北师大版数学七年级下册教案(全册))
4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)
![4整式的乘法第1课时-初中七年级下册数学(教案)(北师大版)](https://img.taocdn.com/s3/m/8cb2958e32d4b14e852458fb770bf78a65293ac7.png)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将几个物品的个数相乘的情况?”(如购买水果时计算总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘法的奥秘。
本节课将结合具体实例,让学生在实际操作中掌握整式乘法的基本方法,培养他们的运算能力和逻辑思维能力。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过整式乘法的学习,使学生能够运用数学语言和符号进行逻辑推理,理解数学概念之间的内在联系,提高解决问题的能力。
2.发展学生的数学建模素养:让学生在实际问题中运用整式乘法建立数学模型,培养他们从现实情境中抽象出数学问题,并用数学语言进行表达和分析的能力。
-合并同类项:在乘法运算过程中,学生容易忽视或错误处理含有相同字母的项的合并。
难点举例:在计算4x^2 * (x + 2x)时,学生可能会错误地将结果写为8x^3,而忽略了字母x的指数合并。
-系数与指数的正确处理:在计算过程中,学生可能会混淆系数的乘法与字母指数的加法。
难点举例:3x^2 * 4x中,学生可能会错误地将系数3和4相加,而将字母x的指数2和1相乘。
在学生小组讨论时,我尝试作为一个引导者,提出了一些开放性的问题。我发现这样的问题能够激发学生的思考,促使他们从不同角度去理解和应用整式乘法。但同时,我也发现部分学生在分享成果时表达不够清晰,可能是因为他们对知识的掌握还不够牢固。
北师大版七年级数学下册第一章同底数幂的乘法(教案)
![北师大版七年级数学下册第一章同底数幂的乘法(教案)](https://img.taocdn.com/s3/m/3251a35377c66137ee06eff9aef8941ea76e4baf.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了同底数幂乘法的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对同底数幂乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.在总结回顾时,我可以邀请学生分享他们如何将所学知识应用到自己的兴趣或生活中,以此来增强他们对数学实用性的认识。
4.应用问题:运用同底数幂算。
本章内容旨在帮助学生掌握同底数幂的乘法法则,培养他们在解决实际问题时运用幂运算的能力,提高数学运算技巧。
二、核心素养目标
1.培养学生的逻辑推理能力:通过同底数幂的乘法法则推导和应用,使学生能够理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升数学运算能力:让学生掌握同底数幂的乘法运算,培养他们在数学计算中的准确性、快速性,增强数学运算能力。
3.培养学生的数学建模素养:引导学生运用同底数幂的乘法解决实际问题,学会将现实问题抽象为数学模型,提高数学建模素养。
4.增强数学抽象能力:通过同底数幂的学习,帮助学生从具体实例中抽象出数学规律,提升数学抽象思维能力。
-实际问题的幂运算建模:将现实问题转化为同底数幂的乘法运算,如计算一个正方体的表面积时,将每个面的面积看作2^2,整个表面积即为6个面的同底数幂乘法。
2.教学难点
-理解同底数幂乘法法则的原理:学生需要理解指数相加的实质,即幂的乘法是指数的加法,这对于初次接触幂运算的学生来说可能是个难点。
-指数相加的运用:在计算过程中,学生可能会混淆指数的相加和数的相乘,例如2^3•2^2不等于2^(3×2),而应等于2^(3+2)。
(完整版)北师大版初一数学七年级下册《概率初步》教案
![(完整版)北师大版初一数学七年级下册《概率初步》教案](https://img.taocdn.com/s3/m/65b0bd8aa76e58fafab003d9.png)
概率初步【知识点一】1.在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。
2.在一定条件下可能发生也可能不发生的事件,叫做不确定事件,也称为随机事件.【基础练习】1.在下列事件中:(1)投掷一枚均匀的硬币,正面朝上;(2)投掷一枚均匀的骰子,6点朝上;(3)任意找367人中,至少有2人的生日相同;(4)打开电视,正在播放广告;(5)小红买体育彩票中奖;(6)北京明年的元旦将下雪;(7)买一张电影票,座位号正好是偶数;(8)到2020年世界上将没有饥荒和战争;(9)抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;(10)在标准大气压下,温度低于0℃时冰融化;(11)如果a,b为有理数,那么a+b=b+a;(12)抛掷一枚图钉,钉尖朝上.确定的事件有________________________;随机事件有________________________,在随机事件中,你认为发生的可能性最小的是________________________,发生的可能性最大的是________________________.(只填序号)2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生【综合运用】1.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗? 为什么?2.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗? 如果不同意,请你预言旋转两个转盘成功的机会有多大?3.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.【巩固练习】1.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K的可能性.(填“<,>或=”)2.下列事件为必然发生的事件是( )(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数(C)打开电视,正在播广告(D)抛掷一枚硬币,掷得的结果不是正面就是反面3.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是( )(A)本市明天将有80%的地区降水(B)本市明天将有80%的时间降水(C)本市明天肯定下雨(D)本市明天降水的可能性比较大4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J(D)抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则a :抽到一名住宿女生; b :抽到一名住宿男生; c :抽到一名男生. 其中可能性由大到小排列正确的是( ) (A )cab(B )acb(C )bca(D )cba6.班级劳动委员安排值日表,要求每人从周一到周五中有一天做值日,则小明在下列各种情形下做值日的可能性分别有多大?(1)周一值日; (2)逢双值日; (3)周五不值日.【知识点二】1.随机事件A 发生的频率,是指在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值,在大量重复试验时,也就是说试验次数很大时,频率会逐步趋于稳定,总在某个常数附近摆动,且摆动幅度很小,那么这个常数叫做这个事件发生的概率.区别:某随机事件发生的概率是一个常数,是客观存在的,与试验次数无关。
(完整版)新北师大版七年级数学下册全册教案
![(完整版)新北师大版七年级数学下册全册教案](https://img.taocdn.com/s3/m/8a2000e202d276a200292e73.png)
周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。
1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
北师大版数学七年级下册4.1.1《认识三角形》教案
![北师大版数学七年级下册4.1.1《认识三角形》教案](https://img.taocdn.com/s3/m/8c6c0cdabdeb19e8b8f67c1cfad6195f302be847.png)
今天在教授《认识三角形》这一章节时,我发现学生们对三角形的定义和分类掌握得比较快,但在理解三角形稳定性和计算面积时遇到了一些困难。在教学中,我尝试了多种方法来帮助学生突破这些难点。
首先,通过生活中的实例引入三角形的概念,让学生们感受到三角形的普遍存在和实际应用。这种导入方式激发了他们的学习兴趣,使得课堂氛围变得更加活跃。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼搭三角形,观察其稳定性,并探讨三角形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由不在同一直线上的三条线段首尾相连组成的封闭图形。它是几何图形中的基本组成部分,具有稳定性,广泛应用于日常生活和工程建筑中。
2.案例分析:接下来,我们来看一个具体的案例。以自行车三角架为例,讲解三角形在实际中的应用,以及它如何帮助我们解决问题。
-三角形的分类:掌握按边分类(不等边三角形、等腰三角形)和按角分类(锐角三角形、直角三角形、钝角三角形)。
-三角形的符号表示:熟练运用小写字母表示三角形的边,大写字母表示对应的角。
-三角形的周长和面积计算公式:理解并掌握三角形周长为三边之和,面积可通过底和高的乘积的一半计算。
举例解释:讲解三角形定义时,可通过实际操作教具或动态软件演示三条线段如何构成三角形,强调“不在同一直线上”的关键条件。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
北师大版七年级数学下册教案(含解析):第一章整式的乘除2幂的乘方与积的乘方
![北师大版七年级数学下册教案(含解析):第一章整式的乘除2幂的乘方与积的乘方](https://img.taocdn.com/s3/m/323976910d22590102020740be1e650e52eacfdd.png)
北师大版七年级数学下册教案(含解析):第一章整式的乘除2幂的乘方与积的乘方一. 教材分析本节课的内容是北师大版七年级数学下册第一章整式的乘除的第二个知识点:幂的乘方与积的乘方。
这部分内容是在学习了有理数的乘方的基础上进行学习的,对于学生来说,这部分内容既有联系又有区别。
联系在于都是研究幂的运算,区别在于有理数的乘方是研究一个数的乘方,而幂的乘方与积的乘方是研究多个幂的运算。
通过这部分的学习,学生可以更好地理解幂的运算规则,为后续的学习打下基础。
二. 学情分析七年级的学生已经学习了一定的数学知识,对于有理数的乘方已经有了一定的理解,但是对于幂的乘方与积的乘方可能还比较陌生。
因此,在教学过程中,需要引导学生从有理数的乘方过渡到幂的乘方与积的乘方,通过实例让学生感受和理解幂的乘方与积的乘方的运算规则。
三. 教学目标1.知识与技能:理解幂的乘方与积的乘方的运算规则,能够正确进行幂的乘方与积的乘方的运算。
2.过程与方法:通过实例分析和练习,培养学生的运算能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.重点:幂的乘方与积的乘方的运算规则。
2.难点:幂的乘方与积的乘方的运算规则的理解和应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过实例分析和练习,引导学生理解和掌握幂的乘方与积的乘方的运算规则。
六. 教学准备1.教学课件:制作相关的教学课件,包括文字、图片、动画等,帮助学生直观地理解幂的乘方与积的乘方的运算规则。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实例,引导学生从有理数的乘方过渡到幂的乘方与积的乘方,激发学生的学习兴趣。
2.呈现(10分钟)讲解幂的乘方与积的乘方的运算规则,并通过动画演示,让学生直观地理解幂的乘方与积的乘方的运算过程。
3.操练(10分钟)让学生进行一些幂的乘方与积的乘方的运算练习,巩固学生对幂的乘方与积的乘方的运算规则的理解。
2018新北师大版七年级数学下册全册教案(打印版)(可打印修改)
![2018新北师大版七年级数学下册全册教案(打印版)(可打印修改)](https://img.taocdn.com/s3/m/b4b440e031126edb6e1a108b.png)
- -4444 3327个44LL-443 44- -443833=6-434
4 7 4个4-34 8
-3L -3=
个-3
第 9 页 共 139 页
猜一猜: am an
a 0,m,n都是正整数,且m>n
同底数幂相除,底数( ),指数( )
负指数幂和零指数幂的意义,我们规定
a0=1(a≠0) a-p=1/ap(a≠0,p 是正整数)
3、(1)若 2x = 1 ,则x=
32
(2)若 -2x -23 -22x,则x=
(3)若 0.0000003=3×10x ,则 x
(4)若 3 x 4 ,则x=
2 9
五、课堂小结:会进行同底数幂的除法运算。
六、作业设计:
七、板书设计:
八、教学后记:
第 10 页 共 139 页
教学目标:
需要5×102秒,地球距离太阳大约有多远?
五、拓展: 1、计算:(1)105·106;(2)a7·a3;(3)y3·y2; (4)b5·b; (5)a6·a6;(6)x5·x5. 2、计算:(1)y12·y6;(2)x10·x;(3)x3·x9; (4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.
得来过程,进一步体会幂的意义。
三、巩固:
1、计算下列各题:
(1)(102)3
(2)(b5)5
(3)(an)3
(4)-(x2)m
(5)(y2)3·y (6)2(a2)6-(a3)4
学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运
算理由,进一步体会乘方的意义与幂的意义。
2、 判断题,错误的予以改正。
第 1 页 共 139 页
7年级数学北师大版 下册教案第4章《用尺 规作三角形》
![7年级数学北师大版 下册教案第4章《用尺 规作三角形》](https://img.taocdn.com/s3/m/75371356f4335a8102d276a20029bd64783e6219.png)
教学设计用尺规作三角形么办?边和角是三角形的基本元素,那么你能利用尺规做一个三角形与已知三角形全等吗?【做一做】已知三角形的两边及其夹角,求作这个三角形.已知:线段a, c, ∠α.a c求作:△ABC,使BC=a AB=c, ∠ABC=∠α.作法:(1)作一条线段BC=a;(2)以B为顶点,以BC为一边作∠DBC=∠α;(3)在射线BD上截取线段BA=c;(4)连接AC,△ABC就是所求作的三角形.将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?回顾刚才作三角形的顺序还有没有其他的作法?还有没有其他的作法?作法:____________________________________________ _____________________________________________________________________ ________________________________________________________________________ ____________________________将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?二、提炼概念利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“____SAS____”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“____ASA____”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“___SSS_____”.三、典例精讲例已知三角形的两角及其夹边,求作这个三角形. 已知:∠α,∠β,线段c(如图).αβ求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.作法与示范(1)作∠DAF=∠α;(2)在射线AF上截取线段AB=c;(3)以B为顶点,以BA为一边,作∠ABE=∠β,BE 交AD于点C.△ABC就是所求作的三角形.【小组讨论】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?试一试.已知三角形的三条边,求作这个三角形.已知:线段a,b,c (如图).a b c求作:△ABC,使AB=c,AC=b,BC=a. (1)请写出作法并作出相应的图形.作法与示范(1)作一条线段BC=a;(2)分别以B,C为圆心,以c,b为半径画弧,两弧交于A点;(3)连接AB,AC,△ABC就是所求作的三角形.【小组讨论】将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?课堂检测四、巩固训练1.利用基本作图方法,不能作出唯一三角形的是(C)A.已知两边及其夹角B.已知两角及其夹边C.已知两边及一边的对角D.已知三边2.如图,用尺规作出∠OBF=∠AOB,作图痕迹弧线MN是()A.以点B为圆心,OD长为半径的弧B.以点B为圆心,DC长为半径的弧C.以点E为圆心,OD长为半径的弧D.以点E为圆心,DC长为半径的弧D3.你能用尺规作一个直角三角形,使其两条直角边分别等于已知线段a,b吗?并写出作法。
北师大版七年级数学下册教案
![北师大版七年级数学下册教案](https://img.taocdn.com/s3/m/a3bc60ab77232f60dccca1d5.png)
北师大版七年级数学下册教案(一)1.5 同底数幂的除法教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。
2.理解零指数幂和负指数幂的意义。
3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力;提高学生观察、归纳、类比、概括等能力。
4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。
教学重点:会进行同底数幂的除法运算。
教学难点:同底数幂的除法法则的总结及运用。
教学方法:尝试练习法,讨论法,归纳法。
教学过程:一、情境引入活动内容:一种液体每升含有 10 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,9发现1滴杀虫剂可以杀死 10 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的? 12二、了解同底数幂除法的运算及应用活动内容:活动1先让学生作“做一做”:计算下列各式,并说明理由(m>n)(1)108105; (2)10m10n; (3)(3)m(3)n;从中归纳出同底数幂除法的运算性质。
从上面的练习中你发现了什么规律? 。
mn猜一猜:a a a0,m,n都是正整数,且m>n。
三、同底数幂除法运算的应用活动内容:例1计算:1)a7a4; (2)(x)6(x)3; (3)(xy)4(xy);(4)b2m2b2; (5)(m n)8(n m)3; (6)(m)4(m)2.例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。
例如用里克特震级表示地震是8级,说明地震的强度是10。
1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。
加利福尼亚地震强度是荷兰地震强度的多少倍?(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答) 7四、探索零指数幂和负整数指数幂的意义活动内容:想一想:10000=104 , 16=241000=10(), 8=2()100=10() , 4=2()10=10(), 2=2()猜一猜:1=10() 1=2()0.1=10() 1 =2()21() =241 =2()8 0.01=10() 0.001=10()例3 计算:用小数或分数分别表示下列各数:(1)103(2)7082;(3)1.610 4北师大版七年级数学下册教案(二)1.6 整式的乘法(一)教学目标:1.经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则。
北师大版七年级下册数学4.2图形的全等(教案)
![北师大版七年级下册数学4.2图形的全等(教案)](https://img.taocdn.com/s3/m/4aa9248f81eb6294dd88d0d233d4b14e84243e46.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对全等图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等图形的基本概念。全等图形是指能够完全重合的两个图形。它是几何学中的一个重要概念,因为它可以帮助我们理解和解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在建筑图纸中的应用,以及它如何帮助我们计算面积和长度。
3.重点难点解析:在讲授过程中,我会特别强调全等图形的定义和判定方法这两个重点。对于难点部分,比如SAS判定方法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等图形相关的实际问题,如如何确定两个三角形是否全等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用纸片制作全等三角形,并尝试将它们重合。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的全等》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个物体看起来完全一样的情况?”比如,你们的文具盒里可能有两支完全相同的铅笔。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等图形的奥秘。
-掌握全等图形的表示方法:学生应学会使用“≌”符号来表示两个全等图形。
北师大版七年级下册数学教案:1.8 《科学计数法》x
![北师大版七年级下册数学教案:1.8 《科学计数法》x](https://img.taocdn.com/s3/m/a3c12c7b657d27284b73f242336c1eb91a3733cc.png)
北师大版七年级下册数学教案:1.8 《科学计数法》x一. 教材分析《科学计数法》是北师大版七年级下册数学的重要内容,主要让学生了解科学计数法的概念、意义以及运用。
通过学习,学生能够熟练掌握科学计数法的表示方法,将大数字或小数字简洁、准确地表示出来,为以后学习物理、化学等学科打下基础。
二. 学情分析七年级的学生已经掌握了有理数、实数等基础知识,对数字的表示和运算有一定的了解。
但学生对科学计数法的认识还比较模糊,需要通过实例和练习来加深理解。
此外,学生可能对负指数、零指数幂等概念感到困惑,需要在教学中进行解释和引导。
三. 教学目标1.理解科学计数法的概念,掌握科学计数法的表示方法。
2.能够将大数字或小数字用科学计数法简洁、准确地表示出来。
3.理解负指数、零指数幂的意义,并能运用到实际问题中。
四. 教学重难点1.科学计数法的概念和表示方法。
2.负指数、零指数幂的理解和运用。
五. 教学方法采用情境教学法、实例教学法和小组合作学习法。
通过生活实例引入科学计数法,让学生在实际问题中感受其意义;通过小组讨论和练习,激发学生的思维,培养学生的合作精神。
六. 教学准备1.PPT课件:包括科学计数法的概念、实例、练习等。
2.练习题:包括不同难度的题目,以巩固所学知识。
3.小组讨论卡片:用于引导学生进行小组讨论。
七. 教学过程1.导入(5分钟)通过一个实际问题引入科学计数法:我国的人口约为13亿,如何简洁地表示这个数字?引导学生思考,引出科学计数法的概念。
2.呈现(10分钟)讲解科学计数法的定义、表示方法,通过PPT展示实例,让学生跟随老师一起书写。
同时,解释负指数、零指数幂的意义,让学生明白指数的奥秘。
3.操练(10分钟)让学生独立完成PPT上的练习题,老师巡回指导。
期间,可以挑选不同难度的题目让学生回答,以了解学生的掌握情况。
4.巩固(10分钟)小组合作学习,让学生互相讨论、交流,共同完成一组练习题。
老师参与小组讨论,解答学生的疑问。
七年级数学下册1.3.2科学计数法教案(新版)北师大版【精品教案】
![七年级数学下册1.3.2科学计数法教案(新版)北师大版【精品教案】](https://img.taocdn.com/s3/m/6a03b26b8e9951e79b892788.png)
整式的乘除1.3同底数幂的除法 1.3.2科学计数法 【教学目标】 知识与技能1、经历把一个绝对值小于1的非零数表示为科学计数法a ×10n的形式的过程。
2、会用把一个用科学计数法表示的数写成小数的形式,并体会科学计数法方便、快捷便于进行计算的优点。
过程与方法利用同底数幂的除法和负指数幂的意义把一个绝对值小于1的非零数表示为科学计数法a ×10n的形式(n 为负整数)。
情感、态度与价值观通过收集数据、整理数据、分析数据的活动,培养学生应用数学的意识和能力;培养学生与人合作,并能与人交流思维的意识。
【教学重难点】重点:把一个绝对值小于1的非零数表示为科学计数法a ×10n 的形式 难点:能灵活地将科学计数法表示的数与小数的形式相互变换。
【导学过程】 【知识回顾】负整数指数幂的意义:ppaa1=-(0≠a ,p 为正整数)或p pa a )1(=-(0≠a ,p 为正整数)在用科学记数法表示数据时,我们要注意哪些问题?a × 10n(其中1≤a <10,n 是正整数) 【情景导入】1纳米= 米?这个结果还能用科学记数法表示吗? 【新知探究】探究一、1、填表:根据上面的计算,.0100.010 =-n有 个0?根据此规律:一个水分子的质量可写成:0.00000000000000000000003=()0300.0个=3×10用科学计数法可以把一个绝对值小于1的非零数表示成 的形式,其中 ,n 是 ,n 的绝对值等于1尝试练习:用科学记数法表示:0.0000123=10000000000002、用科学计数法表示下列各数:(1)0.00002 (2)—0.0000307(3)0.0031 (4)0.00567探究二、下面的数据都是用科学记数法表示的,请你用小数把它们表示出来:7×10-5= 1.35×10-10= 2.657×10-16=思考:将科学记数法表示的数改写成小数有什么规律?:练习:将下列各数写成小数:(1) 3.1×10-3 (2)-2.8×10-43. 填空(在括号内填入适当的数) -3.45 ×10()=-0.0003454. 计算(结果用科学计数法表示)(8.6 ×10-4)×10-5【知识梳理】你有什么收获?【随堂练习】1. 用科学计数法表示下列各数:(1)0.00003 (2)—0.000308(3)0.0047 (4)0.0007892. 将下列各数写成小数:(1) 4.2×10-3 (2)-3.6 ×10-43. 填空(在括号内填入适当的数)5.2 ×10()=0.00000524. 计算(结果用科学计数法表示)(1)(7.3 ×10-5)×10-2(2)(2.6 ×10-8)(5.2 ×10-3)5. 鸵鸟是世界上最大的鸟,体重约160千克,蜂鸟是世界上最小的鸟,体重仅2克,一只蜂鸟相当于多少中鸵鸟的重量(用科学计数法表示)。
北师大版七年级数学下册教案(含解析):第四章三角形章末复习
![北师大版七年级数学下册教案(含解析):第四章三角形章末复习](https://img.taocdn.com/s3/m/985d376030126edb6f1aff00bed5b9f3f90f72f6.png)
北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。
内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。
这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。
但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。
因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。
2.难点:三角形的角的性质和边的关系的运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。
2.学生准备:完成本章的学习任务,准备好相关的学习资料。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。
3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。
4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。
5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。
北师大版数学七年级下册1.1《同底数幂的乘法》教案
![北师大版数学七年级下册1.1《同底数幂的乘法》教案](https://img.taocdn.com/s3/m/35ec0008bf23482fb4daa58da0116c175f0e1ed6.png)
北师大版数学七年级下册1.1《同底数幂的乘法》教案一. 教材分析《同底数幂的乘法》是北师大版数学七年级下册第一章《整式的运算》中的第一节内容。
本节内容主要介绍同底数幂的乘法法则,为学生以后学习幂的运算打下基础。
同底数幂的乘法是初中学员比较容易混淆的知识点,因此,在教学过程中,需要通过大量的例子让学生理解和掌握同底数幂的乘法法则。
二. 学情分析七年级的学生已经学习了有理数的乘法、幂的定义等知识,对于幂的运算有一定的基础。
但是,学生对于同底数幂的乘法法则的理解和运用还需要加强。
因此,在教学过程中,需要通过引导、讲解、练习等方式,帮助学生理解和掌握同底数幂的乘法法则。
三. 教学目标1.让学生理解同底数幂的乘法法则,并能熟练运用。
2.培养学生的数学思维能力,提高学生的数学素养。
3.通过对同底数幂的乘法的学习,培养学生解决问题的能力。
四. 教学重难点1.同底数幂的乘法法则的推导和理解。
2.同底数幂的乘法在实际问题中的应用。
五. 教学方法采用讲授法、引导法、练习法、小组合作法等教学方法。
通过讲解、引导、练习等形式,让学生理解和掌握同底数幂的乘法法则。
六. 教学准备1.教案、PPT等教学资料。
2.练习题。
3.黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过复习幂的定义和有理数的乘法,引导学生思考同底数幂的乘法应该如何计算。
2.呈现(10分钟)利用PPT展示同底数幂的乘法法则,并通过具体的例子进行讲解,让学生理解和掌握同底数幂的乘法法则。
3.操练(10分钟)让学生独立完成一些同底数幂的乘法运算,教师进行个别辅导。
4.巩固(10分钟)通过一些综合性的题目,让学生运用同底数幂的乘法法则进行计算,巩固所学知识。
5.拓展(10分钟)引导学生思考同底数幂的乘法在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的主要内容进行小结,让学生巩固所学知识。
7.家庭作业(5分钟)布置一些同底数幂的乘法运算题目,让学生巩固所学知识。
北师大版七年级数学教案下册全套.doc
![北师大版七年级数学教案下册全套.doc](https://img.taocdn.com/s3/m/3a91009b8bd63186bcebbcb7.png)
【北师大版】七年级下册数学教案全套【七年级下教案|全套】目录第一章整式的运算 (1)1.1整式 (2)1.2 整式的加减(1) (6)1.2整式的加减(2) (9)1.3 同底数幂的乘法(一) (11)1.4幂的乘方与积的乘方(1) (16)1.4 积的乘方 (19)1.5同底数幂的除法 (21)1.6 单项式的乘法 (23)1.6整式的乘法(2) (26)1.6 整式的乘法(3)——多项式乘以多项式 (29)1.7平方差公式(1)(P29~P30) (31)1.7 平方差公式(二) (33)1.8完全平方公式(1) (37)1.8完全平方公式(2) (39)1.9整式的除法(1)(P39~P41) (41)1.9 多项式除以单项式 (43)第二章平行线与相交线 (48)2.1台球桌面上的角 (48)2.2探索直线平行的条件(1) (51)2.2探索直线平行的条件(2) (53)2.3 平行线的性质(1) (55)2.4用尺规作线段和角(1) (60)2.4 用尺规作角 (63)第三章生活中的数据 (67)3.2 近似数与有效数字 (69)3.3世界新生儿图(1) (72)3.3世界新生儿图(2)(P88~P89) (75)第四章概率 (77)4.1 游戏公平吗(1) (77)4.1游戏公平吗(2) (79)4.2摸到红球的概率 (81)4.3停留在黑砖上的概率 (84)第五章三角形 (87)5.1认识三角形(1) (87)5.2 认识三角形(2) (89)5.1认识三角形(3) (95)5.1 认识三角形(4) (98)5、2图形的全等 (100)5、3图案设计 (102)5.4全等三角形 (104)5.5探索三角形全等的条件(1) (108)5.5探索三角形全等的条件(2) (111)5.5《边角边》第1课时 (116)5.6作三角形 (120)5.7利用三角形全等测距离 (124)5.8探索直角三角形全等的条件 (127)第六章变量之间的关系 (132)6、1小车下滑的时间 (132)6.2变化中的三角形 (135)6.3 温度的变化 (137)6.4速度的变化 (139)第七章生活中的轴对称 (144)7、1轴对称现象 (144)7.2简单的轴对称图形 (146)7.2简单的轴对称图形 (150)7.3探索轴对称的性质 (153)7.4利用轴对称设计图案 (155)7.5 镜子改变了什么 (159)7.6镶边与剪纸 (162)北师大版实验教科书七年级下册第一章整式的运算一、值得讨论的问题:1、符号感的含义是什么?如何培养学生的符号感?符号感主要表现在“能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题”。
2024北师大版初中七年级数学上册下册全年级教案精写
![2024北师大版初中七年级数学上册下册全年级教案精写](https://img.taocdn.com/s3/m/d32bd3db690203d8ce2f0066f5335a8103d2664f.png)
2024北师大版初中七年级数学上册下册全年级教案精写一. 教材分析本教案为北师大版初中七年级数学上册和下册的全年级教案,以教材内容为基础,深入剖析每个知识点,结合学生实际情况,进行精心的设计和编写。
本教案力求让学生在掌握知识的同时,培养学生的数学思维能力和解决问题的能力。
二. 学情分析七年级的学生正处于青春期,思维活跃,好奇心强,但对数学学科有一定的恐惧心理。
因此,在教学过程中,需要充分调动学生的积极性,激发他们的学习兴趣,帮助他们建立自信心。
同时,七年级学生的学习习惯和方法还需要进一步培养和指导。
三. 教学目标1.知识与技能:使学生掌握初中七年级数学上册和下册的知识点,提高学生的数学素养。
2.过程与方法:培养学生独立思考、合作交流、解决问题的能力。
3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的自信心,使学生树立正确的数学观念。
四. 教学重难点1.教学重点:每个知识点的理解和运用。
2.教学难点:数学思维能力的培养,解决问题的方法。
五. 教学方法1.情境教学法:通过生活实例、故事等引入知识点,激发学生的学习兴趣。
2.启发式教学法:引导学生独立思考,培养学生解决问题的能力。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。
4.反馈评价法:及时给予学生反馈,鼓励学生积极参与,提高学习效果。
六. 教学准备1.教具准备:教材、教案、PPT、黑板、粉笔等。
2.教学资源:互联网、教学视频、教学案例等。
3.学生准备:预习教材,了解基本知识点。
七. 教学过程1.导入(5分钟)通过一个生活实例或故事,引出本节课的知识点,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT或板书,详细讲解本节课的知识点,重点突出,条理清晰。
在讲解过程中,注意引导学生思考,提问学生,确保学生能够理解和掌握。
3.操练(15分钟)根据本节课的知识点,设计一些练习题,让学生独立完成。
在学生练习过程中,教师及时给予指导和解答,帮助学生巩固知识点。
新教材北师大版七年级下册数学全册教案【72页】
![新教材北师大版七年级下册数学全册教案【72页】](https://img.taocdn.com/s3/m/26e64e82dd3383c4bb4cd2b4.png)
(新教材)北师大版精品数学资料第一章 整式的运算 第一节 整式〖教学目的:〗〖知识与技能目标:〗使学生理解、掌握单项式的有关概念,能准确地说出给定单项式的系数和次数; 〖过程与方法:〗初步培养学生的观察——分析和归纳——概括能力,使学生初步认识特殊与一般的辩证关系 〖情感态度与价值观:〗通过积极参与数学学习活动,培养独立思考和合作学习的习惯 〖教学重点、难点:〗重点:单项式的定义;单项式的系数和次数难点:单项式的系数和次数 〖教学过程:〗Ⅰ.创设现实情景,引入新课 Ⅱ.根据现实情景,讲授新课1.整式的有关概念: (1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式. (2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数. (3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数. (5)整式的概念:单项式和多项式统称为整式. 2.定义的补充:(1)单项式的系数:单项式中的数字因数叫做单项式的系数. (2)多项式的项数:多项式中单项式的个数叫做多项式的项数. 3.区别是否整式:关键:分母中是否含有字母? 4.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?ab +c ,ax 2+bx +c ,-5,π,2y x -,12-x xⅢ.做一做1、单项式、多项式的名称:bc a 32- 是____次_____项式12212++y y x 是____次_____项式 abc b a c ab -+2223 是____次_____项式Ⅳ.课时小结1今天这节课我们学习了哪一类代数式?(单项式) 关于单项式,我们又学习了什么?(定义、系数、次数)2在单项式的定义中,提到了“单独一个数,也叫单项式”,也就是说,以前我们所学过的有理数,都属于单项式,可见,有理数是特殊的单项式 Ⅴ.课后作业课本P 5习题1.1:1,2,3。
1.1同底数幂的乘法(教案)方案-北师大版七年级数学下册(教案)
![1.1同底数幂的乘法(教案)方案-北师大版七年级数学下册(教案)](https://img.taocdn.com/s3/m/bbba6d66590216fc700abb68a98271fe910eafc9.png)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同底数幂乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
实践活动环节,学生们分组讨论和实验操作的表现总体良好,但在小组讨论过程中,部分学生显得不够积极主动。为了提高学生的参与度,我计划在下次的教学中,增加一些互动性强的环节,鼓励学生发表自己的观点,提高他们的课堂积极性。
在学生小组讨论环节,我发现学生们对于同底数幂乘法在实际生活中的应用有着各种各样的想法,这让我深感欣慰。但同时,我也注意到,部分学生在讨论时容易偏离主题,导致讨论效果不佳。因此,在今后的教学中,我需要加强对学生讨论过程的引导,确保讨论能够围绕主题进行,提高讨论的实效性。
-灵活运用同底数幂乘法解决复杂问题:学生在解决复合运算问题时,可能不知道如何运用同底数幂乘法,需要教师指导解题思路。
-抽象思维能力的培养:对于部分学生来说,从具体实例中抽象出同底数幂乘法的规律具有一定的难度。
举例:针对难点,可以采取以下措施帮助学生突:
(1)设计阶梯式的练习题,从简单到复杂,让学生逐步掌握同底数幂乘法的运用。
1.1同底数幂的乘法(教案)方案-北师大版七年级数学下册(教案)
一、教学内容
本节课选自北师大版七年级数学下册第四章第一节数学内容“1.1同底数幂的乘法”。教学内容主要包括以下几部分:
1.同底数幂乘法的定义:即当底数相同时,指数相加的法则,如:a^m × a^n = a^(m+n)。
北师大版七年级数学下册教案(含解析):第五章生活中的轴对称章末复习
![北师大版七年级数学下册教案(含解析):第五章生活中的轴对称章末复习](https://img.taocdn.com/s3/m/74ac80b0534de518964bcf84b9d528ea81c72f98.png)
北师大版七年级数学下册教案(含解析):第五章生活中的轴对称章末复习一. 教材分析本章主要内容是轴对称的概念和性质,以及生活中的轴对称现象。
通过本章的学习,使学生了解轴对称的基本概念,掌握轴对称的性质,能够识别生活中的轴对称现象,培养学生的观察能力和思维能力。
二. 学情分析七年级的学生已经具备了一定的几何基础,对于图形的变换和性质有一定的了解。
但是,对于生活中的轴对称现象可能接触较少,需要通过实例和活动来激发学生的兴趣和好奇心。
三. 教学目标1.知识与技能:了解轴对称的概念,掌握轴对称的性质,能够识别生活中的轴对称现象。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力、操作能力和思维能力。
3.情感态度价值观:培养学生对数学的兴趣,增强学生对数学的应用意识,感受数学与生活的联系。
四. 教学重难点1.重点:轴对称的概念和性质。
2.难点:生活中的轴对称现象的识别和应用。
五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生的兴趣和好奇心,激发学生的学习动机。
2.启发式教学法:通过提问和引导,引导学生思考和探索,培养学生的思维能力。
3.合作学习法:通过小组讨论和合作,培养学生的交流能力和团队协作能力。
六. 教学准备1.教具:多媒体课件、实物模型、轴对称图形。
2.学具:学生手册、彩笔、剪刀、胶水。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称现象,如剪刀、飞机、树叶等,引导学生观察和思考,引发学生的兴趣和好奇心。
2.呈现(10分钟)教师通过多媒体课件,介绍轴对称的概念和性质,让学生初步了解轴对称的基本概念和性质。
3.操练(10分钟)教师引导学生通过实际操作,如剪裁轴对称图形,让学生亲身体验和感知轴对称的性质。
4.巩固(10分钟)教师通过一些练习题,让学生巩固所学的轴对称的概念和性质。
5.拓展(10分钟)教师引导学生思考和探索,发现生活中的其他轴对称现象,如人体、建筑等,并让学生进行展示和交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1同底数幂的乘法1.理解并掌握同底数幂的乘法法则;(重点)2.运用同底数幂的乘法法则进行相关运算.(难点)一、情境导入问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)m n+1·m n·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.解:(1)原式=23+4+1=28;(2)原式=-a3·a2·(-a3)=a3·a2·a3=a8;(3)原式=m n+1+n+2+1=a2n+4.方法总结:同底数幂的乘法法则只有在底数相同时才能使用;单个字母或数可以看成指数为1的幂,进行运算时,不能忽略了幂指数1.【类型二】底数为多项式的同底数幂的乘法计算:(1)(2a+b)2n+1·(2a+b)3·(2a+b)n-4;(2)(x-y)2·(y-x)5.解析:将底数看成一个整体进行计算.解:(1)原式=(2a +b )(2n +1)+3+(n -4)=(2a +b )3n ; (2)原式=-(x -y )2·(x -y )5=-(x -y )7.方法总结:底数互为相反数的幂相乘时,先把底数统一,再进行计算.(a -b )n =⎩⎪⎨⎪⎧(b -a )n (n 为偶数),-(b -a )n (n 为奇数). 【类型三】 运用同底数幂的乘法求代数式的值若82a +3·8b -2=810,求2a +b 的值.解析:根据同底数幂的乘法法则,底数不变指数相加,可得a 、b 的关系,根据a 、b 的关系求解.解:∵82a +3·8b -2=82a +3+b -2=810,∴2a +3+b -2=10,解得2a +b =9. 方法总结:将等式两边化为同底数幂的形式,底数相同,那么指数也相同. 【类型四】 同底数幂的乘法法则的逆用已知a m =3,a n =21,求a m +n 的值.解析:把a m +n 变成a m ·a n ,代入求值即可.解:∵a m =3,a n =21,∴a m +n =a m ·a n =3×21=63.方法总结:逆用同底数幂的乘法法则把a m +n 变成a m ·a n . 三、板书设计1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即a m ·a n =a m +n (m ,n 都是正整数). 2.同底数幂的乘法法则的运用在同底数幂乘法公式的探究过程中,学生表现出观察角度的差异:有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系起来;有的学生则既观察入微,又统揽全局,表现出了较强的观察力.教师要善于抓住这个契机,适当对学生进行指导,培养他们“既见树木,又见森林”的优良观察品质.对于公式使用的条件既要把握好“度”,又要把握好“方向”1.2幂的乘方与积的乘方第1课时幂的乘方1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;(重点)2.掌握幂的乘方法则的推导过程并能灵活应用.(难点)一、情境导入1.填空:(1)同底数幂相乘,________不变,指数________;(2)a2×a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=23·23=________;(x4)5=x4·x4·x4·x4·x4=________.2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(a m)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方计算:(1)(a3)4; (2)(x m-1)2;(3)[(24)3]3; (4)[(m-n)3]4.解析:直接运用(a m)n=a mn计算即可.解:(1)(a3)4=a3×4=a12;(2)(x m-1)2=x2(m-1)=x2m-2;(3)[(24)3]3=24×3×3=236;(4)[(m-n)3]4=(m-n)12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.探究点二:幂的乘方的逆用【类型一】逆用幂的乘方比较数的大小请看下面的解题过程:比较2100与375的大小.解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375.请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法.解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.【类型二】 逆用幂的乘方求代数式的值已知2x +5y -3=0,求4x ·32y 的值.解析:由2x +5y -3=0得2x +5y =3,再把4x ·32y 统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x +5y -3=0,∴2x +5y =3,∴4x ·32y =22x ·25y =22x +5y =23=8.方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键. 【类型三】 逆用幂的乘方结合方程思想求值已知221=8y +1,9y =3x -9,则代数式13x +12y 的值为________.解析:由221=8y +1,9y =3x-9得221=23(y+1),32y =3x -9,则21=3(y +1),2y =x -9,解得x =21,y =6,故代数式13x +12y =7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x 和y 的方程组,求出x 、y ,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘. 即(a m )n =a mn (m ,n 都是正整数). 2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则第2课时 积的乘方1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方. 二、合作探究探究点一:积的乘方【类型一】 直接运用积的乘方法则进行计算计算:(1)(-5ab )3; (2)-(3x 2y )2; (3)(-43ab 2c 3)3; (4)(-x m y 3m )2.解析:直接运用积的乘方法则计算即可. 解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3; (2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m =x 2m y 6m .方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】 含积的乘方的混合运算计算:(1)(-2a 2)3·a 3+(-4a )2·a 7-(5a 3)3; (2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=-8a 6·a 3+16a 2·a 7-125a 9=-8a 9+16a 9-125a 9=-117a 9; (2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,然后算加减,最后合并同类项. 【类型三】 积的乘方的实际应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米(π取3)?解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3≈43×3×(6×105)3≈8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 探究点二:积的乘方的逆用【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式a n ·b n =(ab )n 要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键. 三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积. 即(ab )n =a n b n (n 是正整数). 2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n ·b n =(ab )n ,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n 为奇数时,(-a )n =-a n (n 为正整数);当n 为偶数时,(-a )n =a n (n 为正整数)1.3 同底数幂的除法第1课时 同底数幂的除法1.理解并掌握同底数幂的除法运算并能运用其解决实际问题;(重点)2.理解并掌握零次幂和负指数幂的运算性质.(难点)一、情境导入一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?二、合作探究探究点一:同底数幂的除法【类型一】 直接运用同底数幂的除法进行运算计算:(1)(-xy )13÷(-xy )8; (2)(x -2y )3÷(2y -x )2;(3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy )看作一个整体;(2)把(x -2y )看作一个整体,2y -x =-(x -2y );(3)把(a 2+1)看作一个整体.解:(1)(-xy )13÷(-xy )8=(-xy )13-8=(-xy )5=-x 5y 5; (2)(x -2y )3÷(2y -x )2=(x -2y )3÷(x -2y )2=x -2y ;(3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2=(a 2+1)7-4-2=(a 2+1)1=a 2+1.方法总结:计算同底数幂的除法时,先判断底数是否相同或可变形为相同,再根据法则计算.【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求a m -n -1的值.解析:先逆用同底数幂的除法,对a m -n -1进行变形,再代入数值进行计算.解:∵a m =4,a n =2,a =3,∴a m-n -1=a m ÷a n ÷a =4÷2÷3=23.方法总结:解此题的关键是逆用同底数幂的除法得出a m -n -1=a m ÷a n ÷a .声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?解析:(1)用汽车声音的强度除以人声音的强度,再利用“同底数幂相除,底数不变,指数相减”计算;(2)将喷气式飞机声音的分贝数转化为声音的强度,再除以汽车声音的强度即可得到答案.解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍; (2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.方法总结:本题主要考查同底数幂除法的实际应用,熟练掌握其运算性质是解题的关键. 探究点二:零指数幂和负整数指数幂 【类型一】 零指数幂若(x -6)0=1成立,则x 的取值范围是( ) A .x ≥6 B .x ≤6 C .x ≠6 D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂成立的条件,非0的数的0次幂等于1,注意0指数幂的底数不能为0.【类型二】 比较数的大小若a =(-23)-2,b =(-1)-1,c =(-32)0,则a 、b 、c 的大小关系是( )A .a >b =cB .a >c >bC .c >a >bD .b >c >a解析:∵a =(-23)-2=(-32)2=94,b =(-1)-1=-1,c =(-32)0=1,∴a >c >b .故选B.方法总结:本题的关键是熟悉运算法则,利用计算结果比较大小.当底数是分数,指数为负整数时,只要把底数的分子、分母颠倒,负指数就可变为正指数.【类型三】 零指数幂与负整数指数幂中底数的取值范围若(x -3)0-2(3x -6)-2有意义,则x 的取值范围是( ) A .x >3 B .x ≠3且x ≠2 C .x ≠3或x ≠2 D .x <2解析:根据题意,若(x -3)0有意义,则x -3≠0,即x ≠3.(3x -6)-2有意义,则3x -6≠0,即x ≠2,所以x ≠3且x ≠2.故选B.方法总结:任意非0的数的0次幂为1,底数不能为0,负整数指数幂的底数不能为0. 【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减. 2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1a p (a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础第2课时用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数还原为原数.一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为() A.1.06×10-4B.1.06×10-5C.10.6×10-5D.106×10-6解析:0.000106=1.06×10-4.故选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708;(4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量1.4 整式的乘法第1课时 单项式与单项式相乘1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;(重点)2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.(难点)一、情境导入根据乘法的运算律计算:(1)2x ·3y ;(2)5a 2b ·(-2ab 2).解:(1)2x ·3y =(2×3)·(x ·y )=6xy ;(2)5a 2b ·(-2ab 2)=5×(-2)·(a 2·a )·(b ·b 2)=-10a 3b 3.观察上述运算,你能归纳出单项式乘法的运算法则吗?二、合作探究探究点:单项式与单项式相乘【类型一】 直接利用单项式乘以单项式法则进行计算计算:(1)(-23a 2b )·56ac 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y是同类项,∴⎩⎪⎨⎪⎧3m +1+5m -3=4,2n +5n -4=1,解得⎩⎨⎧m =34,n =57,∴m 2+n =143112. 方法总结:掌握单项式乘以单项式的运算法则,再结合同类项,列出二元一次方程组是解题关键.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的长方形空地,现在要在这块地中规划一块长35x m ,宽34y m 的长方形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,绿化的面积是35x ×34y =920xy (m 2),则剩下的面积是xy -920xy =1120xy (m 2). 方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点第2课时 单项式与多项式相乘1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则;2.掌握单项式与多项式相乘的法则并会运用.(重点,难点)一、情境导入计算:(-12)×(12-13-14).我们可以根据有理数乘法的分配律进行计算,那么怎样计算2x ·(3x 2-2x +1)呢?二、合作探究探究点:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法则进行计算计算:(1)(23ab 2-2ab )·12ab ; (2)-2x ·(12x 2y +3y -1). 解析:利用单项式乘以多项式法则计算即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2; (2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y +(-2x )·(-1)=-x 3y +(-6xy )+2x =-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式与多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘以多项式的运算法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sl =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.方法总结:本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘以多项式的运算法则是解题的关键.【类型三】利用单项式乘以多项式化简求值先化简,再求值:5a(2a2-5a+3)-2a2(5a+5)+7a2,其中a=2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:5a(2a2-5a+3)-2a2(5a+5)+7a2=10a3-25a2+15a-10a3-10a2+7a2=-28a2+15a,当a=2时,原式=-82.方法总结:本题考查了整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项.三、板书设计1.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.2.单项式与多项式乘法的应用本节课在已学过的单项式乘以单项式的基础上,学习单项式乘以多项式.教学中注意发挥学生的主体作用,让学生积极参与课堂活动,并通过不断纠错而提高解题水平第3课时多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算;(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外,如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式与多项式相乘【类型一】直接利用多项式乘多项式法则进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘以多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】多项式乘以多项式的混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式与多项式相乘的化简求值及应用【类型一】 多项式乘以多项式的化简求值先化简,再求值:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b ),其中a =-1,b =1. 解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b )=a 3-8b 3-(a 2-5ab )(a +3b )=a 3-8b 3-a 3-3a 2b +5a 2b +15ab 2=-8b 3+2a 2b +15ab 2.当a =-1,b =1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】 多项式乘以多项式与方程的综合解方程:(x -3)(x -2)=(x +9)(x +1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项、合并同类项,将x 系数化为1,即可求出解.解:去括号后得x 2-5x +6=x 2+10x +9+4,移项、合并同类项得-15x =7,解得x =-715. 方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】 多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的差,可得答案. 解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab (平方米).当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63(平方米),故绿化的面积是63平方米.方法总结:掌握长方形的面积公式和多项式乘多项式法则是解题的关键.【类型四】 根据多项式乘以多项式求待定系数的值已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值. 解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2项,也不含x 项,可得含x 2项和含x 项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2.∵积不含x 2项,也不含x 项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94,∴系数a 、b 的值分别是94,32. 方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础1.5 平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点) 2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】 直接运用平方差公式进行计算利用平方差公式计算:(1)(3x -5)(3x +5);(2)(-2a -b )(b -2a );(3)(-7m +8n )(-8n -7m );(4)(x -2)(x +2)(x 2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25;(2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2;(3)(-7m +8n )(-8n -7m )=(-7m )2-(8n )2=49m 2-64n 2;(4)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体的数,也可以是单项式或多项式.【类型二】 利用平方差公式进行简便运算利用平方差公式计算:(1)2013×1923; (2)13.2×12.8. 解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=202-(13)2=400-19=39989; (2)13.2×12.8=(13+0.2)×(13-0.2)=132-0.22=169-0.04=168.96.方法总结:熟记平方差公式的结构是解题的关键.【类型三】 化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.解析:利用平方差公式展开并合并同类项,然后把x 、y 的值代入进行计算即可得解. 解:(2x -y )(y +2x )-(2y +x )(2y -x )=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.当x =1,y =2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.【类型四】 平方差公式的几何背景如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵图①中阴影部分的面积是a 2-b 2,图②中梯形的面积是12(2a +2b )(a -b )=(a +b )(a -b ),∴a 2-b 2=(a +b )(a -b ),即可验证的乘法公式为(a +b )(a -b )=a 2-b 2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.【类型五】 平方差公式的实际应用王大伯家把一块边长为a 米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了.理由如下:原正方形的面积为a 2,改变边长后面积为(a +4)(a -4)=a 2-16.∵a 2>a 2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.三、板书设计1.平方差公式:两数和与这两数差的积等于它们的平方差.即(a +b )(a -b )=a 2-b 2.2.平方差公式的应用学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。