基于PC的PCB钻孔机数控系统的研究与开发

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Βιβλιοθήκη Baidu
January, 2012
承诺书
本人郑重声明:所呈交的学位论文,是本人在导师指导下, 独立进行研究工作所取得的成果。尽我所知,除文中已经注明 引用的内容外,本学位论文的研究成果不包含任何他人享有著 作权的内容。对本论文所涉及的研究工作做出贡献的其他个人 和集体,均已在文中以明确方式标明。 本人授权南京航空航天大学可以有权保留送交论文的复印 件,允许论文被查阅和借阅,可以将学位论文的全部或部分内 容编入有关数据库进行检索,可以采用影印、缩印或其他复制 手段保存论文。 (保密的学位论文在解密后适用本承诺书)
作者签名: 日 期:
南京航空航天大学硕士学位论文


随着消费类电子产品更新换代越来越快,PCB市场需求旺盛,对PCB数控钻孔机等相关制 造设备的性能要求不断提高。数控系统作为PCB数控钻孔机核心部分,直接影响钻孔机的加工 精度、加工效率及可靠性。本文对PCB钻孔机数控系统研发中的若干关键技术展开研究,并开 发出一套基于PC的PCB钻孔机数控系统样机。 为了便于实现数控系统的开放,采用“ PC+运动控制卡”的数控系统结构。通过分析 PCB 钻孔机数控系统的需求,规划了系统的总体结构,设计了系统硬件,并重点对上位机软件和运 动控制DSP软件各主要模块进行了详细设计开发。 优化PCB钻孔走刀路径可以缩短PCB钻孔走刀定位时间,提升钻孔加工效率。为此,建立 了PCB钻孔最佳走刀路径模型,并提出一种基于聚类分区的蚁群算法,有效解决了 PCB钻孔走 刀路径优化问题,显著提高了优化效率,具有良好的工程应用价值。 为提高机床运动平稳性,保证PCB高速钻孔加工的精度,将S曲线加减速方法应用于PCB钻 孔机数控系统,给出了具体实现方法;同时还提出了一种分数次幂多项式加减速算法,能够保 证加减速过程中加加速度的连续,进一步改善系统的运动平稳性。 在钻孔机上对开发的PCB钻孔机数控系统进行了测试,验证了路径优化算法和加减速控制 算法以及系统样机的有效性和正确性。
II
南京航空航天大学硕士学位论文


第一章 绪论 .......................................................................................................................................... 1 1.1 数控系统的发展历程.............................................................................................................. 1 1.2 基于 PC 的数控系统结构 ....................................................................................................... 2 1.3 PCB 数控钻孔机的发展与现状 .............................................................................................. 3 1.3.1 国外 PCB 数控钻孔机的发展现状 ............................................................................. 3 1.3.2 国内 PCB 数控钻孔机的发展 ..................................................................................... 3 1.4 PCB 数控钻孔机发展趋势 ...................................................................................................... 4 1.5 研究目的及内容...................................................................................................................... 5 1.5.1 研究目的....................................................................................................................... 5 1.5.2 研究内容....................................................................................................................... 5 第二章 系统总体结构设计................................................................................................................... 7 2.1 需求分析 ................................................................................................................................. 7 2.2 系统总体结构设计.................................................................................................................. 7 2.3 系统硬件规划.......................................................................................................................... 9 2.3.1 运动控制卡................................................................................................................... 9 2.3.2 I/O 接口卡 ................................................................................................................... 12 2.3.3 模拟量接口卡............................................................................................................. 13 2.4 系统软件规划........................................................................................................................ 14 2.5 本章小结 ............................................................................................................................... 14 第三章 上位机软件设计..................................................................................................................... 15 3.1 软件开发工具........................................................................................................................ 15 3.2 上位机软件总体结构............................................................................................................ 15 3.3 文件接口模块........................................................................................................................ 16 3.3.1 文件格式..................................................................................................................... 16 3.3.2 文件翻译..................................................................................................................... 17 3.3.3 重孔检查与去除......................................................................................................... 20 3.4 钻孔路径优化模块................................................................................................................ 21 3.4.1 建立最佳走刀路径模型 ............................................................................................. 21 3.4.2 最佳走刀路径的求解方法 ......................................................................................... 22
中图分类号:TP273 学科分类号:080202
论文编号: 1028705 12-S119
硕士学位论文
基于 PC 的 PCB 钻孔机 数控系统的研究与开发
研究生姓名 学科、专业 研究方向 指导教师
郭钊 机械电子工程 机电控制及自动化 游有鹏 教授
南京航空航天大学
研究生院 机电学院
二 О 一二年一月
Nanjing University of Aeronautics and Astronautics The Graduate School College of Mechanical and Electrical Engineering
关键词:印刷电路板,钻孔机,数控系统,路径优化,数字信号处理器,加减速规划
I
基于 PC 的 PCB 钻孔机数控系统的研究与开发
ABSTRACT
With the replacement of consumer electronic products faster and faster, PCB market demand, and make the performance requirements of PCB drilling machine and other related PCB manufacturing equipment continue to increase. CNC is the core part of PCB drilling machine, and directly affects the machining accuracy, processing efficiency and reliability of the drilling machine. Therefore, the paper has researched on a number of key technologies in development of CNC for PCB drilling machine and developed a prototype of PC-based CNC for PCB drilling machine. In order to improve the opening of CNC, use the "PC + motion control card" architecture for the CNC. By analyzing the requirements of CNC for PCB drilling machine, planned the overall structure and the hardware of the system, and designed the main modules of the host computer software and motion control DSP software in detail. PCB drilling tool path optimization can reduce the PCB drilling tool path orientation time and increase drilling efficiency. To this end, established a best tool path model of PCB drilling, and proposed an ant colony optimization algorithm, which is based on clustering. The algorithm is an effective solution to the PCB drilling tool path optimization, and can improve the optimize efficiency significantly. To improve the machine tool motion stabilization and ensure the accuracy of high-speed PCB drilling, the S-curve acceleration and deceleration method is applied to the CNC for PCB drilling machine, given the specific implementation. In addition, the paper proposed a fractional power polynomial acceleration and deceleration algorithm, which can ensure the continuity of jerk in the process of acceleration and deceleration and further improve the smooth motion of the system. The CNC developed for PCB drilling machine was tested in a drilling machine, and proved the processing path optimization algorithm, the acceleration and deceleration control algorithm and the system prototype to be effective and correct.
Keywords: Printed circuit board (PCB), drilling machine, computer numerical control (CNC), path optimization, digital signal processor (DSP), acceleration and deceleration planning
Research and Development of PC-based CNC for PCB Drilling Machine
A Thesis in Mechanical and Electrical Engineering by Guo Zhao Advised by Prof. You Youpeng Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering
相关文档
最新文档