八年级数学上坐标与位置完整版

合集下载

北师大版数学八年级上册第三章《位置与坐标》

北师大版数学八年级上册第三章《位置与坐标》

知2-讲
导引:要确定每所学校的位置,应以光明广场为参照物,然后 通过计算确定各学校所在位置的方位角,最后用方位角 和各学校到光明广场的距离来表示各学校的位置.
解:∠BOC=∠AOC-∠AOB=123°18′-68°24′ =54°54′,∠NOD=180°-∠AOB-∠AOD=180° -68°24′-88°28′=23°8′. 对光明广场来说,东方国际中学在南偏东68°24′,距 离为8.5 km处;东方红中学在正南方向,距离为10 km 处;29中在南偏西54°54′,距离为10 km处;37中在北 偏东23°8′,距离为7 km处.
第三章 位置与坐标
3.1 确定位置
1 课堂讲解 2 课时流程
确定位置的条件 表示物体位置的方法
逐点 导讲练
课堂 小结
作业 提升
回顾旧知
在数轴上,确定一个点的位置需要几个数据呢?
-2 -1 0 1 2 3
答:一个,例如: 若A点表示-2,B点表示3,则由-2和3就可以在 数轴上找到A点和B点的位置. 在直线上,确定一个点的位置一般需要一个数据.
y 5 第二象限 4 第一象限
(-,+) 3 2
(+,+)
1
-4 -3 -2 -1-1O 1 2 3 4 5 x
第三象限
-2 -3
第四象限
(-,-)
-4
(+,-)
-5
知2-讲
1、点P(x,y)在第一象限 2、点P(x,y)在第二象限 3、点P(x,y)在第三象限 4、点P(x,y)在第四象限
知2-讲
下面给出一张某市旅游景点的 示意图,在科技大学的小亮如 何给来访的朋友介绍该市的几 个风景点的位置呢?

北师大版八年级数学(上)第三章 位置与坐标 第1节 确定位置

北师大版八年级数学(上)第三章  位置与坐标  第1节  确定位置

总结3:其他几种确定位置的方法:
在平面内,确定一个物体的位置除用“有序数对”和“方位角 和距离”外,还有以下方法: (1)经纬定位法:使用此方法确定物体的位置必须指明经度和纬 度,二者缺一不可. (2)区域定位法:使用此方法时,先将该物体所在的平面划分成 几个区域,然后用两个不同的符号表示.
课堂小结
表示物体位置的方法
1. 用有序实数对确定位置. 2. 方位角和距离确定位置. 3. 其他几种确定位置的方法:
(1)经纬定位法 (2)区域定位法
课后练习:
1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那
么该同学的位置是( B ) A.第2排第4座
B.第4排第2座
C.第4座第4排
对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛;要想 确定敌舰B的位置,还需要知道敌舰B距我方舰艇的距离.
(2)距离我方潜艇20 n mile处的敌舰有哪几艘?
1.4cm
1cm
距我方潜艇20 n mile处的敌舰有两艘:敌舰A和敌舰C.
1cm
(3)要确定每艘敌舰的位置,各需要几个数据?
确定平面内一个物体的位置,可以选择一个参照物,然后 用方位角和距离来表示物体的位置,这种表示物体位置的 方法称为方位角、距离定位法.
例2:如图是小丽以学校为观测点,画出的一张平面图. (1)生源大酒店在学校__北___偏___西__3_0_°_方向___4_0_0____米处.汽车站在 学校___南_____偏___西__5_0_°___方向_____6_0_0__米处; (2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位 置; (3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医 院大约需要___2_4____分钟.

北师大版八年级数学上册《确定位置》位置与坐标PPT课件

北师大版八年级数学上册《确定位置》位置与坐标PPT课件
位角.例如,对我方潜艇来说,敌舰A在正南方向,距 离为20 n mile处;敌舰B在北偏东40°的方向,距离为 28 n mile处;敌舰C在正东方向,距离为20 n mile处.
(来自教材)
知2-讲
例3 小明在光明广场(O点)绘制 了市内的几所学校相对于光 明广场的位置简图(如图, 1 cm表示5 km). 东方红中 学在光明广场的正南方向, 测得OA=1.7 cm,OB=2 cm, OC=2 cm,OD =1.4 cm,∠AOC=123°18′, ∠AOB=68°24′,∠AOD=88°28′.如何确定每所学 校的具体位置?
知2-导
解:(1)如图,对我方潜艇来说,北偏东40°的方向上有两个目 标:敌舰B和小岛. 要想确定敌舰B的位置,仅用北偏东40°的方向是不够 的,还需要知道敌舰B距我方潜艇的距离.
(2)距离我方潜艇20 n mile的敌舰有两艘:敌舰A和敌舰C. (3)要确定每艘敌舰的位置,各需要两个数据:距离和方
对光明广场来说,东方.5 km处;东方红中学在正南方向,距离为10 km
处;29中在南偏西54°54′,距离为10 km处;37中在北
偏东23°8′,距离为7 km处.
(来自《点拨》)
总结
知2-讲
用方位角和距离来确定物体的位置时,方位角、 距离这两个数据缺一 不可.在描述位置时,一般 先指出方位角,再指出距离.
(来自《典中点》)
知识点 2 表示物体位置的方法
1. 用有序实数对确定位置. 2. 方位角和距离确定位置. 3. 其他几种确定位置的方法:
(1)经纬定位法 (2)区域定位法
知2-导
知2-讲
1.用有序实数对确定位置: 定义:有顺序的两个数a与b组成的数对,叫做有 序数对,记作(a,b). 作用:平面上每一个点都对应着一个有序数对, 每一个有序数对都对应着一个点,因此,利用有 序数对可以准确地描述物体的位置, 即:平面上的点⇔有序数对.

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。

北师大版八年级数学上册第3章位置与坐标1确定位置

北师大版八年级数学上册第3章位置与坐标1确定位置

A.3楼5号
B.北偏西40°
C.解放路30号
D.东经120°,北纬30°
2.海事救灾船前去救援某海域失火轮船,需要确定( D)
A.方位角
B.距离
C.失火轮船的国籍 D.方位角和距离
3、下列说法错误的是(B) A.确定平面内点的位置一般需要两个数据 B.(1,2)和(2,1)表示同一个点 C.确定直线上点的位置只需一个数据就可以 D.确定平面内点的位置的方法不只一种
在平面内,确定一个物体的位置一般需要两个数据。
观察如图所示象棋盘,回答问题: (1)请你说出“将”与“帅”的 位置;
将:(9,5);帅(1,5)
(2)说出“马 3 进 4”(即第 3 列的马前进到第 4 列)后的位 置. (3,4)或(7,4)
1.在平面内,下列数据不能确定物体位置的是( B )
东ห้องสมุดไป่ตู้
我方潜艇 O 20海里 C
20海里
(3)要确定每艘舰艇的位
敌方战舰C
置,各需要什么数据? A
方位角和距离
敌方战舰A

用方位角和距离可以确定平面上物体的位置。
y
o x
如图是广州市地图简图的一部分,如何向同伴介绍“ 广州起义烈士陵园”所在的区域?“广州火车站”呢?
(1)你能举出生活中需要确定位置的例子吗? 与同伴进行交流。 (2)在平面内,确定一个物体的位置一般需要 几个数据?
第三章 位置与坐标
1 确定位置
1. 给你一张电影票,你是如何找到自己的座位的?
2. 电影票上,“6排3号”与“3排6号”中的“6”的 含义有什么不同?
1. 电影院内,确定一个位置一般需要几个数据? 为什么?
答:两个数据,排数和号数。

2021秋北师大版数学八年级上册 第3章 位置与坐标 教学课件(付)

2021秋北师大版数学八年级上册 第3章 位置与坐标 教学课件(付)

)B
2.海事救灾船前去救援某海域失火轮船,需要确定 ( D )
A.方位角
B.距离
C.失火轮船的国籍 D.方位角和距离
课堂检测
基础巩固题
3. 如图,雷达探测器测得六个目标A、B、C、D、E、F出现
按照规定的目标表示方法,目标C、F的位置表示为C(6,
120°)、F(5,210°),按照此方法在表示目标A、B、D、
˚
敌方舰 艇B 敌方 舰艇 C 敌方 舰艇 A
巩固练习
如图,货轮与灯塔相距40n mile,如何用方向和距离描述 灯塔相对于货轮的位置?反过来,如何用方向和距离描述 货轮相对于灯塔的位置?

50°
解:(1)灯塔在货轮南偏东50°方向,且相距40n mile; (2)货轮在灯塔北偏西50°方向,且相距40n mile.
上面的活动是通过像“第2列第4排、第5列第6排”这样含有 两个数的表达方式来表示一个确定的位置,其中两个数各自表示 不同的含义,例如前边的表示列,后边的表示排,我们把这种有
顺序的两个数 a与b 所组成的数对,记作(a, b).
探究新知
问题4 现在给出班里一部分同学的姓名,约定“列数在前,排 数在后”,你能快速说出这些同学座位对应的有序数对吗?
课堂检测
基础巩固题
5.如图所示,写出表示下列各点的数对. A_(__2_,3_)__;
B_(__6_,_2_)_;C(__2_,1__)__;D_(__1_2_,5_)_;E_(__1_2_,9_)_;F_(__7_,1_1_)_; G_(__5_,1_1_)_;H_(__4_,8_)__;I_(__7_,_7_)_.
1. 理解平面直角坐标系以及横轴、纵轴、原点、 坐标等概念,认识并能画出平面直角坐标系 .

八年级数学上册北师大版 位置与坐标

八年级数学上册北师大版  位置与坐标

1 确定位置知识点一平面上确定物体位置的方法1.行列定位法行列定位法常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置要准确标记某点的位置需要个独立的数据,两者缺一不可.一般记作的形式.例如:某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是2.方位角+距离定位法用方位角和距离来表示平面上物体的位置的三个要素是如图,A学校在小明家B商场在小明家C公园在小明家P停车场在小明家3.确定平面内地理位置的方法(1)经纬定位法:通过地球上的经度和纬度确定一个地点在地球上的位置,在地图上,水平方向的线是纬线,表示纬度;竖直方向的线是经线,表示经度.(2)区域定位法:先将区域划分为横纵区域,然后用横纵区域数表示物体的位置.(3)方格定位法:一般地,在方格纸上,一点的位置由横向格数与纵向格数确定,可以记作(横向格数,纵向格数)或(横向距离,纵向距离).如图,奥运福娃在5x5的方格(每小格边长为1)上沿着网格线运动,贝贝从A处出发去寻找B,C、D处的其他福娃,规定:向上、向右走为正、向下、向左走为负、如果从A到B记为A→8(+1、+4)、从B到A记为B-4(-1、-4),请根据图中所给信息解决下列问题(1)A→C( );B→C( );C→(-3、-4)(2)如果贝贝的行走路线为A→B一C一D、请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2、+2)、(+2、-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置点如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A点O1B点O2C点O3D点O42平面直角坐标系知识点一平面直角坐标系及有关概念1.平面直角坐标系在平面内,两条互相且有的数轴组成平面直角坐标系.通常,两条数轴分别置于位置和位置,取向与向的方向分别为两条数轴的正方向。

北师大版八年级数学上册位置与坐标课件

北师大版八年级数学上册位置与坐标课件

上海
30°
下图是某次海战中敌我双方舰艇 对峙示意图(图中1厘米表示20海
里).对我方舰艇来说:
(1)北偏东40°的方 向上有哪些目标?要想 确定敌舰B的位置,还需 要什么数据?
(2)距我方潜 艇20海里处的敌
舰有哪几艘?
答:距我方潜艇20 n mile处的敌舰有两艘: 敌舰A和敌舰C.
(3)要确定每艘敌舰的位置,各需要几个数据?
D.东经120°,北纬30°
2.教室中一位同学在第2排第5列,他的位置记作(2,5),则在
他后面的那一位同学的位置记作 ( A )
A.(3,5) B.(2,6) C.(1,5) D.(1,4)
3.地球上的位置如图所示,则A的地理位置是( C )
A.北纬50°, 东经130° B.北纬60°, 东经130° C.北纬50°,东经140° D.北纬50°, 东经40 °
花园—春
3

教 工
花园① 房
水龙头①
厕 所
大门
水龙头②C3

蛋奶室
井 花园②
——
?楼如 “”图 蛋所是 奶在某 室区镇 ”域中 呢?学 ?“平
仓面 库图 ”, 呢如 ?何 “向 花同 园伴
介 绍 夏“ ”电 呢教
1.在平面内,下列数据不能确定物体位置的是( B )
A.3楼5号
B.北偏西40°
C.解放路30号
(7,6) (2,2) (8,4) (5,3) (11,5) (10,2)
课 的 送 分 在 中 夫 龙 鼠 学 上 人 (7,6)
, 个 飞 — 看 吴 我 亲 风 哈 块 * (2,2) 地人郭。如币是娘虎六的屋
(8,4) 拍曲止服是但尽最卧静的+

八年级数学位置与坐标知识点及练习题

八年级数学位置与坐标知识点及练习题

第三章位置与坐标一、知识要点一、平面直角坐标系(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

A 一个点B 一个图形C 一个数D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是()A 原点O不在任何象限内B 原点O的坐标是0C 原点O既在X轴上也在Y轴上D 原点O在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x轴上,坐标为(x,0)在x轴的负半轴上时,x<0, 在x轴的正半轴上时,x>0点在y轴上,坐标为(0,y)在y轴的负半轴上时,y<0, 在y轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy>0第二、四象限角平分线上的点的横纵坐标相反(即在y= -x直线上);坐标点(x,y)xy<0,则点P的坐标是,若点Q在例1 点P在x轴上对应的实数是31,则点Q的坐标是,y轴上对应的实数是3例2 点P(a-1,2a-9)在x轴负半轴上,则P点坐标是。

北师大版八年级数学上册《位置与坐标》课件(共22张PPT)

北师大版八年级数学上册《位置与坐标》课件(共22张PPT)
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
1.点到坐标轴的距离是点的横纵坐标的绝对值 点P(x,y)到x轴的距离是|y|,到y轴的距 离是|x|。 2.一、三象限的角平分线上的点的横纵坐标 相等, 二、四象限的角平分线上的点的横 纵坐标互为相反数.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
到y轴的距离为1.5,则点P的坐标是(__-_1_._5_,__-。2)
5.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
6.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
的距离是__5___ ,到y轴的距离是___3__.
2.若点B在X轴上方,Y轴右侧,并且到y轴、x 轴距离分别是2、4个单位长度,则点B的 坐标是_(__2_,4_)__.
3.点P到x轴、y轴的距离分别是2、1,则点 P的坐标可能为__________________。
(1,2)(-1,2)(1,-2)(-1,-2)
1.关于X轴对称的两个点横坐标相等,纵坐 标互为相反数.

新北师大版八年级数学上册位置与坐标知识点总结和典型例题分析

新北师大版八年级数学上册位置与坐标知识点总结和典型例题分析

新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法重难点1、行列定位法把平面分成若干个行列的组合;然后用行号和列号表示平面中点的位置;要准确表示平面中的位置;需要行号、列号两个独立的数据;缺一不可..2、方位角加距离定位法此方法也叫极坐标定位法;是生活中常用的方法..在平面中确定位置时需要两个独立的数据:方位角、距离..特别需要注意的是中心位置的确定..3、方格定位法在方格纸上;一点的位置由横向方格数和纵向方格数确定;记作横向方个数;纵向方个数..需要两个数据确定物体位置..4、区域定位法是生活中常用的方法;也需要两个数据才能确定物体的位置..此方法简单明了;但不够准确..A1区;D3区等..5、经纬度定位法利用经度和纬度来确定物体位置的方法;也同时需要两个数据才能确定物体的位置..二、平面直角坐标系1、平面直角坐标系及相关概念重点在平面内;两条相互垂直且有公共原点的数轴组成平面直角坐标系;简称直角坐标系..通常两条数轴位置水平和垂直位置;规定水平轴向右和垂直轴向上为两条数轴的正方向..水平数轴称为x轴或横轴;垂直数轴称为y轴或者纵轴;x轴、y轴统称坐标轴;公共原点O称为坐标系的原点..两条数轴把平面划分为四个部分;右上部分叫做第一象限;其余部分按逆时针方向分别叫做第二、第三、第四象限..2、点的坐标表示重点在平面直角坐标系中;平面上的任意一点P;都可以用坐标来表示..过点P分别向x 轴、y轴作垂线;垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标;有序数对a;b叫做点P的坐标..在平面直角坐标系中;平面上的任意一点P;都有唯一一对有序实数即点的坐标与它对应;反之;对于任意一对有序实数;都可以在平面上找到唯一一点与它对应..3、特殊位置上点的坐标特点难点1坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0.. 2余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同.. 3各象限内点Pa;b的坐标特点第一象限:a>0;b>0;第二象限:a<0;b>0;第三象限:a<0;b<0;第四象限:a>0;b<0..4、根据点的坐标描点连线组成图形重点1已知点的坐标确定点的位置:分别根据坐标值在x轴、y轴作垂线;交点及为该点.. 2连线是只能连各组内的点;两组之间的点不要相连..5、建立适当的直角坐标系求点的坐标难点1建立坐标系的思路:首先分析选择适当的点做为坐标原点;其次过原点在水平和垂直的方向画出x轴和y轴;再次确定正方形、单位长度..2建立坐标系的方法不唯一;原则是:运算简单;所得坐标简单..三、轴对称与坐标变换1、图形的坐标变化与轴对称重点1横坐标不变;纵坐标分别乘-1;所得图形与x轴对称;反之与y轴对称..2在坐标系中作轴对称图形的方法:确定对称点坐标;描出各对称点;依次连线..2、直角坐标系中对称点的坐标关系重点关于x轴对称的两点坐标;横坐标相同;纵坐标互为相反数;关于y轴对称的两点坐标;纵坐标相同;横坐标互为相反数..考题一平面直角坐标系、点的坐标1.如图;ABCD是平行四边形;AD=4;AB=5;点A的坐标为-2;0;求点B、C、D的坐标.2.在直角坐标系中;点A位于y轴左侧;距y轴5个单位长度;在x轴上方;距x轴3个单位长度;则点A坐标为____________.3.在直角坐标系中;O为坐标原点;已知点A1;1;在x轴上确定点P;使△AOP为等腰三角形;则符合条件的点P的个数共有A.4B.3C.2D.1考题二特殊位置上的点的坐标特点1.已知点P(2,3)a b+-;①若P在x轴上;则b=_________;②若P在y轴上;则a=_______;③若P在第四象限;则a________;b________;2.点P(,3)a a-在第四象限;则a的取值范围是A.—2<a<0 B.0<a<2 C.a>0 D.a<03.若点P(,2)a b a b+-+在一、三象限两轴夹角平分线上;则 a=________;b=________;考题三对称点坐标特征求下列各点关于x轴、y轴、以及原点对称的点1A-3;0 2B0;6 3C2;-7 4D2;3考题四平面内点与点的距离1.求A、B两点的距离1A2;0;B-3;0 2A0;6;B0;-33A4;5;B2;-7 4A2;2;B-3;3考题五建立直角坐标系求点的坐标1.对于边长为6的正三角形ABC;建立适当的直角坐标系;写出各个顶点的坐标.2.如图;正六边形ABCDEO的边长为a;求各顶点的坐标.考题六根据点的坐标描点连线构成图形及其变化与对称1.已知A 0;0;B 2;2;C 4;01依次连接各点可得到什么图形;并在图的平面直角坐标系中画出这个图形2若想将此图案向左平移3个单位长度;坐标该如何变换3将此图案向下平移3个单位长度呢4将此图案沿y轴作轴对称图形呢2.下面的三角形ABC;三顶点的坐标分别为A0;0;B4;-2;C5;3下面将三角形三顶点的坐标做如下变化:1横坐标不变;纵坐标变为原来的2倍;此时所得三角形与原三角形相比有什么变化2横、纵坐标均乘以-1;所得新三角形与原三角形相比有什么变化3在2的条件下;横坐标减去2;纵坐标加上2;所得图形与原三角形有什么变化3.如图;在△ABC中;三个顶点的坐标分别为A-5;0;B4;0;C2;5;将△ABC沿x轴正方向平移2个单位长度;再沿y轴沿负方向平移1个单位长度得到△EFG..1求△EFG的三个顶点坐标.. 2求△EFG的面积..。

北师版八年级数学上册课件 第3章 第2课时 建立平面直角坐标系确定点的坐标

北师版八年级数学上册课件 第3章 第2课时 建立平面直角坐标系确定点的坐标

C

12 345 x
∴ S△ABC =
1 2
·BC·AD
=
1 2
×6×5=15.
新课讲解
【例2】如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC
的面积.
解:如图,过点A作x轴的平行线,过点C 作y轴的平行线,两条平行线交于点E,过 点B分别作x轴、y轴的平行线,分别交EC 的延长线于点D,交EA的延长线于点F. ∵A(2,-1),B(4,3),C(1,2), ∴BD=3,CD=1,CE=3,AE=1,AF=2,BF=4, ∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA
① (-6,5),(-10,3),(-9,3),(-3,3),(-2,3); ② (-9,3),(-9,0),(-3,0),(-3,3); ③ (3.5,9),(2,7),(3,7),(4,7),(5,7); ④ (3,7),(1,5),(2,5),(5,5),(6,5); ⑤ (2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).
B
4 x 的坐标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
新课讲解
【想一想】还可以建立其他平
面直角坐标系,表示正方形的四
y
个顶点A,B,C,D的坐标吗?
D
C
A(0,--4,0), B(0,0),C(0,4), D(-4,4).
5
4
·(4,4)
3
2
·(3,2)
1
· -4
-3
-2
-1
O
-1
12345
x
-2
·(3,-2)

八年级数学上册知识点:平面直角坐标系

八年级数学上册知识点:平面直角坐标系

八年级数学上册知识点:平面直角坐标系一、平面直角坐标系1平面直角坐标系:在平面内两条有公共点而且相互垂直的数轴就组成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。

成立了直角坐标系的平面叫坐标平面x轴和轴把坐标平面分成四个部份,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如下图说明:两条坐标轴不属于任何一个象限。

2点的坐标:关于平面直角坐标系内任意一点P,过点P别离向x轴和轴作垂线,垂足在x轴,轴对应的数a,b别离叫做点P的横坐标,纵坐标,有序数对叫做P的坐标。

3点与有序实数对的关系:坐标平面内的点能够用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。

常见考法由点的位置确信点的坐标,由点的坐标确信点的位置;求某些特殊点的坐标。

误区提示求点的坐标时,容易将横、纵坐标弄反,还容易忽小坐标符号;试探问题不周,容易显现漏解。

【典型例题】(XX江苏常州)点p关于x轴的对称点p1的坐标是,点p关于原点的对称点P2的坐标是。

【解析】关于x轴的对称点的坐标是横坐标不变,纵坐标相反,关于原点对称的点的坐标,横、纵坐标都要乘以-1,故此题应当填,。

一、目标与要求1解有序数对的应用意义,了解平面上确信点的经常使用方式。

2培育学生用数学的意识,激发学生的学习爱好。

3把握坐标转变与图形平移的关系;能利用点的平移规律将平面图形进行平移;会依照图形上点的坐标的转变,来判定图形的移动进程。

4进展学生的形象思维能力,和数形结合的意识。

坐标表示平移表现了平面直角坐标系在数学中的应用。

二、重点把握坐标转变与图形平移的关系;有序数对及平面内确信点的方式。

三、难点利用坐标转变与图形平移的关系解决实际问题;利用有序数对表示平面内的点。

四、知识框架五、知识点、概念总结1有序数对:用含有两个数的词表示一个确信的位置,其中各个数表示不同的含义,咱们把这种有顺序的两个数a 与b组成的数对,叫做有序数对,记作其中a表示横轴,b 表示纵轴。

八年级数学位置与坐标知识点

八年级数学位置与坐标知识点

八年级数学位置与坐标知识点
八年级数学位置与坐标的知识点包括:
1. 坐标轴及坐标系:了解一维和二维坐标系,以及如何画出坐标轴和坐标系。

2. 坐标的表示:学习如何用有序数对表示一个点的坐标,如(x, y)。

3. 点的位置关系:了解如何通过比较坐标来描述点的位置关系,如相等、大于、小于等。

4. 点的对称:学习如何通过对称轴来确定点的位置。

5. 点的平移:了解如何通过向量来进行点的平移。

6. 点的旋转:学习如何通过中心点和角度来进行点的旋转。

7. 点的映射:了解如何通过一一对应的关系来进行点的映射。

8. 图形的坐标表示:学习如何通过多个点的坐标来表示一个图形。

9. 直线的方程:了解如何通过点和斜率来表示一条直线的方程。

10. 中点和距离:学习如何通过两点的坐标来求中点和距离。

以上是八年级数学位置与坐标的主要知识点,通过掌握这些知识点可以更好地理解和应用数学中的位置和坐标概念。

北师大版八年级数学上册《位置与坐标》课件

北师大版八年级数学上册《位置与坐标》课件
3
A
A1
A2
A3
(2 ,0) Bn的坐标是_____n__1_____。12
x
0 1 B 3 B1 5 6 7 B2 9 10 11 12 13 14 15 B3
回顾与小结:
1.确定位置的方法: (1)坐标定位法; (2)方位角+距离; (3)区域定位法.
2.平面直角坐标系
3.图形变换与坐标的关系
作业:
同步练习:P55~58
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
2、坐标轴上的点的坐标特征
例2 已知点M(2+x,9-x2 )在x轴的负半轴上,求点M的坐标。
3、平行坐标轴的直线上的点的坐标特征
例3 已知线段AB平行于x轴,若点A的坐标为(-2,3),线 段AB的长为5, 求点B的坐标。 4、对称点的坐标特征
例4 点P(1,2)关于x轴对称的点的坐标是(_1_,__-_2_)_,点P(1,2)关 于原点对称的点的坐标是(_-_1_,__-_2_)。
8、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1 , 第二次将△OA1B1变换成△OA2B2 ,第三次将△OA2B2变换成 △OA3B3 。

北师大版八年级数学上册第3章 位置与坐标 建立平面直角坐标系确定点的坐标

北师大版八年级数学上册第3章 位置与坐标 建立平面直角坐标系确定点的坐标

上 其 它点 的 坐标 呢 ?的位置关系?
归纳总结
点的位置
横坐标的 符号
纵坐标的 符号
在 x 轴的 正半轴上
+
0
在 x 轴的 负半轴上
-
0
在 y 轴的 正半轴上
0
+
在 y 轴的
负半轴上
0
-
y
5
4 3B 2
C
1
A
-4 -3 -2 -1-O1 1 2 3 4 x -2
-3
-4 E
与坐标轴平行的直线上的点的坐标特征:
解:如图,作辅助线.
∵A(2,-1),B(4,3),C(1,2),
∴BD=3,CD=1,CE=3,AE=1,
AF=2,BF=4,
∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA
=BD·DE- 1 DC·DB- 1 CE·AE- 1 AF·BF
2
2
2
=12-1.5-1.5-4
=5.
别以 O、P 为圆心 OP 为半径画弧,与 y 轴
有三个交点 Q2,Q4,Q3,当以 OP 为底时, OP 的垂直平分线与 y 轴有一个交点 Q1.
4.写出平行四 边形 ABCD 各 个顶点的坐标.
y
(-3,3) 4
A
3
2
(6,3) D
1 O
-6 -5 -4-3-2 -1 1 2 3 4 5 6 -1
Ay
面积为 6,点 A 的横坐标为 -1,
那么点 A 的坐标 为 (-1,2)或(-1,-2) .
(-4,B 0)
(2,0) OC x
3. 在平面直角坐标系 xOy 中,已知点 P(2,2), 点 Q 在 y 轴上,△PQO 是等腰三角形,则满足条件 的点 Q 共有( B ) A.5 个 B.4个 C.3 个 D.2 个 【解析】如图所示,当以 OP 为腰时,分

八年级数学上册第3章位置与坐标1确定位置新版北师大版

八年级数学上册第3章位置与坐标1确定位置新版北师大版

(3,300°)或(3,120°) .


1234567

1234567
7. 【2024青岛城阳区期中新考法·分类讨论法】如图是一台雷
达探测相关目标得到的结果(图中每相邻两个同心圆的半
径相差1),若记图中目标 A 的位置为(2,90°),目标 B 的
位置为(4,30°),现有一个目标 C
的位置为(3, m °),且与目标 B 的
距离为5,则目标 C 的位置为
第三章 位置与坐标 1 确定位置
目 录
CONTENTS
01 1星题 夯实基础 02 2星题 提升能力
知识点1 行列定位法
1. [2024西安交大附中月考]如果把电影票上3排6座记作(3,
6),那么(6,5)表示( C )
A. 5排6座
B. 5排5座
C. 6排5座
D. 6排6座
1234567
2. [2024佛山南海区期中]若将教室里第5行、第3列的座位表 示为(5,3),则第4行、第6列的座位表示为 (4,6) .
搭载神舟十八号载人飞船的长征二号F遥十八运载火箭在 酒泉卫星发射中心点火发射,约10分钟后,神舟十八号载 人飞船与火箭成功分离,进入预定轨道.发射取得圆满成 功.下列描述能准确确定酒泉位置的是( B ) A. 甘肃省西北部 B. 东经100°,北纬40° C. 东经92°23'-100°21' D. 北纬38°05'-42°43'
1234567
知识点4 区域定位法
5. [教材P55做一做(2)变式]如图是济南市地图简图的一部分,
图中“济南西站”、“雪野湖”所在区域分别是( D ) A. E 4, E 6
B. D 5, F 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上坐标与位

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
八年级数学上 坐标与位置
一、选择
1. 已知点M(2x-3,3-x)在第一象限的角平分线上,则点M 的坐标为( )
A (-1,-1)
B (-1,1)
C (1,1)
D (1,-1)
2. 点P 的坐标为(3a-2,8-2a),若点P 到两坐标的距离相等,则a 值为( )
A 32或4
B -2或6
C 32-或-4
D 2或-6
3. 已知M(1,-2)、N(-3,-2),则直线MN 与x 轴、y 轴的位置关系分别为( )
A 相交,相交
B 平行,平行
C 垂直,平行
D 平行,垂直
4. 在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0),(5,0),(2,3),
则顶点C 的坐标为( )
A (3,7)
B (5,3)
C (7,3)
D (8,2)
5. 在平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 顺时针旋转90°得到OA 1,
则A 1的坐标是( )
A (-4,3)
B (-3,4)
C (3,-4)
D (4,-3)
二、填空
6. 已知点M 在y 轴上,点P(3,-2),若线段MP 的长为5,则点M 的坐标为 。

7. 在平面直角坐标系中,有A(1,-2),B(-2,2),C(-5,0),D(3,0),E(0,3),F(0,9)六个点,则AB
长 ,CD 长 ,EF 长 。

8. 若点(x+1,x-1)在x 轴上,则x 的值为 。

9. 在平面直角坐标系中,将点A(-1,2)向右移动3个单位长度,再向下平移5个单位长度得到
点B ,则点B 关于x 轴的对称点C 的坐标为 。

10. 在平面直角坐标系中,规定把一个三角形先沿x 轴翻折,再向右平移3个单位称为一次变
换。

如图,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1)、(-3,-1),将△ABC 经过
连续9次这样的变换得到三角形A 1B 1C 1,则点A 的对应点A 1的坐标是 。

11. OABC 是正方形,点A 的坐标是(4,0
B
落在点D 处,求点D 12. a 的值; (n,4),若AB ∥x 轴,求m 的值,并确定 3和4,求点P 的坐标;
(4)已知点M(2a+b,3)和点N(5,b-6a)关于y 轴对称,求3a-b 的值。

13. 如图,在平面直角坐标系中,点O 为坐标原点,四边形OABC 是长方形,点A 、C 的坐标分别为
(10,0)、(0,4)。

(1)求线段AC 的长及AC 的中点的坐标;
(2)点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,求P 的坐标。

第10题
第11题
14.如图,OABC是一张放在平面直角坐标系中得矩形纸片,点O为原点,点A在x轴的正半轴上,点C
在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使O落在BC边上的点E
处。

(2)连接OE交AD于点F,求点F的坐标。

15.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标的为
标。

相关文档
最新文档