正切函数的性质与图像

合集下载

高一数学正切函数的图像和性质(中学课件201911)

高一数学正切函数的图像和性质(中学课件201911)

tan x

f x
∴ y tan x是周期函数, 是它的一个周期.
利用正切线画出函数
y

tan
x
,x




2

2

的图像:
演示
4.10 正切函数的图像和性质
结正合切正函切数函的数性图质像:研究正切函数的性质:定义域、值域、周期性、
奇∴函偶正数性切.①②当当正∵⑤正⑥④和函切切定值任单渐渐xx奇单数函函义域意调小大近近偶调是数数域:性于于线线x性性奇是在::R方::2函.周每2程奇x数期个k2是x函k.函开(:数(kxkk2数区.,,间2k正kZZ周))x切且,k期且曲无k2是无,线(限kk限Z2关接.接于ZZ近k近)原于,,于2点都22有kOtkk对a(nk称时时.,,xZttaa)nn内xx都t a是nx增,
上图像后,再利用周期性把该段图像向左右延伸、平移。
(2) y tan x 性质:
定义域
值 周 奇 单调增区间 域 期偶

对 称 渐近线 中心 方程

x

x

k


2
,k

Z
R

奇 函 数
k



2
,k


2

kZ
k,0
k Z
x k
2 kZ
谢谢大家指导!
∴又∵tan3167
2

3tan1733
45

,函数
2
y

tan
x
,x



3
2

正切函数图象与性质课件.ppt

正切函数图象与性质课件.ppt

x 2k 时, ymax 1 x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
x[2k , 2k ]
偶函数
2
减函数
对称轴: x
2
k
,
k
Z
对称中心: (k , 0) k Z
对称轴: x k , k Z 对称中心:(2 k , 0) k Z
探究
一、你能否根据研究正弦、余弦函数的图 象和性质的经验 以同样的方法研究正切函数 的图像和性质?
函数 图形 定义域 值域 最值
单调性 奇偶性
周期 对称性
y
1
2
0
-1
y=sinx
3
2
2
xR
2 5 x
2
y=cosx
y
1
0
2
3 2
2
5 2
x
-1
xR
y [1,1]
y [1,1]
x
2
2k 时, ymax
1
x
2
2k 时,ymin
1
x[-
2
2k
,
2
2k
]
增函数
x[2
2k ,
3
2
2k
]
减函数
奇函数
2
4
例题分析
例 4 解不等式:tan x 3
解:
y
3
0 x
32
由图可知:x
k
3
,
k
2
(k
Z
)
反馈演练
1、 解不等式 1+tanx 0
2、解不等式:1- tan x 0
3、解不等式:tan(x ) 3

正切函数的性质与图像 -公开课PPT课件

正切函数的性质与图像 -公开课PPT课件

kπ)
,k
Z
内都是增函数。
强调:
a.不能说正切函数在整个定义域内是增函数;
b.正切函数在每个单调区间内都是增函数;
c. 每个单调区间都跨两个象限:四、一或 二、三。
图像特征: 1、间断性:正切曲线是被互相平行的直线 x k , k Z
2
所隔开的无穷多支曲线组成的。
2、在每一个开区间 ( k , k ), k Z 内,图像自左向
23
23
tan[ (x 2) ] f (x 2)
2
3
因此函数的周期为2.

k x k K∈Z 解得
2
2 32
5 2k x 1 2k K∈Z
3
3
因此,函数的单调递增区间是 ( 5 2k, 1 2k), k Z
33
提高练习
求函数
的定义域、值域,并指出它的
有最大值、最小值
O
x
因此,正切函数的值域是
实数集R
问题、如何利用正切线画出函数 的图像?
y tan x
,x
2

2
角 的终边 Y
T3

3
,ta
n3)
A
0
X
3
作图 利用正切线画出函数 y tan x,x , 的图像: 2 2 作法: (1) 等分:把单位圆右半圆分成8等份。
(2) 作正切线 (3) 平移
22 右呈上升趋势,向上与直线 x
k , k Z
无限接近但
永不相交;向下与直线
x
2
k
,k
Z无限接近但永不
2
相交。
将 x k , k Z 称为正切曲线的渐近线。
2

(完整版)正切函数的性质与图像.ppt

(完整版)正切函数的性质与图像.ppt

2
2



近 线




近 线

性质 :
渐近线方程: x k , k Z 2
对称中心
( kπ,0) 2
正切函数有对称轴吗? 无对称轴
问题5: (1)正切函数是整个定义域上的增函数吗?为什么? (2)正切函数会在某一区间内是减函数吗?为什么?
A
B
在每一个开区间
(-π+ kπ,π+ kπ) ,kZ 内都是增函数。
5、周期性
最小正周期是
3
小结:正切函数的图像和性质
1、正切曲线是先利用平移正切线得y tan x, x ( , )的图象, 22
再利用周期性把该段图象向左、右扩展得到。
2 、y tan x 性质:
⑴ 定义域: {x | x k, k Z}
⑵ 值域: R 2 ⑶ 周期性:
⑷ 奇偶性:奇函数,图象关于原点对称。
22 右呈上升趋势,向上与直线 x
k
,k
Z
无限接近但
永不相交;向下与直线
x
2
k , k
Z无限接近但永不
2
相交。
将 x k , k Z 称为正切曲线的渐近线。
2
题型一 求与正切函数有关的函数的定义域
例1.求下列函数的定义域.
(1) y tan(x );
3 (2) y lg tan x 16 x2 .
x 2k 时, ymax 1 x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
x[2k , 2k ]
偶函数
2
减函数
对称轴: x
2
k
,

正切函数的图像和性质 (精致版)

正切函数的图像和性质 (精致版)
奇函数 偶函数
2 对称轴: x k , k Z
2 对称中心: (k ,0) k Z
2
对称轴: x k , k Z 对称中心:( k , 0) k Z
2
探索一 你可以从一个新的角度来研究正 切函数的性质吗?
正弦函数 正切函数
定义+三角函数线
三角函数图象
课后练习

作业:
P45.2、3、4
课后思考

思考1:我们分别从什么角度讨论了正切函数 的性质?这两种讨论方法分别有什么特点? 思考2:你能用同样的方法去讨论正、余弦 函数的性质吗?

想一想? 得到y tan x最小正周期为__ ____
由y tan x最小正周期为
反馈练习:求下列函数的周期:

x (1) y 5 tan 2
2

(2) y tan(4 x ) 3

4
巩固练习 1、比较下列每组数的大小。
13π 11π tan() 与 tan() (2) 4 5
正切函数的对称中心
正 切 函 数 图 像
性质 :
渐 进 线
渐 进 线
⑴ ⑵ ⑶ ⑷
定义域: {x | x k, k Z} 2 值域: R 周期性: 奇偶性: 奇函数,图象关于原点对称。
⑸ 单调性: 在每一个开区间 ( k , k ) , k Z 内都是增函数。 2 2 kZ x k , (7)对称中心 (6)渐近线方程: 2
kπ ( ,0) 2
问题:
(1)正切函数是整个定义域上的增函数吗?为什么?
(2)正切函数会不会在某一区间内是减函数?为什么?
A
B

正切函数的图象及性质

正切函数的图象及性质

11 6

2

2
0
6
3
2
2 3
5 6

● ● ● ● ●
x
3 2
-1
现在利用正切线画出函 数y tan x, x (

y
, )的图象 2 2


1


o1


2


4

0
1

4

2
x

利用正切函数的周期性,把图象向左,右扩展,得到正切函数 y tan x, x R且x k , (k Z )的图象 , 并把它 叫做正切曲线. 2 y
(2) y tan x 性质: 定义域
值 周 奇 域 期 偶 性 奇 R 函 数
单调增区间
对 称 中心
渐近线 方程
x x k ,k Z 2
k, x k 0 k ,k 2 2 2 k Z k Z k Z
2
正切函数的主要性质如下:
定义域 值 域 周期性 奇偶性 单调性
xx

2 k , k Z

实数集
T
奇函数(正切曲线关于原点对称)
在(

k, k),k Z内为增函数 2 2

例1.求函数 y tan x )的定义域 , 周期和单调区间。 ( 4
解:令 z x
y
解:
3 2


2
0
2

3 2
x
(1). x (k

2
, k ), (k Z )

正切函数图像与性质

正切函数图像与性质
2
温故知新
回顾1:我们在学习正弦、余弦函数的图象时学习 过哪些作图方法? 几何描点作图法: 作正弦函数y=sinx的图象 作余弦函数y=cosx的图象 平移变换作图法: 作正弦、余弦函数的简图 五点作图法: 问题1:我们选择哪种方法作正切函数的图象? 几何描点作图法
正切函数的图象和性质 一、引入 如何几何描点法作正弦函数图象呢?
栏目 导引
知识回顾:任意角的正切线
y
T
y
x
o
(1,0)
A
x
正切线AT
o x(1,0) A
T
x
y
y
T
x
x
(1,0)
o
A
T
x
o
(1,0)
A
x
第一章
三角函数
作法如下:
作直角坐标
系,并在直角 坐标系y轴左侧 作单位圆。
y
找横坐标
(把x轴上 2 到 到这一 段分成8等份)
1
2
3 8 4 8

11 tan( ) tan , 4 4 2
2 4
13 2 tan( ) tan 5 5
又y tan x在(
2 tan tan 4 5
11 13 tan( ) tan( ). 4 5

5


2 2 ,
2
)是增函数
k , k , k z 2 2



2
k x

4

2ຫໍສະໝຸດ k , k z 函数y tan(x )的单调递增区间是: k , k , k z 4 4 4

143正切函数的图像和性质

143正切函数的图像和性质

4
2
4
所以原函数的定义域是:
x
|
x
k
4
,
k
z
例题讲解
例2 求函数 y tan( x ) 的定义域、周期和单调区间.
23
解:函数的自变量 x 应满足
即 x 2k 1 ,k Z.
x k , k Z,
23
2
3
所以,函数的定义域是
x
|
x
2k
1 3
,
k
Z
.
由于
f (x) tan( x ) tan( x
22 4 2
2
2
y 3 tan(1 x )的单调递增区间为:
24
(2k 3 , 2k ), k z
2
2
变题(2) y 3tan( x )
ห้องสมุดไป่ตู้24
解:因为原函数可化为: y 3tan( x );
24
令u
x 2
4
;由
k
y tanu的单调性知
u k ,k Z
:
2
2
由u 1 x 得 : 24
)
3tan(2x ) 4
4
3tan[2(x ) ]
f (x ) 2 4
(2)变题y 3 tan(1 x );
24
解 : f (x) 3tan(1 x )
3 tan(1
x
2
4
)
24
3tan[1 (x 2 ) ]
2
4
2 周期T
2
f (x 2 ) 周期T 2
k 1 x k 2k x 2k 3
22 4 2
2
2
y 3 tan( 1 x )的单调递减区间为:

三角函数正切函数的性质与图像

三角函数正切函数的性质与图像

正切函数的图像向右平移π个单位,可以得 到余弦函数的图像。
左右翻转
正切函数的图像关于$y$轴对称,即$tan( - x) = tan(x)$。 正切函数的图像向左翻转后,可以得到正切函数的图像。
03
正切函数的图像绘制
利用Python绘制正切函数图像
导入matplotlib库
定义正切函数
首先需要导入matplotlib库,该库是 Python中用于绘图的常用库之一。
使用xlabel和ylabel参数可以添加x轴和y轴的标签,例如x轴 标签为“$x$”,y轴标签为“$y$”。
显示网格线
使用grid参数可以显示网格线,以便更好地观察图像的细节 。
04
三角函数的实际应用
物理中的三角函数
简谐振动
简谐振动的位移与时间的关系可以表示为正弦或余弦函数,利用三角函数性 质可以更深入地理解简谐振动的特征。
正切函数的对称性
正切函数图像无对称轴,但在$x = \frac{\pi}{2} + k\pi$ 处,函数图像呈现对称性。
正切函数的奇偶性
$tan( - x) = - tan(x)$,因此正切函数为奇函数。
正切函数的应用
正切函数在解直角三角形、求三角形的面积、研究三角恒 等式等方面具有广泛应用。
对未来研究正切函数的展望
三角函数正切函数的性质与图像
xx年xx月xx日
contents
目录
• 正切函数概述 • 正切函数的性质 • 正切函数的图像绘制 • 三角函数的实际应用 • 总结与展望
01
正切函数概述
正切函数的定义
正切函数:tan(x) = sin(x) / cos(x) 值域:(-∞,∞)
定义域:{x | x ≠ π/2 + kπ,k ∈ Z} 周期:π

正切函数的图像和性质

正切函数的图像和性质

是增函数, 3 3 11 13 ∴ tan tan 即 tan tan . 4 5 4 5
4.10 正切函数的图像和性质
练习:
(1)直线 y a( a 为常数)与正切曲线 y tanx ( 为常数
4.10 正切函数的图像和性质
4.10 正切函数的图像和性质
回忆:怎样利用单位圆中的正弦线作出 y sin x图像的. 用正切线作正切函数图像: 正切函数 y tan x是否为周期函数?
sin x sin x f x tan x tan x f x cos x cos x
C.充要条件
4.10 正切函数ቤተ መጻሕፍቲ ባይዱ图像和性质
小结:
(1)y tan x 的作图是利用平移正切线得到的,当我们获得 , 上图像后,再利用周期性把该段图像向左右延伸、平移。 2 2
(2) y tan x 性质: 定义域 值 周 奇 单调增区间 域 期 偶 性 对 称 中心 渐近线 方程
所以函数 y tan x 的定义域是 x x k,k Z 4 4
4.10 正切函数的图像和性质
例2.不通过求值,比较下列各组中两个正切函数值的大小:
13 11 tan 与 tan . tan 167 与 tan 173 ;(2) ( 1) 5 4 3 11 解:( 1 )∵ tan 90 173 180 167 (2)∵ tan 4 4 13 90 3 x , 上是增函数 又 ∵ y tan ,在 270 tan tan 5 5 tan 167 tan 173 3 3 3 ∴ 3 y tan x 又∵ ,函数 ,x , 2 4 5 2 2 2

课件6:7.3.4 正切函数的图像与性质

课件6:7.3.4 正切函数的图像与性质
kπ,k∈Z
题型探究 探究一 正切函数的定义域、值域问题 例1.函数y=tan(cos x)的定义域为__R__,值域为 _[_-__ta_n_1_,__t_a_n_1_]_. 【解析】因为-1≤cos x≤1, ∴tan(-1)≤tan(cos x)≤tan 1, ∴-tan 1≤tan(cos x)≤tan 1. 所以定义域为R,值域为[-tan 1,tan 1].
知识点二 正切函数的图像与性质
解析式
y=tan x
图像
定义域 值域
x x≠π2+kπ,k∈Z
__R__
最小正周 期
奇偶性
单调性
对称性 零点
__π_
__奇__函__数__ 在每一个开区间 -π2+kπ,π2+kπ( k∈Z) 上都是单调递增 对称中心___k_2π_,__0_(_k∈__Z_)__
由图像可知,函数的主要性质为: ①定义域:x|x∈R,x≠2π+kπ,k∈Z; ②值域:[0,+∞); ③周期性:T=π; ④奇偶性:非奇非偶函数; ⑤单调性:单调增区间为[kπ,kπ+2π),k∈Z.
Байду номын сангаас
反思感悟 解答正切函数图像与性质问题应注意的两点 (1)对称性:正切函数图像的对称中心是k2π,0(k∈Z),不 存在对称轴. (2)单调性:正切函数在每一个开区间(-π2+kπ,π2+kπ) (k∈Z)上都是单调递增的,但不能说其在定义域上是递增
跟踪训练 2.求函数 y=3tan(π4-2x)的单调区间. 解:法一:令 z=4π-2x,则 y=3tan(4π-2x)=3tan z.
由于函数 y=3tan z 在(-2π+kπ,π2+kπ)(k∈Z)上是增函数,
且 z=4π-2x 是减函数,

高二数学正切函数的图像和性质

高二数学正切函数的图像和性质

4
5

tan

4


tan
2
5
,即
tan

13
4


tan

17 5


练习 不查表比较大小:
(1) tan167 与tan173 (2) tan 470 与 tan 822
例题2
x


4

的性质;
练习 讨论函数 y tan 2x 的性质;
§1.4.3 正切函数的图象和性质 (一)
1、利用正切函数的定义,说出正切函数的定义域;
tan y x 0 的终边不在y轴上


x
k


k

z

2
2、利用周期函数的定义及诱导公式,推导正切函数 的最小正周期;
tan( x) tan x 是y tan x的周期;
1、画出正切函数在一个周期



2

2

内的图象
y

0

x
2
2
§1.4.3 正切函数的性质和图象
1.正切函数
的性质:
y y tan x
定义域:
值域:
周期性: 正切函数是周期函数,
周期是
2
奇偶性: 奇函数 tan(-x)=-tanx


2
o 2
x 2
单调性: 在 内是增函数
对称性: 对称中心是
对称轴呢?
;宜宾装修公司/ 宜宾装修公司

全家人都知道这个说法,在姐姐的心灵深处,樟木箱子早已深深地扎下了根。 光阴似箭,姐姐真的到了谈婚论嫁的时候了

正切函数的图像和性质

正切函数的图像和性质
4.10 正切函数的图像和性质
4.10 正切函数的图像和性质
回忆:怎样利用单位圆中的正弦线作出 y sin x图像的. 用正切线作正切函数图像: 正切函数 y tan x是否为周期函数?
sin x sin x f x tan x tan x f x cos x cos x
是它的一个周期. ∴ y tan x 是周期函数,
y tan x x 利用正切线画出函数 , 正切函数的图像和性质
结合正切函数图像研究正切函数的性质:定义域、值域、周期性、 正切函数的性质: 奇偶性和单调性. ⑤单调性 : R 奇函数.正切曲线关于原点 ②值域: ⑥渐近线: O 对称. ④奇偶性: x x k , k Z ①定义域: 2 tan x x k, k k (k Z ) 内都是增 k(x k Z x 小于 正切函数在每个开区间 当 )且无限接近于 时, k 渐近线方程是: , k Z 正切函数是周期函数,周期是 . 2 Z ),都有 2 2 tan ( k x tan x , k, k ∵任意 x 2 2 2 2 tan x 当 x 大于 k(k Z)且无限接近于 k 时, 函数. 2 2 ∴正切函数是奇函数.
且 0 )相交的相邻两点间的距离是( C ) 2 B A. D.与 a 值有关 C . tan x 0是的 x 0 D ) ( 2) (. A.充分不必要条件 B.必要不充分条件
D.既不充分也不必要条件 (3)根据三角函数的图像写出下列不等式成立的角 x 集合 3 tan x 1 ① ② 1 tan x 0 3 x k x k , k Z x k x k , k Z 6 4 4 2

5.4.3正切函数的性质与图象课件2024-2025学年人教A版必修第一册

5.4.3正切函数的性质与图象课件2024-2025学年人教A版必修第一册
y 函数y tan x ,


x 0, 的图象, 如图所示 .
2
2

3
a`

6
a`
0
6
11
6

3

2
2
3
5
6

7 4
6 3
3 5
2 3
11 2
6
x


由此可见, 当x 0, 时 , 线段AT的长度就是相应角x的正切值 . 我们
2
可以利用线段AT画出函数y tan x ,



探究:如何画出函数y tan x , x 0, 的图象 ?
2
描点法初步探究图像
y tan x
x
0
tan x
0




6
4
3
2
3
3
1
如何描出坐标为无理数的点?
如何精确取值?
最基本的方法”回到定义”

2
3


如图, 设x 0, , 在直角坐标系中画出角x的终边与单位圆的交点
"两线"
直线x


2

1
4
o

4
"三点"

( ,1)
4
(

4
1
,1)
(0,0)
x
4、例题分析
解:(1)定义域:
(2)周期:
T


6
(3)单调区间:
6
k
k
由2x- =
,k Z得对称中心(

正切函数的性质与图象

正切函数的性质与图象

f ( x ) tan( x ) tan( x ) tan[ ( x 2) ] f ( x 2) 2 3 2 3 2 3
因此函数的周期为2.带入正切的单调区间可解得函 数得单调区间
5 1 ( 2k , 2k ), k Z 3 3
(1)1 tan x 0;
y 3

(2) tan x 3 0;

4

3
y 1
小结
正切函数的周期性,奇偶
性,单调性,值域.
作业
课本45页练习
4、值域
正切函数的值域是实数 R. 集
举例
π π 例1 求函数y tan ( x )的定义域, 周 2 3 期和单调区间.
解:
x k 2 3 2

所以函数的定义域是 由于
1 { x | x 2k , k Z }. 3
1 x 2k , k Z 3
y A sin( x ), x R.( A 0, 0) y A cos(x ), x R.( A 0, 0)
y A tan( x ).( A 0, 0)
T
2
T
例2 求使下列不等式成立的 的集合: x
§ 1.4.3 正切函数的 性质与图象
引入
正切函数:
y tan x , x k , k Z 2
新课
正切函数图像:
FLASH
1、周期性
正切函数是周期函数, 周期是π.
2、奇偶性
正切函数是奇函数.
3、单调性
π π 在每一个开区间 , kπ ), k Z上都是增函数 (kπ . 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例4、若x
π 3
,
π 4
,求函数
y 1 2tan x 1的最值及相应的x的值. cos2x
解: y cos2 x sin2 x 2 tan x 1 tan2 x 2 tan x 2
cos2 x
令t tan x,
x
3
,
4
t
3,1
y t 2 2t 2 (t 1)2 1
(5)y tan x偶函数, T 源自利用正切线画出函数在2
,
2
的图象
y
2
34
6
x
O1
O
6
4
3
2
正切函数的性质: 对称中心是 (k ,0), k Z
2
定义域:x
x
2
k
,k
Z
值域: R
周期性:T
奇偶性:奇函数
单调性:在开区间
2
k
,
2
k
k
Z内递增
在每一个开区间内都是单调增函数.能不能说
四、小结与作业 :
(1)定义域: { x | x k , k Z }
2
(2)周期T π
(3) f ( x) tan x, x R 为奇函数
(4) 单调性:增区间:
2
k
, 2
k
kZ
拓展思考 :
1、试讨论函数 y loga tan x的单调性 2、在区间 3π , 3π 范围内,求函数y tan x
正切函数在整个定义域上单调递增?
三、例题讲解
例2、求函数y tan π x π 的定义域、 2 3
周期和单调区间.
理清: (1)换元法
y
tan
2
x
3
(2)周期T π ω
(3)复合函数的单调性
例3、比较tan 13 π与tan 17 π的大小.
4
5
析: 利用y tan x在( π , π )上是增函数。 22
1.4.3 正切函数的性质与图像
一、回顾
请问:学习正弦函数、余弦函数之后 你积累了那些经验?
单位圆技法 诱导公式、函数性质
平移正弦线、余弦线 五点法
画函数图象
描点法
二、正切函数的性质
1、周期性 tan( x π)
T π
tan x,
x
R,
x
π
kπ, k
Z
2
y Atan(x ) T
y tan x T π
2、奇偶性 tan( x) tan x, x R, x π kπ, k Z
2 正切函数是奇函数
例1、判断下列函数的奇偶性并求周期:
(1) y tan 3x (2) y tan2x
奇函数,T
3
.
(3) y tan x
2
奇函数,T
2
.
(4) y tan x
3
奇函数,T 2. 奇函数,T 3
2 2 与y sin x的图象的交点的个数.
1、分0 a 1,和a 1讨论. 2、交点个数为3.
相关文档
最新文档