时刻,质点位于A处,速度为v(t) t2时刻,质点位于A处,速度为v(t+t) t时间内,速度增量为:
瞬时速度:刻画t 时刻速度的即时变化率
lim vv
rv drv
t0 t dt
o
dr
dt
A
B''
B'
r
B
r(t) r(t+t)
显然,v 和 r(t) 曲线的斜率有一一对应关系!
第9页
速度在直角坐标系中的解析表示:
rv(t) x(t)iˆ y(t) ˆj z(t)kˆ
大学物理第1章质点运动学ppt课件
大学物理第1章质点运动学ppt课件•质点运动学基本概念•直线运动中质点运动规律•曲线运动中质点运动规律•相对运动中质点运动规律目录•质点运动学在日常生活和工程技术中应用•总结回顾与拓展延伸质点运动学基本概念01质点定义及其意义质点定义用来代替物体的有质量的点,是一个理想化模型。
质点意义突出物体具有质量这一要素,忽略物体的大小和形状等次要因素,使问题得到简化。
参考系与坐标系选择参考系定义为了研究物体的运动而选作标准的物体或物体系。
坐标系选择为了定量描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。
常用的坐标系有直角坐标系、极坐标系、自然坐标系等。
位置矢量与位移矢量位置矢量定义从坐标原点指向质点的矢量,用r表示。
位移矢量定义质点从初位置指向末位置的有向线段,用Δr表示。
质点在某时刻的位置矢量对时间的变化率,即单位时间内质点位移的矢量,用v 表示。
速度定义加速度定义速度与加速度关系质点在某时刻的速度矢量对时间的变化率,即单位时间内质点速度的变化量,用a 表示。
加速度是速度变化的原因,速度变化快慢与加速度大小成正比,方向与加速度方向相同。
速度加速度定义及关系直线运动中质点运动02规律匀速直线运动特点及应用特点质点在直线运动中,速度大小和方向均保持不变。
应用描述物体在不受外力或所受合外力为零的情况下的运动状态。
匀变速直线运动规律探究定义质点在直线运动中,加速度大小和方向均保持不变。
运动学公式包括速度公式、位移公式和速度位移关系式,用于描述匀变速直线运动的基本规律。
定义物体在重力的作用下从静止开始下落的运动。
运动学公式包括位移公式、速度公式和速度位移关系式,用于描述自由落体运动的基本规律。
运动特点初速度为零,加速度为重力加速度,方向竖直向下。
自由落体运动分析竖直上抛运动过程剖析定义物体以一定的初速度竖直向上抛出,仅在重力作用下的运动。
运动特点具有竖直向上的初速度,加速度为重力加速度,方向竖直向下。
大学物理上第一章质点运动学ppt
加法法则
当有两个或多个质点同时运动时,它们的速 度可以通过矢量加法进行合成。
速率
速度的大小称为速率,用标量符号表示。
04 质点的加速度
瞬时加速度
定义
瞬时加速度是指在某一时刻, 质点运动速度的变化率。
计算公式
$a = frac{dv}{dt}$,其中$a$是 瞬时加速度,$v$是质点的速度, $t$是时间。
定义
平均速度是指在一段时间内质点位移量与时间的比值。
关系
瞬时速度是平均速度在时间趋于零时的极限值,即平 均速度的极限状态就是瞬时速度。
应用
在分析质点运动规律时,通常先求平均速度,再通过 极限思想求得瞬时速度。
速度的矢量性质
矢量表示
速度是一个矢量,具有大小和方向,可以用 矢量符号表示。
方向与正方向
速度的方向与质点运动的方向一致,通常规 定正方向为速度的方向。
重力加速度,大小为 $9.8m/s^{2}$,方向竖 直向下。
圆周运动
圆周运动的定义
质点在平面或空间以一定半径作圆周运动的运动形式。
圆周运动的描述参数
线速度、角速度、周期和频率。
圆周运动的向心加速度
大小为$a = v^{2}/r$,方向指向圆心。
相对运动
相对运动的定义
01
两个物体相对于第三个参照物的运动。
质点运动学的基本概念
质点
没有大小、形状,只有质量的 理想化模型,用于描述实际物 体的运动。
速度
描述质点运动快慢和方向的物 理量。
参考系
用来确定质点位置和描述其运 动的参照物。
位移
质点在空间中的位置变化量。
加速度
描述质点速度变化快慢和方向 的物理量。
质点运动学30p.ppt
x
y
R cost R sin t
(2)、轨迹方程——质点运动所经过的空间径迹。
从运动方程中消去时间t 可得轨迹方程。
如:匀速率圆周运动的轨迹方程为 x2 y2 R2
2、位移
zA
位移:反映 位置矢量变化的
大小和方向的物理量。
r rB rA
rA
r
B
O
rB
x
y
(xB xA)i ( yB yA) j (zB zA)k
a
=
v2 Δ
tv1=
9
i
+
2
j
5. t =1s 时刻的瞬时加速度
a
=
dv dt
=6t
i+2j
= 6i + 2 j
§1. 2 直线运动及其几何图线描述法
一、直线运动规律
运动方程: x = x( t )
x
位移(大小): Δ x
速度(大小): v
=
dx dt
x2
加速度(大小): a =
dv dt
d 2x =
3、坐标系
为了定量地确定质点在空间的位置而固定在参照系上 的一个计算系统。 (直角坐标、自然坐标、球坐标、极坐标、柱面坐标等)
对物体运动的描写决定于参照系而不是坐标系
二、描述质点运动的基本物理量
1、位置矢量(位矢、矢径)
z
描述P点的位置,从O到P的有向线
段0P(或r)称为点P的位置矢量。
γ
k
r xi yj zk a O
Δr
Δy
φ Δx
O
5
x 10 15 (cm)
Δ x =12(cm) Δ y =12.6 (cm)
大学物理:第一讲:质点运动学
速度
描述质点运动快慢和方向的物理量。 总结词 速度是质点在单位时间内通过的位移量,表示质点运动快慢和方向。速度的大小称为速率,方向与位移方向相同。 详细描述
加速度
加速度是质点速度的变化量与时间的变化量的比值,表示质点速度变化的快慢和方向。加速度的大小表示速度变化的强度,方向与速度变化的方向相同。
THANKS
TITLE
感谢观看
描述一个质点相对于另一个质点的运动速度。
相对速度
相对加速度
伽利略变换
伽利略变换是描述两个惯性参考系之间运动关系的公式。
02
通过伽利略变换,可以确定一个参考系中观察到的另一个参考系中的运动状态。
伽利略变换在经典力学中具有重要地位,是理解相对运动和绝对运动关系的关键。
03
牛顿运动定律的相对性
一个不受外力作用的质点将保持静止或匀速直线运动状态。
公式
自由落体运动满足$s = frac{1}{2}gt^2$,其中$s$是下落距离,$g$是重力加速度,$t$是时间。
应用
通过测量下落距离和时间,可以计算重力加速度;反之,通过已知的重力加速度和下落距离,可以推算时间。
自由落体运动
斜抛运动
应用
通过测量投掷角度、距离和时间,可以计算初速度;反之,通过已知的初速度和投掷角度,可以推算距离。
大学物理:第一讲:质点运动学
TITLE
演讲人姓名
Ⅰ
引言
点击添加正文
Ⅱ
质点运动的基本概念
点击添加正文
Ⅲ
质点的直线运动
点击添加正文
Ⅳ
质点的曲线运动
点击添加正文
Ⅴ
质点运动的相对性
点击添加正文
Ⅵ
质点运动学的应用
第一讲质点运动的描述ppt课件
(3)头3秒内的位移和路程
解:
(1)
dx 4 2t
v vx
dt
( m / s)
故为变速直线运动
dv
2
( m / s2 )
a
dt
故为匀变速直线运动
t 2s
v, a反向,
t 2s
t 2s
v, a同向, 故为匀加速直线运动
a)
( r、
) 是描述物体运动状态的物理量,
① 状态量:
分别表示质点任一时刻的位置
状态和运动状态。当质点的位
置状态和速度状态同时确定时,
质点的运动状态才完全确定。
a ) 是描述质点状态变化的物理量,
② 过程量:( r、
分别表示在某一时间间隔内的
位置矢量变化和速度的变化。
a ) --矢量
dt
v v0 at
v v 0 at
dx vdt (v 0 at)dt
x
t
x0
0
dx (v 0 at)dt
1 2
x x 0 v 0t at
2
例3:质点做直线运动已知a=Rx,(R>0)
求v(x)。设( = , = )
第一章 质点运动学
第一讲
质点运动的描述
基本概念:位置、速度、加速度
基本规律: 两类运动学问题。
作业:练习1 坐标系 质点 位置矢量
位移 速度 加速度
教学基本要求
一 、掌握位置矢量、位移、速度、加速
度等描述质点运动及运动变化的物理量 ,
理解它们的矢量性、瞬时性和相对性。
大学物理第一章质点运动学讲义
质点运动学的重要概念
位移
质点的位移是指质点在某一时刻相对 于参考点的位置变化量。
速度
质点的速度是指质点在某一时刻相对 于参考点的位置变化率。
加速度
质点的加速度是指质点在某一时刻相 对于参考点的速度变化率。
相对速度和相对加速度
当存在多个质点时,需要引入相对速 度和相对加速度的概念,以描述不同 质点之间的相对运动关系。
伽利略变换适用于低速运动,即速度远小于光速的情况。在 高速运动或引力场中,需要使用爱因斯坦的相对论变换。
牛顿运动定律的相对性
01
牛顿第一定律
一个质点将保持其运动状态,除非受到外力作用。在相对运动的参考系
中,牛顿第一定律速度与作用力成正比,与质量成反比。在相对运动的参考系中,
质点的描述主要包括位置、速度和加速度等基本参数,这些参数随时间变化而变 化,描述质点的运动状态。
质点运动的基本参数
位置
质点的位置可以用空间坐标来表示,通常用三维 坐标系中的坐标值描述。
速度
质点的速度是描述质点运动快慢和方向的物理量, 用矢量表示,包括大小和方向。
加速度
质点的加速度是描述质点速度变化快慢的物理量, 也是矢量,包括大小和方向。
描述一个质点相对于另一个质点的运 动速度。当两个质点相对运动时,它 们的相对速度取决于它们各自的运动 状态和方向。
相对加速度
描述一个质点相对于另一个质点的加 速度。相对加速度的大小和方向与两 个质点的相对速度有关,并影响它们 之间的相对位置和运动轨迹。
伽利略变换
伽利略变换是描述两个相对运动的惯性参考系之间关系的数 学公式。通过伽利略变换,可以计算一个质点在另一个质点 的参考系中的位置、速度和加速度。
大学物理第一章质点运动 学讲义
第一章- 质点运动学
间位置而设置的坐标系统,是固结于参考系上的一个数
学抽象。 常见的坐标系:
角向
r
Oα
径向
•P(r,α)
极轴
z
P•(x,y,z)
r
Or
y
x
极坐标系
r n
τr
P(n,τ)
O
•P(r,ϕ ,θ ) r
直角坐标系
自然坐标系
球坐标系
§1-2 描述质点运动的物理量
1-2-1 位置矢量与运动方程
上海
热带风暴
1 PDF 文件使用 "pdfFactory Pro" 试用版本创建
设质点: t+
t ∆t
时位时移刻刻::: AB∆,, rvrvrBvA
z
A v
∆rv
B
rA
v rB
O
y
x
平均速度: vr = ∆rv ∆t
单位:m⋅s-1
平均速度的方向与∆t时间内位移的方向一致
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建
2. 瞬时速度(速度) 精细地描述质 z
avt
=
dv dt
evt
=
d2s dt 2
evt
v 讨论 det
dt
∆evt
=
v et
(t
+
∆t)
-
v et
(t
)
当: ∆t → 0 , ∆θ → 0
有 ∆et = et ⋅ ∆θ = ∆θ
方向 ∆evt ⊥ evt
v d et dt
= lim ∆evt ∆t→0 ∆t
= lim ∆θ ∆t→0 ∆t
质点运动学1
? (x2 ?
?
x
1
)i ? (
?
y2
?
y?1 )j
?
(z2 ??z1 )k
? r ? ? xi ? ? yj ? ? zk
位移矢量的大小
? Δr ? Δx 2 ? Δy2 ? Δz2
位移矢量的方向 cosα ? Δx?, cosβ ? Δy?, cosγ ? Δz?
Δr
Δr
Δr
说明
?? 1)? r 和 r 是两个不同的概念。
大学物理 (2-1)
第1章 质点运动学
质点运动学研究质点的 位置、位移、 速度 、加速度 等随 时间 变化的规律。
本章重点: 1.2 描述质点运动的基本物理量; 1.3 平面曲线运动。
1.1 运动学的一些基本概念
1.1.1 参考系(reference frame )和坐标系(coordinate)
?
d2 y d t2 ,
az
?
d vz dt
?
d2 z d t2
加速度的大小
?
a? a ?
a
2 x
?
a
2 y
?
a
2 z
加速度的方向
cos? ? ax , cos ? ? a y , cos ? ? az
a
a
a
?
?
?
例题1-1 已知质点的运动方程是 r ? ( R cos ? t )i ? ( R sin ? t ) j
dx ? d y ? dz ?
dx
dy
dz
v ? ? i ? j? k dt dt dt dt
vx ? d t ,vy ? d t ,vz ? d t
1质点运动学
质点运动学
§1-1 几个基本概念
一、质点 具有一定质量的几何点 两种可以把物体看作质点来处理的情况:
• 作平动的物体, 可以被看作质点
• 两相互作用着的 物体,如果它们之 间的 距离远大于本 身的线度,可以把 这两物体看作质点
质点:具有一定质量的几何点
常常把物体看成许多质 点的组合
• 如:刚体 带电体
v
r
t
平均速度的方向与t时 间内位移的方向一致
反映质点运动的快慢和 方向的物理量
zP
Q
rA
r rB
O
x
v
r
y
t
五、瞬时速度
zP
Q
精细地描述质点在某 时刻的运动情况
rA
r rB
lim
v
r
dr
t0 t dt
O
xv
y
速度的方向为轨道
P
Q
上质点所在处的切 线方向。
r
v
dr
dx
i
dy
k
axi ay j azk
瞬时加速度:
lim
a
t 0
v t
dv dt
d2r dt 2
ax
dvx dt
d2x dt 2
ay
dv y dt
d2 y dt 2
az
dvz dt
d2z dt 2
加速度的大小:
a
ax2
a
2 y
az2
加速度的方向: 当 t 趋向零时,速度增量
v
的极限方向
加速度方向始终指向曲线轨道 侧?
平均加速度
a
v
x
t
y
第一章质点运动学
3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m
第1章-质点运动学ppt课件
§1-1 参考系
Function of Motion of a Particle
参考系
在描述物体运动时,必须指定其他物体或物体系 作为参考,这就是参考系〔或称参照系)。
例如: 以固定在地面上的某标志物为参考——地面参考系; 以实验室的墙壁地板为参考——实验室参考系; 研究行星运动时以恒星为参考——恒星参考系。
1. 平均加速度
速度质改点变在量t时与v间该里时的间
间隔的比值,即
a v
t
z
vA
A
vB
B
O
y
x
vA
vvB
v A
vB
称为质点在 t时间里的平均加速度
平均加速度是对一段时间而言的,它只能粗略地 表示质点速度变化的情况。
2. 瞬时加速度
当 t 0
,
v
alaim
t 0 t
d v dt
d
2
r
dt 2
v2 练习 :从加速度定义出发,导出 a n R
2. 变速圆周运动的加速度
加速度定义:a Av
v
lim
t0 t
lti m 0vt1lti m 0vt2
R B v
v
v v 1v 2
O
v v1
v2
v
v1 AB vv R
v2 v v v
v1
AB v R
a lim v1
lim v2
法向加速度分量 切向加速度分量
v2 dv a n t
R dt
说明
切向加速度反映了速度大小变化的快慢; 法向加速度反映了速度方向变化的快慢。
(匀速率圆周运动只有法向加速度,且大小不变
力学赵凯华第一章质点运动学1教学内容
5
第六页,共25页。
v
dr
dx
i
dt dt
a
d
( dr )
d
(
dx
)i
d
2
x
i
dt dt dt dt dt 2
x x(t)
v dx dt
a d2x dt 2
6
第七页,共25页。
例. 某质点运动学方程为
r
A
(t
t
2
)B
, , 为常数,
A, B为常矢量。试证明
它作匀加速直线运动。
v
v
v
17
第十八页,共25页。
a
dv
dvx
i
dv y
j
dvz
k
dt dt dt dt
d2x dt 2
i
d2y dt 2
j
d2z dt 2
k
axi ay j azk
ax
dvx dt
d2x dt 2
ay
dv y dt
d2y dt 2
az
dvz dt
d2z dt 2
18
第十九页,共25页。
v
r
t
v
lim
r
dr
t0 t dt
z
P1
·
ΔS
Δr
·P2
r(t) r(t+Δt )
0
y
v
dr
ds
v
x
dt dt
14
第十五页,共25页。
v v(t t) v(t)
a
lim
t0
v t
dv dt
d 2r dt 2
15.质点运动学(1)
变加速直线运动,沿x负方向
思考:质点在平面上运动,
位矢
r
at
2i
bt
2
j(a,b为
常量) , 则该质点作
(A) 匀速直线运动。 (B) 匀加速直线运动。 (C) 抛物线运动。 (D) 一般曲线运动。
大学物理
主讲老师:李瑞洁
特别声明 本课件由本人独立制作完成,凝聚着制作者 的心血和思路,仅供我班同学使用,请不要 擅自转借或上传网络。谢谢合作!
第一章 质点运动学
一、基本概念
1、 质点(particle)
——有质量, 无大小形状的理想模型
2、 参照系(reference system) 3、 坐标系(coordinate system)
r (x2 x1)i (
•区分路程s与位移
y2
r
y1
)
j
,
• s r,但ds dr
• 区分 r与r, r
r (x2 x1)2 ( y2 y1)2
r r2
r |
r1 r |,
r2
r1
且dr
dr
y1
•
0
•2 x
8、速度(velocity)
平均速度:
——单位时间的位移:v
r
t
4、位—置—r从矢原量x点i/ 位y质矢j 点(p的o有sit向io线n v段ec:toryr)
r r x2 y2 , (大小)
OP
•P(x,y)
r
tg 1
y x
(方向)
θ o
x
Байду номын сангаас
5、运动方程/ 运动函数(function of motion)
质点运动学第1讲
2-1-2 位置矢量与运动方程
位置矢量
r
xi
yj
zk
矢量的大小:r
r
x2 y2 z2
矢量的方向:OP
y
P(x ,y , z)
r
o
x
z
质点运动方程
质点的位置随时间t变化的规律
r
r (t )
x(t )i
y(t) j
z(t )k
矢量式
S
r
B
rB
x 位移!
该矢量大小的改变 一个矢量的改变,包括
和该矢量方向的改变
位矢方向
的改变 r (t )
dr
r(t t ) r(t )
r
r
r
r(t
t )
r(t )
位矢大小
的改变
0 r (t t) dr
2-1-4 速度
描12.. 述平瞬质均时点速速位度度置变 化li快tmr0t慢和rt 运ddr动t 方向的矢y 量
内容
§2-1 直角坐标系中质点运动的描述 §2-2 自然坐标系中质点运动的描述 §2-3 相对运动(自学)
2-1-1 参考系 质点模型
质点: 只有质量而没有大小和形状的理想模型。
参考系: 定性描述物体运动而选作参考的物体。
运动描述的相对性 参考系选择是任意的
坐标系: 固定在参考系上,定量描述空间位置的有
A
rA
A B B
rB
2. 瞬时加速度:
o
B
y
x
a
lim t 0 t
d
dt
d dt
dr d t
d
2
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 质点运动学一、选择题1. 一物体在位置1的矢径是r 1, 速度是1v . 如图1-1-1所示.经∆t 时间后到达位置2,其矢径是 r 2, 速度是2v .则在∆t 时间内的平均速度是 [ ] (A) )(2112v v - (B) )(2112v v + (C) t r r ∆-12 (D) t r r ∆+122. 一物体在位置1的速度是1v , 加速度是a 1.如图1-1-2所示.经∆t 时间后到达位置2,其速度是2v , 加速度是a 2.则在∆t 时间内的平均加速度是 [ ] (A) )(112v v -∆t (B) )(112v v +∆t (C) )(2112a a - (D) )(2112a a +3. 关于加速度的物理意义, 下列说法正确的是 [ ] (A) 加速度是描述物体运动快慢的物理量 (B) 加速度是描述物体位移变化率的物理量 (C) 加速度是描述物体速度变化的物理量 (D) 加速度是描述物体速度变化率的物理量4.运动方程表示质点的运动规律, 运动方程的特点是 [ ] (A) 绝对的, 与参考系的选择无关 (B) 只适用于惯性系(C) 坐标系选定后, 方程的形式是唯一的 (D) 参考系改变, 方程的形式不一定改变5. 竖直上抛的物体, 在t 1时刻到达某一高度, t 2时刻再次通过该处,则该处的高度是[ ] (A)2121t gt (B) )(2121t t g + (C) 221)(21t t g + (D) )(2112t t g -6. 一质点作曲线运动, 任一时刻的矢径为r , 速度为v , 则在∆t 时间内[ ] (A) v v ∆=∆ (B) 平均速度为∆∆rt(C) r r ∆=∆ (D) 平均速度为tr∆∆7. 一质点作抛体运动, 忽略空气阻力, 在运动过程中, 该质点的t d d v 和td d v的变化情图1-1-1图1-1-2况为[ ] (A) t d d v 的大小和td d v的大小都不变 (B)t d d v 的大小改变, td d v的大小不变 (C) t d d v 的大小和td d v的大小均改变 (D)t d d v 的大小不变, td d v的大小改变8. 一质点在平面上作一般曲线运动, 其瞬时速度为v, 瞬时速率为v , 平均速度为v ,平均速率为v, 它们之间的关系必定为[ ] (A) v v = v v= (B) v v ≠ v v =(C) v v ≠ v v ≠ (D) v v =v v ≠9. 下面各种判断中, 错误的是[ ] (A) 质点作直线运动时, 加速度的方向和运动方向总是一致的(B) 质点作匀速率圆周运动时, 加速度的方向总是指向圆心 (C) 质点作斜抛运动时, 加速度的方向恒定(D) 质点作曲线运动时, 加速度的方向总是指向曲线凹的一边10. 下列表述中正确的是[ ] (A) 质点作圆周运动时, 加速度一定与速度垂直 (B) 物体作直线运动时, 法向加速度必为零 (C) 轨道最弯处法向加速度最大(D) 某时刻的速率为零, 切向加速度必为零11. 一抛射物体的初速度为0v , 抛射角为θ, 如图1-1-11所示.则该抛物线最高点处的曲率半径为 [ ] (A) ∞ (B) 0(C) g 20v (D) θ220cos gv12. 有两个各自作匀变速运动的物体, 在相同的时间间隔内所发生的位移大小应有 [ ] (A) 加速度大的位移大 (B) 路程长的位移大 (C) 平均速率大的位移大 (D) 平均速度大的位移大13. 一沿直线运动的物体, 其速度与时间成反比, 则其加速度大小与速度大小的关系是[ ] (A) 与速度成正比 (B) 与速度平方成正比(C) 与速度成反比 (D) 与速度平方成反比14. 质点作曲线运动, r 表示位置矢量的大小, s 表示路程, a 表示加速度大小, 则下列各式中正确的是 [ ] (A)a t =d d v(B) v =tr d d (C) v =t s d d (D) a t=d d v图1-1-1115. 一物体作匀变速直线运动, 则 [ ] (A) 位移与路程总是相等(B) 平均速率与平均速度总是相等 (C) 平均速度与瞬时速度总是相等(D) 平均加速度与瞬时加速度总是相等16. 平抛物体在空中运动的总时间决定于 [ ] (A) 初速度的大小 (B) 抛体的质量(C) 抛出点与落地点的竖直距离 (D) 抛出点与落地点的水平距离17. 初速率相等的两个抛射体, 抛射仰角分别为α和β, 且2π=+βα.则它们的 [ ] (A) 射高相等 (B) 射程相等 (C) 运行时间相等 (D) 都不相等18. 在地面上以初速v 0、抛射角θ 斜向上抛出一物体, 不计空气阻力.问经过多长时间后速度的水平分量与竖直分量大小相等, 且竖直分速度方向向下?[ ] (A))cos (sin 0θθ+g v (B) )cos 2(sin 0θθ-g v (C) )sin (cos 0θθ-gv(D)gv19. 从离地面高为h 处抛出一物体,在下列各种方式中,从抛出到落地时间内位移数值最大的一种是[ ] (A) 自由下落 (B) 以初速v竖直下抛(C) 以初速v 平抛 (D) 以初速v竖直上抛20. 一物体从某一确定高度以0v 的速度水平抛出, 已知它落地时的速度为t v, 则它运动的时间是 [ ] (A)g t 0v v - (B) g t 20v v - (C)gt 202v v - (D) gt 2202v v -21. 作匀变速圆周运动的物体[ ] (A) 法向加速度大小不变 (B) 切向加速度大小不变(C) 总加速度大小不变 (D) 以上说法都不对22. 作圆周运动的物体[ ] (A) 加速度的方向必指向圆心 (B) 切向加速度必定等于零 (C) 法向加速度必定等于零 (D) 总加速度必定不总等于零23. 质点作变速直线运动时, 速度及加速度的关系为 [ ] (A) 速度为0, 加速度一定也为0(B) 速度不为0, 加速度也一定不为0 (C) 加速度很大, 速度也一定很大(D) 加速度减小, 速度的变化率也一定减小24. 作匀速圆周运动的物体[ ] (A) 速度不变 (B) 加速度不变(C) 切向加速度等于零 (D) 法向加速度等于零25. 下列几种情况中, 哪种情况是不可能的? [ ] (A) 物体具有向东的速度和向东的加速度 (B) 物体具有向东的速度和向西的加速度 (C) 物体具有向东的速度和向南的加速度 (D) 物体具有变化的加速度和恒定的速度26. 一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b为常量) , 则该质点作[ ] (A) 匀速直线运动 (B) 变速直线运动 (C) 抛物曲线运动 (D) 一般曲线运动27. 以同一初速v 0、不同的发射角1θ和2θ 发射的炮弹均能击中与发射点在同一平面内的目标. 不计空气阻力, 则1θ与2θ之间的关系为[ ] (A)π21=+θθ (B) 2π21=-θθ (C) 2π21=+θθ (D) 4π21=-θθ28. 一质点在x O y 平面内运动, 其运动方程为Rt t R x ωω+=sin ,R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为[ ] (A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,229. 某人以-1s m 4⋅的速度从A 运动至B , 再以-1s m 6⋅的速度沿原路从B 回到A ,则来回全程的平均速度大小为 [ ] (A) -1sm 5⋅(B) -1s m 8.4⋅ (C) -1s m 5.5⋅ (D) 030. 物体不能出现下述哪种情况?[ ] (A) 运动中, 瞬时速率和平均速率恒相等 (B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变31. 一质点作直线运动, 某时刻的瞬时速度v =-1s m 2⋅, 瞬时加速度-2s m 2⋅-=a ,则s 1后质点的速度大小[ ] (A) 等于零 (B) 等于-1s m 2⋅-(C) 等于-1s m 2⋅ (D) 不能确定32. 某物体的运动规律为t k t2d d v v-=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是[ ] (A) 0221v v +=t k (B) 0221v v +-=t k (C) 02121v v +=t k (D) 02121v v +-=t k33. 如图1-1-33所示,站在电梯内的人, 看到用细绳连接的质量不同的两物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态, 由此他断定电梯作加速运动, 其加速度的 [ ] (A) 大小为g , 方向向上 (B) 大小为g , 方向向下 (C) 大小为g /2, 方向向上(D) 大小为g /2, 方向向下34. 若以时钟的时针为参考系,分针转一圈所需的时间约是[ ] (A) 55 min (B) 65.45 min (C) 65.25 min (D) 55.3 min35. 一电梯在以恒定速率v 竖直上升过程中, 某时刻有一螺帽自电梯的天花板上脱落, 最后落到电梯底板上.已知电梯的天花板至底板间的距离d , 在此过程中螺帽相对地面的位移大小为[ ] (A) 大于d (B) 等于d(C) 小于d (D) 与d 的关系要视v 的大小决定36. 如图1-1-36所示,一条河设置A 、B 两个码头,相距1km .甲、乙需要从A 到B, 再由B 返回.甲划船去, 船相对于河水的速率为-1h km 4⋅,乙沿岸步行,其速率也为-1h km 4⋅,如果河水流速-1h km 2⋅,方向从A 到B, 则[ ] (A) 甲比乙晚10 min 回到A (B) 甲和乙同时回到A(C) 甲比乙早10 min 回到A (D) 甲比乙早2分钟回到A37. 某人骑自行车以速率v 向正西方行驶, 遇到由北向南刮的风(设风速大小也为v ), 则他感到风是从[ ] (A) 东北方向吹来 (B) 东南方向吹来(C) 西北方向吹来 (D) 西南方向吹来38. 如图1-1-38所示,在相对地面静止的坐标系内, A 、B 两船都以-1s m 2⋅的速率匀速行驶.A 船沿x 轴正向,B 船沿y 轴正向.现在A 船上设置与静止坐标系方向相同的坐标系, 则从A 船上看B 船, 它对A 船的速度(SI)为 [ ] (A) j i 22+ (B) j i22+-图1-1-36图1-1-38(C) j i 22-- (D) j i22-39. 一飞机相对空气的速度为-1h km 200⋅,风速为-1h km 56⋅,方向从西向东.地面雷达测得飞机的速度大小是192 km.h -1, 方向是 [ ] (A) 南偏西16.3︒ (B) 北偏东16.3︒ (C) 西偏东16.3︒ (D) 正南或正北 40. 如图1-1-40所示,用枪射击挂在空气中的目标A, 在发射子弹的同时, 遥控装置使A 自由下落, 假设不计空气阻力, 要击中A, 枪管应瞄准[ ] (A) A 本身 (B) A 的上方 (C) A 的下方 (D) 条件不足不能判定 41. 如图1-1-41所示,在离水面高为h 的岸边, 一电动机用绳子拉船靠岸.如果电动机收绳速率恒为u , 则船前进速率v[ ] (A) 必小于u (B) 必等于u (C) 必大于u (D) 先大于u 后小于u 42. 在匀速行驶火车上的一个学生,掷一个球给车内坐在他对面的朋友(他们之间的连线与火车前进方向垂直), 则小球运动轨迹对地面的投影是[ ] (A) 与火车运动方向成90︒角的直线(B) 指向前的一个弧线 (C) 指向后的一个弧线(D) 与火车运动方向不成90︒角的直线43. 在同一地点将甲乙两物体同时以相同的初速率沿同一竖直面抛出, 但抛出时的仰角不同, 不计空气阻力, 下面哪种判断是不正确的? [ ] (A) 有可能使甲、乙在空中相碰 (B) 不可能使甲、乙在空中相碰(C) 甲、乙在空中飞行的时间不会相同(D) 甲、乙在空中飞行的水平距离不会相同二、填空题1. 一辆汽车以10 m.s -1的速率沿水平路面直前进, 司机发现前方有一孩子开始刹车, 以加速度-0.2m.s -2作匀减速运动,则刹后1 min 内车的位移大小是 .2. 一质点沿半径为R 的圆周运动一周回到原地, 质点在此运动过程中,其位移大小为 ,路程是 .3. 如图1-2-3所示,甲、乙两卡车在一狭窄的公路上同向行驶,甲车以10 m.s -1速度匀速行驶, 乙车在后. 当乙车发现甲车时, 车速度为15 m.s -1,相距1000m .为避免相撞,乙车立即作匀减速行驶,其加速度大小至少应为 .图1-2-3图1-1-41图1-1-404. 物体通过两个连续相等的位移的平均速度大小分别为1v =10m.s -1和2v =15m.s -1.若物体作直线运动, 则整个运动中物体的平均速度大小为 .5. 一质点沿x 轴作直线运动,其t v -曲线如图1-2-5所示.若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 .6以初速率0v 、仰角θ(设45>θ)将一物体抛出后, 在)cos (sin 0θθ-=gt v 时刻, 该物体的切向加速度为 .7. 一质点沿x 轴作直线运动, 在t = 0时, 质点位于x 0 =2 m 处. 该质点的速度随时间变化的规律为2312t -=v ( t 以s 计). 当质点瞬时静止时,其所在位置为 ,加速度为 .8. 一作直线运动的物体的运动规律是t t x 403--=,从时刻t 1到t 2间的平均速度是 .9. 质点作直线运动, 加速度为t A ωωsin 2.已知t = 0 时, 质点的初状态为00=x ,A ω-=0v , 则该质点的运动方程为 .10. 已知一个在xOy 平面内运动的物体的速度为j t i82-=v .已知t = 0时它通过(3,-7)位置.则该物体任意时刻的位置矢量为 .11. 一人以速率v 骑由东朝西行驶, 风以相同的速率从北偏东30︒方向吹来.则人感到风吹来的方向是 .12. 距河岸(看成直线)300 m 处有一艘静止的船,船上的探照灯以转速为1min r 1-⋅=n 转动,当光束与岸边成30°角时,光束沿岸边移动的速率=v .13. 有一水平飞行的飞机,速度为0v,在飞机上以水平速度v 向前发射一颗炮弹,略去空气阻力, 并设发炮过程不影响飞机的速度,则(1) 以地球为参考系,炮弹的轨迹方程为 .(2) 以飞机为参考系,炮弹的轨迹方程为 .14. 半径为30 cm 的飞轮,从静止开始以-2s rad 500⋅.的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度的大小t a = ,法向加速度的大小n a = .15. 一物体作如图1-2-15所示的斜抛运动,测得在轨道A 点)-处速度v的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度的大小τa = ,轨道的曲率半径=ρ .三、计算题1. 如图1-3-1所示,跨过滑轮C 的绳子,一端挂有重物B ,另一端A 被人拉着沿水平方向匀速运动,其速率1s m 1-⋅=v .A 离地高度保持为h ,m 5.1=h .运动开始时,重物放在地面B 0处,此时绳子跨过滑轮C 在竖直位置绷紧,滑轮离地高度m 10=H ,滑轮半径忽略不计,求:(1) 重物B 上升的运动学方程; (2) 重物B 的速度和加速度; (3) 重物B 到达C 处所需的时间.2. 如图1-3-2所示,一炮弹发射后在其运行轨道的最高点m 6.19=h 处炸裂成质量相等的两块,其中一块在爆炸后以(S I) 7.141000j i+=v 的速度运动;另一块在爆炸后落到爆炸点正下方的地面上,设此处与发射点的距离m 10001=s .问另一块落地点与发射点的距离2s 是多少(设空气阻力不计)?3. 一个人扔石头时的最大出手速率为-10s m 25⋅=v ,他能击中一个与他的手水平距离L =50 m 、高h =13 m 处的一个目标吗? 在这个距离内他能击中的目标的最大高度是多少?4. 质点由静止开始作直线运动,初始加速度为0a ,以后加速度均匀增加,每经过时间0t 增加0a ,求经过时间t 后质点的速度和位移.5. 一物体悬挂在弹簧上作竖直振动,其加速度为a =-k y ,式中k 为常数,y 是以平衡位置为原点所测得的坐标.假定振动的物体在坐标0y 处的速度为0v ,试求速度v 与坐标y 的函数关系式.6. (1) 对于作匀速圆周运动的质点,试求直角坐标和单位矢量i 和j表示其位置矢量r , 并由此导出速度v 和加速度a的矢量表达式.(2) 试证明加速度a的方向指向轨道圆周的中心.7. 如图1-3-7所示,质点P 在水平面内沿一半径为R = 2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω(k 为常量).已知s 2=t 时,质点P 的速度大小为-1s m 32⋅.试求s 1=t 时,质点P的速度与加速度的大小.图1-3-7图1-3-212ACB OB图1-3-18. 一张致密光盘(CD)音轨区域的内半径R 1= 2.2 cm ,外半径为R 2 = 5.6 cm ,径向音轨密度N = 650条/mm .在CD 唱机内,光盘每转一圈,激光头沿径向向外移动一条音轨,激光束相对光盘是以v =1.3 m/s 的恒定线速度运动的.(1)这张光盘的全部放音时间是多少? (2) 激光束到达离盘心r =5.0 cm 处时,光盘转动的角速度和角加速度各是多少?9. 一飞机驾驶员想往正北方向航行,而风以60 km ⋅h -1的速度向西刮来,如果飞机的航速(在静止空气中的速率)为180 km ⋅h -1,试问驾驶员应取什么航向? 飞机相对于地面的速率为多少? 试用矢量图说明.10. 静止时,乘客发现雨滴下落方向偏向车头,偏角为30°; 当火车以-1s m 35⋅=v 的速率沿水平直路行驶时,车上乘客发现雨滴下落方向偏向车尾,偏角为45︒.假设雨滴相对于地的速度保持不变,试计算雨滴相对地的速度大小.。