初二数学八年级各种经典难题例题(含答案)非常经典

合集下载

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . AP C DB A FGCE B O D D 2 C 2B 2 A 2 D 1C 1 B 1CBDA A 1A NF E C DM B · AD H EM CB O·GA ODB E CQ P NM ·O Q P B DE CN M · APC GFB Q A DE求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF相交于P ,且DAF DE CB E DACBFF E P C BA O DB F AE C PAPC B PADC B CBDAAE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数. 经典难题(一)1.如下图做GH ⊥AB,连接EO 。

(完整版)八年级数学经典难题

(完整版)八年级数学经典难题

经典难题(一)1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2、已知:如图,P 是正方形 ABCD 内点,∠PAD=∠PDA=15 度求证:△PBC是正三角形.(初二)3、如图,已知四边形 ABCD、A1B1C1D1 都是正方形,A2、B2、C2、D2 分别是 AA 1、BB1、CC1、DD1 的中点.求证:四边形 A2B2C2D2 是正方形.(初二)4、已知:如图,在四边形 ABCD 中,AD=BC,M、N 分别是 AB、CD 的中点,AD、BC 的延长线交 MN 于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM⊥BC 于 M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设 MN 是圆 O 外一直线,过 O 作OA⊥MN 于 A,自 A 引圆的两条直线,交圆于B、C 及D、E,直线 EB 及CD 分别交 MN 于P、Q.求证:AP=AQ.(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC、DE,设 CD、EB 分别交 MN 于 P 、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC 和BC 为一边,在△ABC的外侧作正方形 ACDE 和正方形 CBFG,点P 是EF 的中点.求证:点 P 到边 AB 的距离等于 AB 的一半.(初二)经典难题(三)1、如图,四边形 ABCD 为正方形,DE∥AC,AE=AC,AE 与 CD 相交于 F.求证:CE=CF.(初二)2、如图,四边形 ABCD 为正方形,DE∥AC,且 CE=CA,直线 EC 交 DA 延长线于F.求证:AE=AF.(初二)3、设 P 是正方形 ABCD 一边BC 上的任一点,PF⊥AP,CF 平分∠DCE.求证:PA=PF.(初二)4、如图,PC 切圆 O 于 C,AC 为圆的直径,PEF 为圆的割线,AE、AF 与直线 PO 相交于 B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P 是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设 P 是平行四边形 ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设 ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形 ABCD 中,设 E、F 分别是 BC、AB 上的一点,AE 与CF 相交于 P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设 P 是边长为 1 的正△ABC 内任一点,L=PA+PB+PC,求证:√3≤L<2.2、已知:P 是边长为 1 的正方形 ABCD 内的一点,求 PA+PB+PC 的最小值.3、P 为正方形 ABCD 内的一点,并且 PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC 中,∠ABC=∠ACB=80 度,D、E 分别是 AB、AC 上的点,∠DC A=30 度,∠EBA=20 度,求∠BED 的度数.答案经典难题(一)4.如下图连接 AC 并取其中点 Q,连接 QN 和QM,所以可得∠QMF=∠F,∠QNM=∠ DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F。

(完整)初中数学难题精选(附答案)

(完整)初中数学难题精选(附答案)

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)APCDB AFGCEBOD3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、NBC的延长线交MN于E、F.求证:∠DEN=∠F.D2C2B2A2D1C1B1C BD AA1B经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.4、如图,PC切圆O于C,AC为圆的直径,B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a4、如图,△ABC 中,∠ABC =∠ACB =800,D、E 分别是AB 、AC ∠EBA =200,求∠BED 的度数.经典难题(一)1.如下图做GH ⊥AB,连接EO 。

(完整版)初二数学经典难题(带答案及解析)

(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

八年级数学经典难题(答案 解析)

八年级数学经典难题(答案 解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.GM=BCADMG=BC3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.PQ=(PQ=PQ=5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.PE=2PE==2CF=EF=CE===即正方形的边长为6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.解之得:经检验得:∴小口径水管速度为立方米7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.Y=上的一点,所以,所以正比例函数解析式为x,|OB×m|所以有,)=))﹣OP=(=28.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值..BE PF=x﹣xx xx x=()<时,9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.y=的图象上,﹣=12=,即PE=CE10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.xx与双曲线在双曲线××=×)))。

初二数学八年级各种经典难题例题(含答案)非常经典

初二数学八年级各种经典难题例题(含答案)非常经典

1 已知一个等腰三角形两内角的度数之比为 1 : 4 ,则这个等腰三角形顶角的度数为() A. 2 0 B. 1 2 0 C. 2 0 或 1 2 0 D. 3 61.一个凸多边形的每一个内角都等于 150°,则这个凸多边形所有对角线的条数总共有 ( ) A.42 条 B.54 条 C.66 条 D.78 条3、若直线 y  k1x 1 与 y  k2x  4 的交点在 x 轴上,那么k1 等于() k2A . 4 B.  4 C .1 1 D . 4 41 1  4 的最小值为:( 4 x 4y)(竞赛)1 正实数 x, y 满足 xy  1 ,那么(A)1 2(B)5 8(C)1(D) 2(竞赛)在△ABC 中,若∠A>∠B,则边长 a 与 c 的大小关系是( A、a>c B、c>a C、a>1/2c) D、c>1/2a16.如图,直线 y=kx+6 与 x 轴 y 轴分别交于点 E,F.点 E 的 坐标为(-8,0),点 A 的坐标为(-6,0). (1)求 k 的值; (2)若点 P(x,y)是第二象限内的直线上的一个动点,当 点 P 运动过程中,试写出△OPA 的面积 S 与 x 的函数 关系式,并写出自变量 x 的取值范围; (3)探究:当 P 运动到什么位置时,△OPA 的面积为27 ,并说明理由. 86 、已知,如图,△ ABC 中,∠ BAC=90 °, AB=AC,D 为 AC 上一点,且∠ BDC=124°,延长 BA 到点 E,使 AE=AD,BD 的延长线交 CE 于点 F,求∠E 的 度数。

7.正方形 ABCD 的边长为 4,将此正方形置于平面直角坐标系中,使 AB 边落在 X 轴的正半 轴上,且 A 点的坐标是(1,0) 。

4 8 ①直线 y= x- 经过点 C,且与 x 轴交与点 E,求四边形 AECD 的面积; 3 3 ②若直线 l 经过点 E 且将正方形 ABCD 分成面积相等的两部分求直线 l 的解析式, ③若直线 l1 经过点 F  2  3  .0  且与直线 y=3x 平行,将②中直线 l 沿着 y 轴向上平移 个单位 3  2 交 x 轴于点 M ,交直线 l1 于点 N ,求 NMF 的面积.(竞赛奥数)如图,在△ABC 中,已知∠C=60°,AC>BC,又△ABC′、△BCA′、△CAB′ 都是△ABC 形外的等边三角形,而点 D 在 AC 上,且 BC=DC (1)证明:△C′BD≌△B′DC; (2)证明:△AC′D≌△DB′A;9.已知如图,直线 y   3x  4 3 与 x 轴相交于点 A,与直线 y  3x 相交于点 P. ①求点 P 的坐标. ②请判断 OPA 的形状并说明理由. ③动点 E 从原点 O 出发,以每秒 1 个单位的速度沿着 O→P→A 的路线向点 A 匀速运动(E 不与点 O、 A 重合) , 过点 E 分别作 EF⊥x 轴于 F, EB⊥y 轴于 B. 设运动 t 秒时, 矩形 EBOF 与△OPA 重叠部分的面积为 S.求: S 与 t 之间的函数关系式.y PB OEFAx16 多边形内角和公式等于(n - 2)×180 根据题意即(n - 2)×180=150n,求得 n=12, 多边形的对角线的条数公式等于 n(n-3)/2 带入 n=12, 则这个多边形所有对角线 的条数共有 54 条因为两直线交点在 x 轴上,则 k1 和 k2 必然不为 0,且交点处 x=-1/k1=4/k2, 所以 k1:k2=-1:41/x^4+1/4y^4=(y^4+x^4)/x^4y^4 因为 xy=1 所以 x^4y^4=1 所以 原式=y^4+x^4 因为(x^2-y^2)^2>0 且(x^2-y^2)^2=y^4+x^4-x^2y^2 大于或等于 0 所以 y^4+x^4 大于或等于 x^2y^2 即 1 所以 y^4+x^4 的最小值为 1竞赛解:在△ABC 中, ∵∠A>∠B, ∴a>b, ∵a+b>c, ∴2a>a+b>c, ∴a>12c. 故选 C.1、y=kx+6 过点 E(-8,0)则 -8K+6=0 K=3/4 2、 因点 E(-8,0) 则 OE=8 直线解析式 Y=3X/4+6 当 X=0 时,Y=6,则点 F(0,6) 因点 A(0,6),则 A、F 重合 OA=6 设点 P(X,Y) 则点 P 对于 Y 轴的高为|X| 当 P 在第二象限时,|X|=-X S=OA×|X|/2=-6X/2=-3X 3、 S=3|X| 当 S=278 时 278=± 3X X1=278/3,X2=-278/3 Y1=3X1/4+6=3/4×278/3+6=151/2 Y2=3X2/4+6=-3/4×278/3+6=-127/2 点 P1(278/3,151/2),P2(-278/3,-127/2)6 解:在△ABD 和△ACE 中, ∵AB=AC,∠DAB=∠CAE=90° AD=AE, ∴△ABD≌△ACE(SAS) , ∴∠E=∠ADB. ∵∠ADB=180° -∠BDC=180° -124° =56° , ∴∠E=56° .7(1)由题意知边长已经告诉,易求四边形的面积; (2)由第一问求出 E 点的坐标,设出 F 点,根据直线 l 经过点 E 且将正方形 ABCD 分成面积相等的两部分,其实是两个直角梯形,根据梯形面积公式,可求 出 F 点坐标,从而解出直线 l 的解析式.解:(1)由已知条件正方形 ABCD 的 边长是 4, ∴四边形 ABCD 的面积为:4×4=16; (2)由第一问知直线 y=4/3x-8/3 与 x 轴交于点 E, ∴E(2,0), 设 F(m,4), 直线 l 经过点 E 且将正方形 ABCD 分成面积相等的两部分,由图知是两个直角 梯形, ∴S 梯形 AEFD=S 梯形 EBCF= 1/2(DF+AE)•AE= 1/2(FC+EB) ∴m=4, ∵F(4,4),E(2,0), ∴直线 l 的解析式为:y=2x-4竞赛奥数 (1) 先证△ABC≌△C1BD:∵AB=C1B, ∠ABC=∠C1BD (因为都是 60° +∠ ABD), BD=BC。

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)

-WORD格式--试题-范文范例--指导案例初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ 与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初中数学经典几何难题20例及答案

初中数学经典几何难题20例及答案

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)第1题图第2题图2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)第3题图第4题图4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)ANFE CDMB D 2C 2B 2A 2D 1C 1B 1C BDAA 1APC DBAFGCEB O D第1题图第2题图2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)第3题图第4题图4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)PCGFBQ ADE· OQPBDEC NM· A·GA O DBECQPNM·AD HEM C BO第1题图第2题图2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)第3题图第4题图4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)第1题图第2题图2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)PADCBAPC BO D BF AECPFE PCBAE DA CBFAFDECBD3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)第3题图第4题图4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.第1题图第2题图2、P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.第3题图第4题图4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300, ∠EBA =200,求∠BED 的度数.EDCBAAC BPDAC BPDA PCBFPDE CBACBDA经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF 。

(完整版)初中数学经典难题(含答案)

(完整版)初中数学经典难题(含答案)

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 A N FE CDMBP CG FB QA D E1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)· A D HE M C B O · GAO D B EC Q P NM · O Q PB DEC N M · A1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)D AF D E C B E DA CB F A E PC B A OD BFAECP1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)AP C B P A D CB C B DAF PD E C B A1、设P 是边长为1的正△ABC 内任一点,l =PA +PB +PC ,求证:3≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDCB AA CBPD经典难题(一)1、2、3、4、经典难题(二)1、2、4、经典难题(三)1、3、4、1、2、3、4、证明:过D 作DQ ⊥AE ,DG ⊥CF,并连接DF 和DE ,如右图所示 则S △ADE =21S ABCD =S △DFC ∴21 AE ﹒DQ = 21 DG ﹒FC 又∵AE=FC,∴DQ=DG,∴PD 为∠APC 的角平分线,∴∠DPA=∠DPC1、2、3、3、4、。

初中数学难题精选(附答案)

初中数学难题精选(附答案)

经典难题(一)如图, 。

是半圆的圆心, C 、E 是圆上的两点, CD ±AB, EF± AB, EGXCO .2、已知:如图, P 是正方形 ABCD 内点,/ PAD =/PDA = 15 0.求证:^PBC 是正三角形.(初二)1、已知: 求证: CD = GF.(初二)A2、B2、C2、D2分别是AA i、BB1、3如图,已知四边形ABCD、A i B i C i D i都是正方形,、CC i、DD i的中点.求证:四边形A2B2c2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD = BC, M、N 分别是AB、CD 的中点,AD、BC 的延长线交MN于E、F.求证:/ DEN =/F.经典难题(二)1、已知:4ABC中,H为垂心(各边高线的交点),O为外心,且OM,BC 于M .(1)求证:AH =2OM ;(2)若/BAC = 60°,求证:AH =AO .(初二)2、设MN 是圆O外一直线,过。

作OA,MN于A,及E,直线EB及CD分别交MN于P、Q.D、AP = AQ .(初二)求证:3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,于P、Q .求证:AP = AQ.(初二)4、如图,分别以△ ABC的AC和BC为一边,在AABCACDE和正方形CBFG , 的外侧作正方形点P是EF的中点.求证:点P到边AB的距离等于AB的一半.经典难题(三)1、如图,四边形ABCD为正方形,DE//AC, AE = AC , AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE //AC,且CE= CA ,直线EC交DA延长线于F.求证:AE = AF.(初二)3、设P 是正方形 ABCD 一边BC 上的任一点,PFLAP, CF 平分/DCE.求证:PA=PF.(初二)经典难题(四)4、 如图,B 、D.PC 切圆O 于C, AC 为圆的直径, 求证:AB = DC, BC = AD.(初三) PEF 为圆的割线,AE 、AF 与直线PO 相交于1、已知:△ ABC是正三角形,P是三角形内一点,PA=3, PB = 4, PC=5.求:/APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且/ PBA = /PDA.求证:/PAB=/PCB.(初二)3、设ABCD为圆内接凸四边形,求证: AB CD + AD BC =AC BD .AE=CF.求证:/DPA=/DPC.(初二)经典难题(五)设P 是边长为1的正4ABC 内任一点,L=PA+PB+PC,4、 平行四边形 ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P,且 B 求证:寸§ <L<2 . A已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且2、4、如图,4ABC 中,/ABC = /ACB= 800,ZEBA = 200,求/BED 的度数.经典难题(一)1 .如下图做 GH^AB,连接EO 。

(完整版)初二数学经典难题(带答案及解析)

(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初中数学经典难题(含答案)

初中数学经典难题(含答案)

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)1、设P 是边长为1的正△ABC 内任一点,l =PA +PB +PC ,求证:3≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.经典难题(一)1、2、3、4、经典难题(二)1、2、4、经典难题(三)1、3、4、1、2、3、4、证明:过D 作DQ ⊥AE ,DG ⊥CF,并连接DF 和DE ,如右图所示 则S △ADE =21S ABCD =S △DFC ∴21 AE ﹒DQ = 21 DG ﹒FC 又∵AE=FC,∴DQ=DG,∴PD 为∠APC 的角平分线,∴∠DPA=∠DPC1、2、3、3、4、。

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)1. 一位农夫要过一条河,他只有一艘小船,船只能支持他和一件物品的重量。

他需要把他自己,一只狼,一只绵羊和一束青菜都安全地运送到对岸。

但是,他不能让狼和绵羊在船上单独相处,因为狼会吃掉绵羊,而他也不能把青菜留在对岸,因为狼会吃掉青菜。

请问,农夫应该如何安全地将这些物品都运送到对岸?答案:农夫的运输过程,可以分为3个阶段:第一次船过去,农夫把绵羊放在岸边,然后把狼和青菜带到对岸。

第二次船会回来,这一次农夫只带绵羊回对岸,留下狼和青菜。

第三次船过去,农夫把青菜放在岸边,把狼带到对岸,然后返回把绵羊也带到对岸。

解析:这是一个相当著名的数学难题,考验玩家的逻辑思维和解决问题的能力。

农夫需要分别带着“绵羊、狼、青菜”三个物品过河,但是船只能支撑一人和一样物品的质量。

如果让“狼”单独和“绵羊”在一起,绵羊就会被吃掉,如果让“青菜”单独和“狼”在一起,青菜就会被吃掉。

怎么办呢?我们需要一步一步来想象这个过程。

首先,农夫需要把狼在非常安全的状态下到对岸。

所以,他需要先把绵羊放在岸边,然后带上狼和青菜一起过河。

这样,在对岸靠岸后,他可以先把青菜放在岸边,回来把狼送过去,并且把青菜留在对岸。

最后再回到原来的岸边,带上绵羊将其送往对岸即可。

这样,农夫就能够安全地将三个物品都运送到了对岸,而他没有违反任何规则。

这个问题是一个“二进制数学问题”,要求玩家发挥他们的逻辑思维和判断能力,找出最好的解决方案。

2. 一支队伍从A地出发向北行走360英里后到达B地,并停留了5天。

然后他们又向北行走280英里,到达C地,他们在C地停留了10天。

然后他们又向北行走400英里,到达D地。

他们在D地停留了15天,然后再向北前进60英里就到达他们的终点E地。

请问他们总共行走的距离以及他们在路途上平均每天行走的距离是多少?答案:他们总共行走的距离是: 1100 英里。

他们在路途上平均每天行走的距离是: 22 英里。

初二数学各类经典难题(含答案)

初二数学各类经典难题(含答案)

简单的极端原理1 钟面上有十二个数1,2,3,…,12.将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n个负号,这个数n是()A、4B、5C、6D、72、学生甲、乙、丙三人竞选学校的学生会主席,选举时收到有效选票1500张,统计其中1000张选票的结果是:甲350张,乙370张,丙280张,则甲在剩下的500张选票中至少再得票,才能保证以得票最多当选该校的学生会主席.3 已知a、b、c为实数.证明:(a+b+c)2、(a+b-c)2、(b+c-a)2、(c+a-b)2这四个代数式的值中至少有一个不小于a2+b2+c2的值,也至少有一个不大于a2+b2+c2的值.4如果a,b,c是正实数且满足abc=1,则代数式(a+1)(b+1)(c+1)的最小值是()A、64B、8 2C、8D、25如图,在矩形ABCD中,AE,AF三等分∠BAD,若BE=2,CF=1,则最接近矩形面积的是()A、13B、14C、15D、166.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2, …按如图所示的方式放置.点A 1,A 2,A 3, …和点C 1,C2,C 3,…分别在直线y=kx+b(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则Bn 的坐标是_________.7(2005•烟台)(1)如图1,以△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连接EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由. (2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米.yxO C1 B2A2C3B1A3B3A1 C8 已知,如图,等边三角形ABC中,AB=4,点P为AB边上的任意一点(点P可以与点A 重合,但不与点B重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,设BP=x,AQ=y.(1)写出y与x之间的函数关系式;(2)当BP的长等于多少时,点P与点Q重合.9(2001•苏州)如图,L甲、L乙分别是甲、乙两弹簧的长ycm与所挂物体质量xkg之间函数关系的图象,设甲弹簧每挂1kg物体伸长的长度为k甲cm,乙弹簧每挂1kg物体伸长的长度为k乙cm,则k甲与k乙的关系是()A、k甲>k乙B、k甲=k乙C、k甲<k乙D、不能确定10 如图,在平面直角坐标系中,直线y=- x + 3 交x轴于A点,交y轴于B点,点C是线段AB 的中点,连接OC,然后将直线OC绕点C顺时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥OC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依次类推,后面的三角形面积分别是S3,S4…,那么S1= ,若S=S1+S2+S3+…+S n,当n无限大时,S的值无限接近于.11 如图,正方形ABCD和正方形CGEF(CG>BC),连接AE,取线段AE的中点M.证明:FM⊥MD,且FM=MD.解答:证明:如图,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN∴DM=NM,AD=EN.∵ABCD和CGEF是正方形,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°,∠5=∠6=90°-∠NEG=∠NEF,DC=AD=NE.又∵∠H=90°,∴∠DCF+∠7=∠5+∠7=90°∴∠DCF=∠5=∠NEF∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NEF.∵∠CFE=90°,∴∠DFN=90°,即△DFN为等腰直角三角形.又DM=MN,∴FM⊥MD,MF=MD.点评:本题考查了正方形各边相等且各内角为直角的性质,考查了全等三角形的判定和对应边、对应角相等的性质,本题中求证△DCF≌△NEF是解题的关键.。

初中数学经典难题(含问题详解)

初中数学经典难题(含问题详解)

经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A PC D B A FG C EBO D D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 BF经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,l =PA +PB +PC ,求证:3≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA=200,求∠BED 的度数.经典难题(一)1、2、3、4、经典难题(二)1、2、3、4、经典难题(三)1、2、3、4、经典难题(四)2、3、4、证明:过D 作DQ ⊥AE ,DG ⊥CF,并连接DF 和DE ,如右图所示 则S △ADE =21S ABCD =S △DFC∴21 AE ﹒DQ = 21 DG ﹒FC 又∵AE=FC,∴DQ=DG,∴PD 为∠APC 的角平分线,∴∠DPA=∠DPC经典难题(五)2、3、3、4、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学八年级各种经典难题例题(含答案)非常经典
1已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( )
A .20
B .120
C .20或120
D .36
1.一个凸多边形的每一个内角都等于150°,则这个凸多边形所有对角线的条数总共有( )
A .42条
B .54条
C .66条
D .78条
3、若直线11y k x =+与24y k x =-的交点在x 轴上,那么k k 等于( )
.4A
.4B - 1.4C 1
.4D -
(竞赛)1 正实数,x y 满足1xy =,那么44
114x y +的最小值为:( )
(A)12
(B)58 (C)1 (D)2
(竞赛)在△ABC 中,若∠A >∠B ,则边长a 与c 的大小关系是( )
A、a>c
B、c>a
C、a>1/2c
D、c>1/2a
16.如图,直线
y=kx+6与x轴y
轴分别交于点
E,F.点E的坐
标为(-8,0),
点A的坐标为
(-6,0).
(1)求k的
值;
(2)若点
P(x,y)
是第二
象限内
的直线
上的一
个动点,
当点P运
动过程
中,试写
出△OPA
的面积S
与x的函
数关系
式,并写
出自变
量x的取
值范围;
(3)探究:当P运动到什么位置时,△OPA
27,并说明理由.
的面积为
8
6、已知,如图,△ABC中,∠BAC=90°,AB=AC,D为AC上一点,且∠BDC=124°,延长BA到点E,使AE=AD,BD的延长线交CE于点F,求∠E 的度数。

7.正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。

①直线y=43x-83
经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;
②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,
③若直线1l 经过点F ⎪⎭
⎫ ⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移3
2个单位交x 轴于点M ,交直线1
l 于点N ,求NMF ∆的面积.
(竞赛奥数)如图,在△ABC中,已知∠C=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC
(1)证明:△C′BD≌△B′DC;
(2)证明:△AC′D≌△DB′A;
9.已知如图,直线33
=-+与x轴相交于点A,
y x
与直线3
y x
=相交于点P.
①求点P的坐标.
②请判断OPA
∆的形状并说明理由.
③动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求:S与t之间的函数关系式.
16
多边形内角和公式等于(n -2)×180
根据题意即(n -2)×180=150n,求得n=12,
多边形的对角线的条数公式等于 n(n-3)/2带入n=12,则这个多边形所有对角线的条数共有54条
因为两直线交点在x轴上,则k1和k2必然不为0,且交点处x=-1/k1=4/k2,
所以k1:k2=-1:4
1/x^4+1/4y^4=(y^4+x^4)/x^4y^4
因为xy=1
所以x^4y^4=1
所以原式=y^4+x^4
因为(x^2-y^2)^2>0
且(x^2-y^2)^2=y^4+x^4-x^2y^2大于或等于0
所以y^4+x^4大于或等于x^2y^2 即1
所以y^4+x^4的最小值为1
竞赛解:在△ABC中,
∵∠A>∠B,
∴a>b,
∵a+b>c,
∴2a>a+b>c,
∴a>12c.
故选C.
1、y=kx+6过点E(-8,0)则
-8K+6=0
K=3/4
2、
因点E(-8,0)
则OE=8
直线解析式Y=3X/4+6
当X=0时,Y=6,则点F(0,6)
因点A(0,6),则A、F重合
OA=6
设点P(X,Y)
则点P对于Y轴的高为|X|
当P在第二象限时,|X|=-X
S=OA×|X|/2=-6X/2=-3X
3、
S=3|X|
当S=278时
278=±3X
X1=278/3,X2=-278/3
Y1=3X1/4+6=3/4×278/3+6=151/2
Y2=3X2/4+6=-3/4×278/3+6=-127/2
点P1(278/3,151/2),P2(-278/3,-127/2)
6
解:在△ABD和△ACE中,
∵AB=AC,∠DAB=∠CAE=90°AD=AE,
∴△ABD≌△ACE(SAS),
∴∠E=∠ADB.
∵∠ADB=180°-∠BDC=180°-124°=56°,
∴∠E=56°.
7
(1)由题意知边长已经告诉,易求四边形的面积;
(2)由第一问求出E点的坐标,设出F点,根据直线l经过点E且将正方形ABCD分成面积相等的两部分,其实是两个直角梯形,根据梯形面积公式,可求出F点坐标,从而解出直线l的解析式.解:(1)由已知条件正方形ABCD 的边长是4,
∴四边形ABCD的面积为:4×4=16;
(2)由第一问知直线y=4/3x-8/3与x轴交于点E,
∴E(2,0),
设F(m,4),
直线l经过点E且将正方形ABCD分成面积相等的两部分,由图知是两个直角梯形,
∴S梯形AEFD=S梯形EBCF= 1/2(DF+AE)•AE= 1/2(FC+EB)
∴m=4,
∵F(4,4),E(2,0),
∴直线l的解析式为:y=2x-4
竞赛奥数
(1) 先证△ABC≌△C1BD:∵AB=C1B, ∠ABC=∠C1BD (因为都是60°+∠ABD), BD=BC。

(SAS)
(得出:∠C1DB=∠C=60°)
再证:△ABC≌△B1DC:∵AC=B1C, ∠C=∠B1CA=60°, BC=DC。

(SAS)
∴△C1BD≌△B1DC
(得出:B1C=C1D)
(2) ∵B1C=C1D,B1C=AB1,∴AB1=C1D
∠C1DB=60°,∠BDC=60°,∴∠ADC1=60°=∠B1AD
AD是公共边
∴△AC1D≌△DB1A (SAS)
(3) S△B1CA > S△ABC1 > S△ABC > S△BCA1
y=-(3^½)x+4*(3^½)与x轴相交于A,即x=4,y=0,则A点坐标为:(4,0) 又与y=(3^½)x相交于P,则联列解得:
x=2,y=2*(3^½)
即P点坐标为:(2,2*(3^½))
|OP|={2²+[2*(3^½)]²}^½=4
|AP|={(2-4)²+[2*(3^½)]²}^½=4
而|OA|=4
所以△OAP为等边三角形。

相关文档
最新文档