铂热电阻温度传感器测温电路
PT100温度传感器测量电路
PT100温度传感器测量电路温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围.本电路选择其工作在 -19℃至500℃范围。
整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。
前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在 0℃到 500℃的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的 500℃在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
其实,计算的方法有多种,关键是要按照传感器的 mV/℃为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。
《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告
《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告1.实验功能要求了解铂热电阻的特性与应用;熟悉铂热电阻测温电路;利用P100铂电阻测量温度源的温度;记录温度与测量电路电压输出数据2.实验所用传感器原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
3.实验电路PT100铂电阻测温电路经验P100电压采集放大电路:前半部分是4.096V恒压源电路,然后是一个桥式电压采样电路,后面是一个电压放大电路。
一、4.096V恒压源电路因Vref=2.5V,故有4.096=(1+R1/R2)*2.5,得出R1/R2=1.6384,可以通过调节滑动变阻器实现。
二、桥式电压采样电路这是一个桥式电压采样电路,其原理是将V2作为参考电压,通过V1的变化去得到一个相对的电压数值,这样就能得到PT100的电阻数值,从而得到当前温度数值。
其中相对数值是通过R7去调节,可以是任意,其R7的主要作用还是在校准温度使用。
根据项目需要,现在使用的R7的阻值是138.5002Ω,也就是PT100在100摄氏度是的温度数值。
三、电压放大电路分析电路:1根据"虚断"原则,流过R3和R8电流相等(V1-Vx)/R3=Vx/R82根据“虚断"原则,流过R6和R1电流相等(V2-Vout)/(R6+R1)=(V2-Vy)/R6 3根据"“虚短"原则,Vy=Vx4根据这3个公式得出:11V1-10V2=Vout理想要的数值是10倍的放大倍数,但是现在在输出端多了减了V1,根据模拟的数值可知,V1的取值范围是0.215-0.36835241646对应温度范围是44.032- 75.43。
铂热电阻
R6 50Ω_LIN 1.0MΩ Key = Space
4
6
3 6
8
Vout
4
50%
10
2
R4
3
1.0MΩ R7 1.0MΩ R5
AD548JN VEE
VEE
10KΩ_LIN 50% Key = B
R8
7
-12V R11 1.0MΩ
R9 47kΩ
Pt R0=1k
R3 1.0kΩ
5
R10 10kΩ
0
温度传感器实验--铂热电阻
• • • • •
“四色环”读数规则 四色环”
“四色环”读数规则 四色环” • 所谓“四色环电阻” 所谓“四色环电阻”就是指用四条色环表示阻值的 电阻。从左向右数,第一,二环表示两位有效数字, 电阻。从左向右数,第一,二环表示两位有效数字,第三 环表示数字后面添加“ 的个数 所谓“从左向右” 的个数。 环表示数字后面添加“0”的个数。所谓“从左向右”,我 们是指把电阻象图中所画的样子放置——四条色环中,有 们是指把电阻象图中所画的样子放置 四条色环中, 四条色环中 三条相互之间的距离靠得比较近, 三条相互之间的距离靠得比较近,而第四环距离稍微大一 点。如下图: 如下图: 但是说实在的,现在的电阻产品, 但是说实在的,现在的电阻产品,你要区分色环距 离的大小的确很困难,哪一环是第一环, 离的大小的确很困难,哪一环是第一环,往往凭借经验来 识别;对四色环而言,还有一点可以借鉴,那就是: 识别;对四色环而言,还有一点可以借鉴,那就是:四色 环电阻的第四环,不是金色,就是银色,环电阻的第四环,不是金色,就是银色,而不会是其它颜 这一点在五色环中不适用); );这样你就可以知道那一 色(这一点在五色环中不适用);这样你就可以知道那一 环该是第一环了。 环该是第一环了。
[整理]pt100温度传感器测量电路.
pt100温度传感器测量电路温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围.本电路选择其工作在-19℃至500℃范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的5V 供电端仅仅通过一支3K92 的电阻就连接到PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照PT100 的参数,其在0℃到500℃的区间内,电阻值为100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压mV0100.00124.381 100.39 124.850 119.40147.79100 138.51170.64150 157.33192.93200175.86214.68250194.10235.90300212.05256.59350229.72276.79400247.09296.48450264.18315.69500280.98334.42单片机的10 位A/D 在满度量程下,最大显示为1023 字,为了得到PT100 传感器输出电压在显示500 字时的单片机A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照(500/1023 * Vcc)/传感器两端电压不能得到10.466 的结果,而是得到11.635的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为450 个字,因此,公式中的500℃在实际计算时的取值是450 而不是500 。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0 100.00 124.381 100.39 124.850 119.40 147.79100 138.51 170.64150 157.33 192.93200 175.86 214.68250 194.10 235.90300 212.05 256.59350 229.72 276.79400 247.09 296.48450 264.18 315.69单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
PT100测量电路
热电阻Pt100测温电路调试体会铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。
℃℃范围内具有其他任何温度传感器无PT100是一种广泛应用的测温元件,在-50~600可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。
由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。
校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。
常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。
常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。
其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。
下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行)。
一、 桥式测温电路桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。
测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。
差动放大电路中R3=R4、 R5=R6、放大倍数=R5/R3,运放采用单一5V供电。
设计及调试注意点:1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小;2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作(以前就有个猪头特别提醒说只有接成正反馈才能正常工作,我也没做试验就拿它当经验,害得我重新做板)。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0 100.00 124.381 100.39 124.850 119.40 147.79100 138.51 170.64150 157.33 192.93200 175.86 214.68250 194.10 235.90300 212.05 256.59350 229.72 276.79400 247.09 296.48450 264.18 315.69单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:GAGGAGAGGAFFFFAFAF传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:GAGGAGAGGAFFFFAFAF单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照(500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值GAGGAGAGGAFFFFAFAF是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
最新pt100温度传感器测量电路
p t100温度传感器测量电路pt100温度传感器测量电路温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围.本电路选择其工作在 -19℃至500℃范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在 0℃到 500℃的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0100.00124.381100.39124.850119.40147.79100138.51170.64150157.33192.93200175.86214.68250194.10235.90单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的 500℃在实际计算时的取值是 450 而不是 500 。
Pt100 温度传感器参数及电路设计
Pt100 温度传感器参数及电路设计Pt100 温度传感器为正温度系数热敏电阻传感器.主要技术参数如下:•测量范围:-200℃~+850℃;•允许偏差值△℃:A 级±(0.15+0.002│t│),B 级±(0.30+0.005│t│);•最小置入深度:热电阻的最小置入深度≥200mm;•允通电流≤ 5mA。
另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。
铂热电阻的线性较好,在0~100 摄氏度之间变化时,最大非线性偏差小于0.5 摄氏度。
图1 PT100 传感器封装图应用领域宽范围、高精度温度测量领域。
如:•轴瓦,缸体,油管,水管,汽管,纺机,空调,热水器等狭小空间工业设备测温和控制。
•汽车空调、冰箱、冷柜、饮水机、咖啡机,烘干机以及中低温干燥箱、恒温箱等。
•供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
PT100测温电路
文件编号:INVT0_013_0008_CBB_01CBB规范PT100测温电路(VER:V1.0)拟制:时间:2009-09-05批准:时间:文件评优级别:□A优秀□B良好□C一般1 功能介绍PT100是铂电阻温度传感器,他适用于-60℃到400℃之间的温度,因其测量范围大,线性度好,稳定性强等特点而被广泛使用。
铂电阻温度传感器是利用金属铂在温度变化时自身电阻值也随之改变的特性来测量温度的,当被测介质中存在温度梯度时,所测得的温度是感温元件所在范围内介质层中的平均温度。
2 详细原理图+3.3+15-15+3.3-15+15+3.3AI5-AD恒流源1mAPT100 从-150至+150度阻值39.72-157.33欧PT1000 从-150到+150度阻值397.2-1573.3欧PT100+电压范围0.78V-3.14VPT100 : 拨码开关断开 放大20倍 PT1000:拨码开关选通 放大2 倍+-U1B TL08256784CN1CON212T11PIN1T21PIN1C10.1uC30.1u+-U2ATL08232184D1123C40.1uC61n/2kV+-U1A TL08232184R3 3.3k +-U2B TL08256784C50.1uC20.1uD2123R9100kR4100kR82kR71kR62k R1051kR251k R151kR111k R121kR1418kR1318k SW1SW DIP-112R551k图1 PT100电路原理图为了把PT100的温度变化的电阻信号转换成电压信号以方便微处理器测量,通过恒流源电路将PT100电阻信号转换为电压信号,再经过放大及A/D 转换后送微处理器进行处理。
3 器件功能图1中虚线方框内是产生1mA 的恒流源;二极管D1、D2为箝位作用,将电压限制在0V ~+3.3V ,保护运算放大器的安全工作电压; U2A 为电压跟随器; U2B 为同相输入运算放大器; 4 参数计算1) 恒流源电流计算图1中虚线方框内恒流源是正反馈平衡式,由于负载接地而受到人们的喜爱,使用中也可以把电阻R1取的比负载大的多,而省略跟随器运放。
铂金温度测量电路
铂金温度测量电路铂金温度传感器具有高精确度及高安定性,在-200℃~600℃之间亦有很好的线性度。
一般而言,铂电阻温度传感器pt100 感温电阻在低温-200℃~-100℃间其温度系数较大;在中温100℃~300℃间有相当良好的线性特性;而在高温300℃~500℃间其温度系数则变小。
由于在0℃时,铂金pt100 电阻值为100Ω,已被视为金属感温电阻的标准规格。
铂电阻Pt100 感温电阻值与温度间之关系式,可表亦为:(1)低温-200℃~0℃间:(2)高温0℃~500℃间而对于铂电阻Pt102 感温电阻与温度间之关系式,由于其在0℃时之电阻值为R(0)=10 乘以102W=1 kW 故二、0℃~500℃温度测量电路首先AD581 为10Volt 稳压IC,其输入电压VCC 可在12Volt~40Volt 的直流电压,故VA=10Volt。
由R1 与VR1 串联电路,可知VB 为其间之分压,即因此,可由精密电阻调整使VB=1Volt。
再经由OP1 跟随放大器可得VC=VB=1Volt;其中R2=47KΩ电阻是为减少偏压电流的影响。
至于OP2 则为定电流负载浮接转换电路,可将Pt102 之电阻变化转换成电压变化,若暂不考虑OP4 反相放大器之回馈电压的影响,则由放大器虚原理可知:Volt,所以故OP2 之输出电压为VD=-I1 乘以R(T)因此而其中C1=0.1μF 之主要目的用以消除噪声,可使OP2 具有低通滤波器果,用以去除高频噪声。
而OP3 则是一个反相加法器,其输入分别为VC 与VD,由虚短路原理可知OP3 之V-=V+=0Volt,故由于且若令,则若设计,则可藉由精密可变电阻VR3 来调整至该化值。
最后,OP4 则是用以做为回馈补偿,以修铂金传感器Pt102 感温电阻之非线性特性,其为一个反相放大器。
由于OP4 之输入电压VD 与输出电压VE 间之放大率为故VE=-VD 因此,VE 回馈至OP2 即成为反相加法器。
pt100热电阻传感器测温电路
传感技术课程设计院(系):专业班级:姓名:学号:指导教师:年月日目录一、任务 (3)二、原理 (3)2.1热电阻 (3)2.2 设计方案 (4)2.3原理框图 (4)三、内容 (4)3.1参数计算 (4)3.2器件选择 (5)3.3 电路图 (6)3.4数据分析................................................. 错误!未定义书签。
四、心得体会和建议 (7)pt100热电阻传感器测温电路一、任务1.了解并且动手制作pt100热电阻传感器2.可以熟练的使用pt100热电阻传感器测量温度的变化。
3.了解pt100热电阻传感器的工作原理及其使用方法。
4.学习pt100热电阻传感器的应用。
二、原理2.1热电阻热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
热电阻温度传感器是利用导体或半导体的电阻率随温度的变化而变化的原理制成的。
铂属贵重金属,具有耐高温、温度特性好、使用寿命长等特点,因而得到广泛应用。
铂电阻阻值与温度之间的关系是非线性,即:如下表一Rt = R0 ( I +αt +βt2 ) ( t在0~630℃之间)式中: Rt —铂热电阻的电阻值,Ω; R0 —铂热电阻在0℃时的电阻值, R = 100Ω; α—一阶温度系数,α= 3.908 ×10 -3 ( ℃) β—二阶温度系数,β= 5.802 ×10 -7 ( ℃) 在实际测温电路中,测量的是铂电阻的电压量,因而需由铂热电阻的电阻值推导出相应的电压值与温度之间的函数关系,即Ut = f (Rt ) = f[ f ( t) ]2.2 设计方案铂热电阻测温电路的总体方案为:依据铂热电阻阻值的测量从而计算出(测量)实际的温度。
为了提高测量精度,减少误差,采用三导线单臂电桥测量,测量电压是毫伏级。
pt100热电阻传感器测温电路1
目录一、任务 (2)二、原理 (2)2.1基本原理 (2)2.2设计方案 (3)2.3原理框图 (3)三、内容 (4)3.1参数计算 (4)3.2器件选择 (5)3.3 电路图 (6)3. 4 测试数据及分析 (6)四、心得体会和建议 (7)pt100热电阻传感器测温电路一、任务1.了解并且动手制作pt100热电阻传感器2.可以熟练的使用pt100热电阻传感器测量温度的变化。
3.了解pt100热电阻传感器的工作原理及其使用方法。
4.学习pt100热电阻传感器的应用。
二、原理2.1基本原理热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
热电阻的测温原理是导体或半导体的电阻值随着温度的变化而变化的特性。
热电阻大都由纯金属材料制成,目前应用最多的是铜和铂,铂属贵重金属,具有耐高温、温度特性好、使用寿命长等特点,因而得到广泛应用。
表2-1 电阻PT100分度表由表可见,阻值与温度之间的关系是非线性,即:Rt = R0 ( I +αt +βt2 ) ( t在0~630℃之间)式中: Rt —铂热电阻的电阻值,Ω; R0 —铂热电阻在0℃时的电阻值, R = 100Ω; α—一阶温度系数,α= 3.908 ×10 -3 ( ℃) β—二阶温度系数,β= 5.802 ×10 -7 ( ℃) 在实际测温电路中,测量的是铂电阻的电压量,因而需由铂热电阻的电阻值推导出相应的电压值与温度之间的函数关系,即Ut = f (Rt ) = f[ f ( t) ]2.2设计方案铂热电阻测温电路的总体方案为:依据铂热电阻阻值的测量从而计算出(测量)实际的温度。
为了提高测量精度,减少误差,采用三导线单臂电桥测量,测量电压是毫伏级。
为此测量电压必须经过放大器放大后,才能输入到微机A /D或V /F 部分进行计算机处理,从而实现微机数字化温度测量,提高测温的准确性.2.3原理框图PT100测温电路由输入电路、单臂电桥测量电路、运算放大电路、输出电路四部分构成,其原理框图如图2—1所示:图2—1 PT100测温电路原理框图三、 内容3.1参数计算1.R0、R1、RT 构成桥式电路,如图3—1所示:图3—1 三线制接法2.差动放大电路如图3—2所示:图3—2单臂电桥单臂电桥的输出电压为:()()0111R R R R RR E t out ++∆⨯=图3—3 放大电路运算放大电路放大倍数:1.71827=++=R VR R G3.2器件选择1. 差动放大器OP-07 1个2.电阻100Ω 3个 ;1k Ω 1个;5.1k Ω 1个;1 k Ω 3个;2 k Ω 1 个3. 电容1uf 1个4. 热电阻Pt100 1个5. 电位器 2个6. 10V 直流稳压电源7. 导线若干3.3 电路图图2 pt100热电阻传感器原理图3. 4 测试数据及分析表3—1 试验数据2结果分析:测量出的电压输出值与其理论值有些出入,分析原因可能及改进方法有以下几点:(1).在万用表测量其输出电压时,不同的时刻读到的值不同,造成一定误差。
PT100铂热电阻测温实验
实验二十四PT100 铂热电阻测温实验实验知识储备1.铂热电阻工作原理铂热电阻元件作为一种温度传感器,其工作原理是在温度作用下,铂电阻丝的电阻值随着温度的变化而变化。
温度和电阻的关系接近于线性关系,偏差极小且随着时间的增长,偏差可以忽略,具有可靠性好、热响应时间短等优点,且电气性能稳定。
铂热电阻是一种精确、灵敏、稳定的温度传感器。
铂热电阻元件是用微型陶瓷管、孔内装绕制好的铂热电阻丝脱胎线圈制成感温元件,由于感温元件可以做得相当小,因此它可以制成各种微型温度传感器探头。
可用于-200~+420℃范围内的温度。
2.PT100 设计参数PT100 铂电阻A 级在0℃时的电阻值R0=100±0.06 Ω;B 级R0=100±0.12 Ω,PT100铂热电阻各种温度对应阻值见分度表23-1。
PT100R 允许通过的最大测量电流为5mA,由此产生的温升不大于0.3℃。
设计时PT100上通过电流不能大于5mA。
图2-1-1铂电阻的温度特性实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。
2.掌握测量温度的电路设计和误差分析方法。
实验内容1.设计PT100 铂热电阻测温实验电路方案;2.测量PT100 的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。
3.通过测量值进行误差分析。
实验步骤1、完成系统方案设计;实验方案初步设定为如下:图2-实验方案电路图电阻阻值计算:考虑图中电路,当铂电阻变化ΔR时,电桥电压:,只有当R3取很大时才能保持线性。
故取R3为350欧姆,R1和R2以及电位器选用仪器上的变阻器,通过调整使节点1和节点2对应的电压差为零,这样当铂电阻受温度的影响发生变化时就会引起节点间的电压差,在实验时,考虑到差动放大器可以临时调节放大倍数,所以此处放大器只作为更进一步调节的备用元件。
通过调零以及放大倍数的调整,使得实验的数据满足本实验的要求,温度变化一度时电压变化约在0.08v左右。
pt100接线原理
pt100接线原理
PT100接线原理是一种常用的温度传感器电路连接方式。
PT100是一种铂电阻温度传感器,它的电阻值随着温度的变化
而变化。
接线原理如下:
1. PT100传感器具有三个引脚,分别是正极(+)、负极(-)和中
间引脚。
2. 正极(+)和负极(-)分别连接到电源的正极和负极,以提供传
感器所需的电流。
3. 中间引脚是PT100的测量引脚,用于测量传感器的电阻值。
它需要连接到测量电路中。
4. 测量电路通常由一个电压源、一个看似无法测量的参考电阻和一个电流测量仪构成。
5. 将测量电路的正极连接到电源的正极,负极连接到电源的负极。
6. 将PT100的中间引脚连接到参考电阻的其中一端,该参考
电阻的阻值与PT100的阻值在参考温度下相等。
7. 将测量电路的接入点与电压源的接地点连接。
8. 使用电流测量仪测量测量电路中的电流值。
根据测量电路中的电流值,以及参考电阻的阻值和PT100的阻值对比,可以计算出PT100所处温度的近似值。
这种接线原理可以实现对PT100温度传感器的准确测量。
pt100测温电路(经典测温范围)
pt100测温电路(经典测温范围)pt100 测温电路(经典测温范围):温度传感器PT100,可以工作在-200 度到650 度的范围。
整个电路分为两部分,一是传感器前置放大电路,一是单片机AD 转换和显示控制软件非线性校正等部分。
传感器前置放大电路:后级单片机的电路原理图:PT100 计算公式PT100 计算公式热电阻是中低温区最常用的一种温度检测器,它主要特点就是测量精度高,性能稳定.下面的是在单片机程序中我自己使用计算公式: 一:相关资料中给出的公式: 1. 铂热电阻的温度特性.在0~850℃范围内Rt=R0(1+At+Bt2) 在-200~0℃范围内Rt=R0[1+At+Bt2+C(t-100)t3] 式中A,B,C 的系数各为:A=3.90802 乘以103℃-1 B=-5.802 乘以107℃-2 C=-4.27350 乘以1012℃-4 2. 铜热电阻的温度特性:在-50~150℃范围内Rt=R0[1+At+Bt2+Ct3] A=4.28899 乘以103℃1 B=-2.133 乘以107℃2 C=1.233 乘以109℃3 二,程序中我自己使用的计算公式: 2.温度测量技术(PT100): 当T 0 RT=Rt 当T 420 RT= Rt+ Rt2*2.15805393*10-6 当0T 420 RT= Rt*[1+(R420-Rt)*3.301723797*10-7]+ Rt2*2.15805393*10-6 相关系数及说明: RT 为对应与温度的线形值,其结果等效于显示温度值Rt 为实际测量的阻抗值,其值是已经减去100(电桥差放的参考值)的值对应的16 进制值: 3.301723797*10-7 = B142h * 237 2.15805393*10-6 = 90D3h * 234 R420 = (25390-10000)*2.517082601*128 = 4BA8F3h(4958451.35736192) 其中这里的结果都是已经乘100 的值,在显示的时候应该先处理. 三:温度测量技术(CU50): RT=Rt(1+at) RT 和Rt 分别为温度为T℃和0℃时候的阻抗值. a 为铜电阻的温度系数.一般取4.25 乘以103/℃~4.28乘以103/℃tips:感谢大家的阅读,本文由我司收集整编。
热电阻温度传感器原理、测温范围和测量电路
热电阻温度传感器原理、测温范围和测量电
路
原理:金属导体或半导体电阻值与温度呈肯定函数关系。
工业上常用的热电阻为铂电阻和铜电阻。
一般用于中低温度的测量。
(1)铂电阻:测温范围-200~850° C
优点:精度高、性能牢靠、抗氧化性好、物理化学性能稳定。
它除作为一般工业测量元件外,还可作为标准器件。
缺点:电阻温度系数小,电阻与温度呈非线性,高温下不宜在还原介质中使用。
分度号为Pt100,意为0℃时的电阻为R0=100Ω。
(2)铜电阻:测温范围-50~150
优点:电阻值与温度之间基本为线性关系,电阻温度系数大,且材料易提纯,价格廉价。
缺点:电阻率低,易氧化。
分度号为Cu100 ,意为0℃时的电阻为R0=100Ω。
(3)测量电路
热电阻温度计主要由热电阻传感器、电阻测量桥路、显示仪表及连接导线所组成。
为了消退导线电阻对温度测量的影响,一般为三线制接法。
三线制热电阻测量电路如上图所示,其中左边Rt为热电阻,R1、R2、R3为电阻桥臂,Rr为导线电阻,G是电位计。
当电
位计G指针位于中间时,电桥平衡,此时可得:(Rt+Rr)R2=(R1+Rr)R3于是得到热电阻:
若使R2=R3,Rt=R1,说明此种接法导线电阻Rr对热电阻的测量无影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铂热电阻温度传感器测温电路
时间:2010-01-10 15:08:48 来源:深圳作者:徐明发
使用运算放大器和铂测温电阻温度检测电路
1,测温电阻转换电路
测温电阻是利用电阻值随温度变化的器件,在金属中,JIS规定了铂测温电阻、铜测温电阻的标准。
而且,由0℃时的电阻值R0和t℃时的电阻值Rt之比(R t/R0)求温度t。
在任意t℃时的电阻值R t为
R t=R0{1+a(t-t0)} (1)
这里,a是温度系数,铂为0.003916,铜为0.004250。
测温电阻的电阻值,在0℃用100Ω或50Ω。
铜测温电阻的温度系数不随温度变化,所以不需要线性补偿。
但是缺点是能够使用的最高温度低,约为120℃。
铂测温电阻适合于±200℃左右比较低温的温度测定由于精度好,多被采用。
但是,电阻温度系数稍有些非线性,所以需要进行线性补偿。
可是铂测温电阻的温度-电阻特性为饱和型,特性式为
R t=R0(1+AT+BT2)(2)
的高次式。
2,测温电阻的线性补偿
图1表示铂(P t)测温电阻的温度-电阻特性是饱和型,所以关于线性补偿不需要使用热电偶那样的折线逼近电路和高次函数发生电路,对高温度可用提高输出电平那样的电路来实现。
图2表示测温电阻转换器的基本电路。
在这个电路中E为基准电压,输出电压E0电压可以用
(3)
表示。
R4是测温电阻的电阻值。
在测温(R4)流过的电流,JIS规定为10,5,2mA。
这在测量测温电阻的电阻值时,由于测量电流而产生I2R的焦尔热,成为测定误差,不可忽视,所以规定了测定电流的上限。
测定电流小,焦尔热的产生少,输出电压也小,所以还必须考虑下级的放大器精度。
可是,在(3)式中,如果将E、R1、R2、R3一定,则产生对应于R4=R t变化的输出电压E0。
选择R1=R2,R3=R4=100Ω,如果R4电流5mA左右,设E为10V,从下式
(4)
R1为2.4Ω。
但是,图2的基本电路为反相电路,所以产生负的输出电压。
在图3中对基本电路为的下一级设计了反相放大电路,并设计了在0℃为0V的零调整和增益调整的电位器。
基准电源E使用温度变化小的。
在图3中,使用温度系数小的(±50ppm/℃)TL430。
这个电路没有进行线性补偿,所以对大范围的温度测量误差大,不实用。
但是,测温电阻的温度-电阻特性,如上所示,有随温度上升变化达到饱和的特性,因此,利用正反馈可以进行线性补偿。
图4是使用正反馈进行线性补偿的电路,由于把约4%左右的电压进行正反馈,如图5所示那样,在0~500℃的测温范围内,可进行线性补偿到0.4℃以内的精度。
可是,在用微机管理温度这样的模拟信号场合,要用A-D转换器读出输出电压,进行数据处理。
测温电阻的线性补偿可以用软件进行比较简单地处理。
所以,在考虑系统整体时,需要考虑用硬件进行或用软件进行的问题。
图1 铂测温电阻的温度-电阻特性非线性图2 测温电阻的基本电路
图3 测温电阻的实际电路
图4 有线性补偿的铂测温电阻电路
图5 线性补偿后的温度-电阻特性
. .。