高中生物孟德尔遗传规律相关知识总结
高中生物遗传规律大全全解
高中生物遗传规律大全全解1. 孟德尔遗传规律(Mendel's Laws)孟德尔是遗传学的奠基人之一,他提出了三个遗传规律,分别是:- 第一规律:同种纯合子的杂交后代表现出优势性状,隐藏性状在F1代中不表现,但在F2代中以3:1的比例表现。
- 第二规律:两对不同性状的分离组合,可以自由地遗传给子代,不受其他性状的影响。
- 第三规律:同一性状的两对等位基因,在杂合子杂交后代中以1:2:1的比例分离。
2. 染色体遗传规律(Chromosome Theory of Inheritance)染色体遗传规律是指遗传物质存在于染色体上,遗传信息通过染色体的分离和重组进行遗传。
主要包括:- 随体遗传:部分基因位于染色体的非同源染色体上,遗传到子代的方式称为随体遗传。
- 性连锁遗传:性染色体上的基因遗传到子代,并且具有性别相关的特征表现。
3. 多基因遗传规律(Polygenic Inheritance)多基因遗传是指一个性状受到多个基因的共同影响,没有明显的显隐性关系。
主要特点包括:- 某个性状在种群中呈连续变化,呈现出正态分布曲线。
- 受影响的性状受到环境因素的影响较大。
4. 基因突变遗传规律(Genetic Mutation)基因突变是指基因序列发生突变或缺失,导致遗传信息发生改变。
主要包括以下几种:- 点突变:基因序列中的单个碱基发生改变,导致基因功能的改变。
- 缺失突变:基因序列中的一段或多段碱基缺失,导致基因信息的丧失。
- 插入突变:外来的DNA序列插入到基因序列中,导致基因功能的改变。
- 重组突变:基因序列的两部分发生重组,导致基因信息的改变。
5. 基因表达调控规律(Gene Expression Regulation)基因表达调控是指基因在转录和翻译过程中受到内外部环境的调控,从而决定基因功能的表达。
主要包括:- 转录水平调控:转录因子的结合和空间调节使得转录起始复合物的形成,进而控制基因的转录活性。
高中生物孟德尔知识点总结
高中生物孟德尔知识点总结
嘿呀!今天咱们来好好唠唠高中生物里孟德尔的那些知识点!
首先呢,咱们得知道孟德尔到底是何方神圣呀?哇,他可是遗传学的大功臣呢!
孟德尔的实验那可是相当重要哇!他通过豌豆杂交实验,发现了遗传的规律。
其一,分离定律!哎呀呀,这可不得了。
简单来说,就是在形成配子时,等位基因会相互分离。
比如说,高茎豌豆和矮茎豌豆杂交,F1 代都是高茎,但是F2 代就出现了高茎和矮茎,这就是分离定律在起作用呀!你说神奇不神奇?
其二,自由组合定律!哇哦!不同对的基因在形成配子时自由组合。
就像同时考虑豌豆的高茎矮茎和圆粒皱粒,它们的组合可不是随便乱来的,而是有规律可循的呢!
孟德尔的实验为啥这么成功呢?哎呀,这得归功于他精心选择的豌豆呀!豌豆有好多优点呢,比如自花传粉、闭花授粉,这保证了它的纯种性。
而且豌豆的性状明显,容易观察和区分,多棒呀!
还有还有,孟德尔的研究方法也超厉害的!他先进行了大量的杂交实验,然后仔细观察、记录数据,再进行分析和推理。
这一步步走来,那叫一个严谨!
在学习孟德尔知识点的时候,咱们可得多做些练习题来巩固呀!这样才能真正掌握这些知识呢!
总之,孟德尔的这些知识点在高中生物里那是相当重要的呀!咱
们一定要好好学,弄明白其中的道理,为以后的学习打下坚实的基础!你说是不是呀?。
高三生物知识点孟德尔遗传定律与复习方法
高三生物知识点孟德尔遗传定律与复习方法孟德尔遗传定律是指奥地利的著名植物学家孟德尔在19世纪中叶通过对豌豆进行大量的杂交实验得出的一系列遗传规律。
这些规律成为了现代遗传学的基石,对人类理解生物遗传的方式产生了重要影响。
孟德尔的遗传定律主要包括三个方面:1. 第一定律:同代剖分定律或隔代表型定律。
孟德尔通过杂交实验发现,自交纯合的亲本杂交后,子代在性状表现上与其中一个亲本相同,表现出纯合的特征。
这个定律表明在基因层面上,个体包含两个基因副本,其中一个来自父本,另一个来自母本。
2. 第二定律:分离定律或各位点独立性定律。
孟德尔进一步发现,在自交杂交子代中,纯合性状会重新组合,以出现随机的新组合。
这个定律说明了基因以及基因型在个体之间是独立传递的。
3. 第三定律:互补定律。
孟德尔的实验还揭示了有些性状之间具有相互配对的关系。
如果存在两个互补性状,亲本中缺少其中一个性状的基因时,该性状将不会表现。
在复习孟德尔遗传定律的时候,有一些方法可以帮助我们更好地理解和记忆这些概念:1. 注意理解遗传定律的背后的原理。
遗传定律并不仅仅是一些发现,更是基因传递和表现的规则。
尽量形成连贯的逻辑思路,理解其中的原理和机制。
2. 制作图表和图解。
将孟德尔的实验过程和结果画成图表,可以帮助我们更直观地理解遗传定律。
同时,也可以制作各种图解,将概念、规律以及关系用图像的形式表示出来,有助于记忆和理解。
3. 运用实际例子。
将孟德尔的定律与实际的生物现象相结合,可以更好地理解和记忆。
举一些常见的遗传性状例子,如眼睛颜色、血型等,将遗传定律应用在实际中。
4. 多做练习题。
通过做一些基因和遗传方面的练习题,可以加深对遗传定律的理解,并培养运用这些定律解决问题的能力。
5. 结合实验进行探究。
可以自己进行一些简单的实验,观察和分析结果,根据孟德尔的遗传定律进行预测和验证,加深对遗传定律的理解。
复习孟德尔遗传定律是高中生物考试中的一个重要部分,通过理解和掌握这些定律,我们可以更深入地理解生物的遗传规律,为后续的遗传学知识打下坚实基础。
孟德尔遗传定律知识点
孟德尔遗传定律知识点1. 引言孟德尔遗传定律是由奥地利僧侣格里高利·孟德尔(Gregor Mendel)在19世纪提出的,是遗传学的基本原理。
孟德尔通过对豌豆植物的研究,发现了遗传的基本规律,即现在所称的孟德尔第一定律(分离定律)和孟德尔第二定律(独立分配定律)。
2. 孟德尔第一定律:分离定律分离定律又称为等位基因分离定律,它描述了在有性生殖过程中,一个生物体的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
这意味着,如果一个特征由一对等位基因控制,那么在生殖细胞中,这两个等位基因将会分离,每个配子只传递一个等位基因给后代。
3. 孟德尔第二定律:独立分配定律独立分配定律指出,两个或多个特征的遗传是相互独立的,即一个特征的遗传不影响其他特征的遗传。
这意味着不同特征的等位基因在形成配子时是随机组合的。
然而,这一定律不适用于连锁基因,即位于同一染色体上的基因,它们的遗传是相互关联的。
4. 显性和隐性孟德尔的实验还揭示了基因的显性和隐性特征。
显性等位基因在表型中表现出来,即使只有一个显性等位基因存在。
隐性等位基因只有在两个隐性等位基因同时存在时才会表现出来。
5. 等位基因和表型等位基因是控制同一特征的不同版本的基因。
表型是指生物体的一组可观察特征,结果来自于基因型和环境因素的交互作用。
基因型是指生物体的基因组成,包括所有的基因和等位基因。
6. 杂交和测交杂交是指两个不同基因型的个体交配,产生后代的过程。
测交是一种特殊的杂交实验,其中一个亲本是纯合子,另一个亲本是杂合子,用于确定某个特征的遗传模式。
7. 孟德尔实验的现代解释现代遗传学通过DNA的结构和功能,对孟德尔的发现进行了解释。
DNA分子中的特定序列(基因)决定了生物体的特征。
孟德尔的遗传定律现在被理解为描述了基因如何在细胞分裂和有性生殖过程中传递。
8. 孟德尔遗传定律的应用孟德尔遗传定律在现代生物学中有着广泛的应用,包括作物育种、遗传咨询、医学研究和基因治疗等领域。
孟德尔遗传定律总结
所以后代的基因型有六种,比例为(2?1)*(1?2?1)=1?1?2?2?2?4;有四种表现型,比例为(2?1)*(3?1)=6?3?2?1。
5、乘积的逆向利用
在看到2?2?1?1的情况下,应该能够立即想到这里是由一个1?1和一个2?1相乘得到的,亲本很可能是AaBb与Aabb杂交,同时AA类型致死的情况。同样,看到1?1?1?1,应该能够立即想到这里是由两个1?1相乘得到的,亲本很可能是AaBb与aabb杂交、Aabb与aaBb杂交。
如上图产生的配子就有八种可能性,产生八种可能性的理论根据就是如图尚不细胞种存在六条、三对同源染色体,非同源染色体在减数分裂时自由组合。
二、遗传定律中的数学知识应用
多对同源染色体上的非等位基因之间在减数分裂时无任何关系,属于数学上描述的无关事件,无关事件同时发生的概率是各自概率的乘积。
高中阶段《课程标准》中只要求学生掌握遗传学三大定律中的两个——分离定律和自由组合定律。对于连锁和交换有涉及,但是没有提出“连锁和交换定律”的概念,要求也不高。而遗传定律的教学也是高中生物中难得用到数学知识,体现其理科属性的章节,既然如此,在利用遗传定律解决问题时,在理解遗传定律实质的基础上灵活使用数学知识是成功解决问题的关键。
所以AaBb个体自交后代有2*2=4种表现型,比例为(3?1)*(3?1)=9?3?3?1。
4、有基因型致死时一样适用乘积
依旧以两对同源染色体上的两对不同的等位基因来看,AaBb基因型的个体自交,若AA个体致死后代的表现型如何分析呢?Aa自交,在AA致死的情况下,后代有两种基因型分别为Aa、aa,比例为2?1;有两种表现型,比例为1?1。Bb自交,后代同样三种有基因型分别为BB、Bb、bb,比例为1?2?1,有两种表现型比例为3?1。
孟德尔遗传定律知识点
孟德尔遗传定律知识点高考生物遗传定律知识点整理一、基本概念1.交配类:自交、杂交、测交、正交、反交、自花或异花传粉、闭花受粉杂交:指基因型不同的生物个体间的相互交配,一般用×表示。
自交:指基因型相同的生物个体间的相互交配,一般用X表示。
自交是获得纯种系的有效方法,也是鉴别纯合子与杂合子的常用方法之一,尤其是植物。
自由交配:群体中的个体随机地进行交配,包含自交和杂交。
测交:让需要确定基因型的个体与隐性个体交配。
用于遗传规律理论假设的验证实验,也用于纯合子与杂合子的鉴定。
特别提醒:自交和测交都可用来鉴别一个个体是否是纯合子,自交较简便,测交较科学。
正交与反交:正交与反交是相对而言的,正交中的父本与母本恰好是反交中的母本和父本。
常用来检验某一性状的遗传是细胞核遗传还是细胞质遗传,是常染色体遗传还是伴X染色体遗传。
自花传粉:两性花的花粉,落到同一朵花的雌蕊柱头上的过程,交配方式为自交。
异花传粉:指不同花朵之间的传粉过程,分同株自花传粉(属自交)和异株异花传粉(属杂交)。
闭花受粉:某些植物在花未开时已经完成了受粉,这样的受粉方式为闭花受粉。
2.性状类:性状、相对性状、完全显性、不完全显性、共显性、显性性状、隐性性状、性状分离性状是生物体所表现的形态特征和生理特性。
如豌豆的一些性状:种子形状、子叶颜色、茎的高度、种皮的颜色(有些种皮颜色为子叶透过种皮的表现)。
相对性状是指同种生物的同一种性状的不同表现类型。
如豌豆的高茎与矮茎,狗的直毛与卷毛。
完全显性:指具有一对相对性状的两个纯合亲本杂交,F1的全部个体,都表现出显性性状,并且在表现程度上和显性亲本完全一样,如豌豆的高茎与矮茎。
不完全显性:指在生物性状的遗传中,F1的性状表现介于显性和隐性的亲本之间,如紫茉莉花色。
共显性:指在生物性状的遗传中,两个亲本的性状,同时在F1的个体上显现出来,而不是只单一的表现出中间性状,如马的毛色中混毛马、ABO血型中的AB型。
高中生物-孟德尔遗传定律
高中生物-孟德尔遗传定律本文介绍了基因的自由组合定律及其实验验证方法。
孟德尔的实验表明,基因控制着相对性状,纯种只产生一种配子,自交后代基因型和表现型遵循特定比例。
测交实验证实了基因的自由组合定律,即同源染色体上等位基因的分离与非同源染色体上非等位基因的自由组合同时进行,且互不干扰。
基因工程不等同于基因自由组合,基因自由组合会导致后代产生变异,属于基因重组类型。
多对等位基因的遗传遵循自由组合定律,配子数、自交后代基因型数和表现型数可根据规律计算。
解题方法包括棋盘法和分枝法等。
2.逆推型题目是通过观察子代的表现型和基因型,推导出亲代的基因型和表现型。
首先需要使用待定基因法,将已知的基因型表示出来,未知的用“___”代替。
如果涉及多对基因,最好对每对基因(相对性状)分别考虑。
例如,香豌豆中,当A、B两个显性基因都存在时,花为红色。
一株红花香豌豆与基因型为aaBb的植株杂交(独立遗传),子代中3/8开红花。
如果让这株红花亲本自交,红花中纯合子占()。
A.1/2B.3/8C.1/9D.1/4例2是关于基因组合定律遗传的题目,具有两对相对性状的纯合体杂交F2中出现的性状重组类型的个体占总数的()。
A.3/8B.3/8或5/8C.5/8D.1/16例3是关于豌豆基因型的题目,基因型为ddEeFF和DdEeFF的两种豌豆杂交,在3对等位基因各自独立遗传的条件下,其子代表现型不同于2个亲本的个体占全部子代的()。
A.1/4B.3/8C.5/8D.3/4例4是关于人类遗传病的题目,多指是一种显性遗传病,白化病是一种隐性遗传病,两种疾病的等位基因都在常染色体上,且都是独立遗传的。
在一个家庭中,父亲是多指,母亲正常,他们有一个患白化病但手指正常的孩子,则下一个孩子正常或同时患有这两种疾病的概率分别是()。
A.3/4,1/4B.3/8,1/8C.1/4,1/4D.1/4,1/8例5是关于玉米遗传的题目,玉米间作与单作相比,可以明显提升产量,易染病抗倒伏玉米甲(aaBB)与抗病倒伏玉米乙(AAbb)间作,甲株所结玉米胚、胚乳基因型分别是()。
高中生物必修二《遗传与进化》知识点汇总
高中生物必修二《遗传与进化》知识点汇总第一章遗传因子的发现第1、2节孟德尔的豌豆杂交实验一、基本概念:(1)性状——是生物体形态、结构、生理和生化等各方面的特征。
(2)相对性状——同种生物的同一性状的不同表现类型。
(3)在具有相对性状的亲本的杂交实验中,杂种一代(F1)表现出来的性状是显性性状,未表现出来的是隐性性状。
(4)性状分离是指在杂种后代中,同时显现出显性性状和隐性性状的现象。
(5)杂交——具有不同基因型的亲本之间的交配或传粉(6)自交——具有相同基因型的个体之间的交配或传粉(自花传粉是其中的一种)(7)测交——用隐性性状(纯合体)的个体与未知基因型的个体进行交配或传粉,来测定该未知个体能产生的配子类型和比例(基因型)的一种杂交方式。
(8)表现型——生物个体表现出来的性状。
(9)基因型——与表现型有关的基因组成。
(10)等位基因——位于一对同源染色体的相同位置,控制相对性状的基因。
非等位基因——包括非同源染色体上的基因及同源染色体的不同位置的基因。
(11)基因——具有遗传效应的DNA片段,在染色体上呈线性排列。
二、孟德尔实验成功的原因:(1)正确选用实验材料:㈠豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种㈡具有易于区分的性状(2)由一对相对性状到多对相对性状的研究(3)分析方法:统计学方法对结果进行分析(4)实验程序:假说-演绎法观察分析——提出假说——演绎推理——实验验证三、孟德尔豌豆杂交实验(一)一对相对性状的杂交:基因分离定律P:高茎豌豆×矮茎豌豆P:AA×aa↓杂交↓杂交F1:高茎豌豆F1:Aa↓自交↓自交F2:高茎豌豆矮茎豌豆F2:AA Aa aa3 :1 1 :2 :1孟德尔用纯种黄色圆粒豌豆和纯种绿色皱粒豌豆作亲本杂交,无论正交还是反交,结出的种子(F1)都是黄色圆粒。
这表明黄色和圆粒是显性性状,绿色和皱粒是隐性性状。
1.对分离现象的解释:(1)生物的性状是由遗传因子决定的,其中决定显性性状的为显性遗传因子,用大写字母表示,决定隐性性状的为隐性遗传因子,用小写字母表示。
重点高中生物孟德尔遗传规律相关知识总结归纳
精心整理高中生物孟德尔遗传定律相关知识总结一、基本概念1.交配类:1)杂交:基因型不同的个体间相互交配的过程2)自交:植物体中自花授粉和雌雄异花的同株授粉。
自交是获得纯合子的有效方法。
3)测交:就是让杂种F1与隐性纯合子相交,来测F1的基因型2.性状类:1)性状:生物体的形态结构特征和生理特性的总称23453.基因类1)显性基因:控制显性性状的基因2)隐性基因:控制隐性性状的基因34.个体类123)表现型=基因型(内因)4AAaa5Aa1、Aa(显性性状)、aa(隐性性状)AA→AA(显性性状)2.测交法:如果后代既有显性性状出现,又有隐性性状出现,则被鉴定的个体为杂合子;若后代只有显性性状,则被鉴定的个体为纯合子。
例如:Aa×aa→Aa(显性性状)、aa(隐性性状)AA×aa→Aa(显性性状)鉴定某生物个体是纯合子还是杂合子,当被测个体为动物时,常采用测交法;当被测个体为植物时,测交法、自交法均可以,但是对于自花传粉的植物自交法较简便。
例如:豌豆、小麦、水稻。
五、分离定律1.实质:在杂合子的细胞中,位于一对同源染色体上的等位基因具有一定的独立性;在减数分裂形成配子的过程中,等位基因也随着同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
2.适用范围:一对相对性状的遗传;细胞核内染色体上的基因;进行有性生殖的真核生物。
3.分离定律的解题思路如下(设等位基因为A、a)判显隐→搭架子→定基因→求概率(1)判显隐(判断相对性状中的显隐性)①具有相对性状的纯合体亲本杂交,子一代杂合体显现的亲本的性状为显性性状。
②据“杂合体自交后代出现性状分离”。
新出现的性状为隐性性状。
③在未知显/隐性关系的情况下,任何亲子代表现型相同的杂交都无法判断显/隐性。
(2(3AB(4)求概率①概率计算中的加法原理和乘法原理②计算方法:用分离比直接计算;用配子的概率计算;棋盘法。
六、自由组合定律1.实质:两对(或两对以上)等位基因分别位于两对(或两对以上)同源染色体上;位于非同源染色体上的非等位基因的分离或组合是互不干扰的;F1减数分裂形成配子时,同源染色体上的等位基因分离,非同源染色体上的非等位基因自由组合。
高中生物知识点总结必修2
高中生物知识点总结必修2一、遗传因子的发现1. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,发现了遗传的基本规律,即分离定律和自由组合定律。
- 分离定律:在有性生殖过程中,一个生物体的每个性状都由一对遗传因子控制,这对遗传因子在形成生殖细胞时分离,各自进入不同的生殖细胞中。
- 自由组合定律:不同性状的遗传因子在形成生殖细胞时,其分离和组合是相互独立的。
2. 遗传因子的分离与组合- 遗传因子的分离是指在减数分裂过程中,同源染色体上的等位基因分离到不同的配子中。
- 遗传因子的组合是指在受精过程中,来自父母的遗传因子重新组合,形成新的遗传组合。
二、基因的本质与表达1. 基因的概念- 基因是遗传信息的基本单位,是控制生物性状的DNA片段。
- 基因携带着编码生物体特征的信息,通过遗传方式传递给后代。
2. DNA的结构与复制- DNA是双螺旋结构,由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞氨酸)组成。
- DNA的复制是一个半保留性复制过程,每个新的DNA分子包含一个原始链和一个新合成的链。
3. RNA的转录与翻译- RNA转录是以DNA的一条链为模板,合成相应的RNA分子的过程。
- 翻译是RNA分子上的遗传密码被核糖体识别,并指导氨基酸的组装成蛋白质的过程。
三、基因的变异与修复1. 基因突变- 基因突变是指基因序列发生改变的现象,包括点突变、插入突变和缺失突变等。
- 基因突变可能导致生物性状的改变,有的突变可能对生物体有益,有的可能有害。
2. DNA修复机制- 生物体内存在多种DNA修复机制,如错配修复、基础切除修复和核苷酸切除修复等。
- 这些机制能够修复DNA损伤,维持基因组的稳定性。
四、生物的进化1. 物种的概念- 物种是生物分类的基本单位,由能够繁殖并产生育性后代的生物个体组成。
2. 进化论- 达尔文的自然选择理论是解释生物进化的主要理论,即适者生存、优胜劣汰。
- 生物进化是一个长期的、缓慢的、连续的过程。
孟德尔遗传定律 复习总结课件-高中生物复习课件
一对相对性状的杂交实验
9.F2出现3:1的性状分离比需要的条件
(1)F 1个体形成两种配子数目相等且生活能力相同; (2)雌雄配子结合的机会均等; (3)F2不同遗传因子组成的个体存活率相等; (4)遗传因子显隐性关系为完全显性 (5)观察的子代样本数目足够多。 符合基因分离定律并不一定出现预期性状分离比(完全显性)。原因如下:
实验现象 提出问题
1.假说核心:F1在产生配子时, 每对遗传因子彼此分离,不同
F2表现型比例 9:3:3:1
测交
预期结论 实验结果
1:1:1:1
1:1:1:1
提出假说 解释现象
演绎推理 验证假说
对的遗传因子自由组合。 2.自由组合定律:①控制不同 性状的遗传因子的分离和组合 是互不干扰的;②(实质)在形成 配子时,决定同一性状的成对 的遗传因子彼此分离,决定不 同性状的遗传因子自由组合。 3.范围:有性生殖的真核生物;应用ຫໍສະໝຸດ 特殊比、显隐性、纯合杂合判断等
发生时期
A
a
A
a
MI后
非同源染色体 上的非等位基
B
b
b
B
因自由组合
①
②
③
实质:同源染色体上等位基因分离的,只有位于非同源染色体上非等位基因自由组合。
双显
Y_R_
自由组合
单显
Y_rr
单显
yyR_
双隐
yyrr
自交
9
3
3
1
1/16 YYRR 1/16 YYrr 1/16 yyRR 1/16yyrr 2/16 YYRr 2/16 Yyrr 2/16 yyRr 2/16 YyRR
子代性状类型及比例
全为显性性状 全为显性性状 全为显性性状 显性性状∶隐性性状=3∶1
生物孟德尔遗传定律2025年知识点讲解
生物孟德尔遗传定律2025年知识点讲解在生物学的领域中,孟德尔遗传定律无疑是一座重要的基石。
它为我们理解遗传现象、预测遗传结果提供了关键的理论依据。
接下来,让我们一同深入探讨孟德尔遗传定律在 2025 年的知识点。
孟德尔遗传定律包含分离定律和自由组合定律。
分离定律指出,在生物体的细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
为了更好地理解分离定律,我们以豌豆的高茎和矮茎这一对相对性状为例。
假设控制高茎的遗传因子为 D,控制矮茎的遗传因子为 d。
纯合的高茎豌豆(DD)和纯合的矮茎豌豆(dd)杂交,产生的子一代(F1)全部为高茎(Dd)。
当 F1 自交时,D 和 d 会分离,产生的配子有 D 和 d 两种,它们随机结合,从而产生的 F2 代中,基因型有 DD、Dd、dd 三种,表现型则有高茎和矮茎两种,比例为 3:1。
自由组合定律则是指,控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
例如,同时考虑豌豆的种子形状(圆粒和皱粒)和子叶颜色(黄色和绿色)这两对相对性状。
假设控制圆粒的遗传因子为 R,控制皱粒的遗传因子为 r;控制黄色子叶的遗传因子为 Y,控制绿色子叶的遗传因子为 y。
纯合的黄色圆粒豌豆(YYRR)和纯合的绿色皱粒豌豆(yyrr)杂交,F1 代的基因型为 YyRr。
F1 自交时,Y 和 y 分离,R 和r 分离,同时 Y 和 R、r 自由组合,y 和 R、r 自由组合。
这样产生的F2 代中,表现型有四种:黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,比例为 9:3:3:1。
在 2025 年的学习中,对于孟德尔遗传定律的理解,我们不仅要掌握其基本原理,还要能够运用这些原理解决实际问题。
比如,在农业育种中,通过对亲本的基因型和表现型的分析,预测后代中可能出现的性状组合,从而选育出具有优良性状的品种。
高中生物孟德尔遗传定律基础知识点梳理
高中生物孟德尔遗传定律基础知识点梳理高中生物孟德尔遗传定律基础知识点梳理孟德尔定律由奥地利帝国遗传学家格里哥·孟德尔在1865年发表并催生了遗传学诞生的著名定律。
他揭示出遗传学的两个基本定律——分离定律和自由组合定律,统称为孟德尔遗传规律。
以下是店铺为大家整理的高中生物孟德尔遗传定律基础知识点梳理,供大家参考借鉴,希望可以帮助到有需要的朋友。
孟德尔遗传定律一.基因的分离定律的理解1.细胞学基础:同源染色体分离2.作用时间:有性生殖形成配子时(减数第一次分裂的后期)3.出现特定分离比的条件①所研究的每一对相对性状只受一对等位基因控制,且相对性状为完全显性②每一代不同类型的配子都能发育良好,且不同配子结合机会相等③所有后代都处于比较一致的环境中,且存活率相同④供实验的群体要大,个体数量足够多二.分离定律中的分离比异常的现象①不完全显性②隐性纯合致死③显性纯合致死④配子致死三.基因的自由组合定律的理解1.细胞学基础:非同源染色体上的非等位基因自由组合2.作用时间:有性生殖形成配子时(减数第一次分裂的后期)3.适用范围:两对或更多对等位基因分别位于两对或更多对同源染色体上(基因不连锁)4.自由组合定律中的特殊分离比①9:3:3:1是独立遗传的两对相对性状自由组合出现的表现型比,题干中如果出现附加条件,则可能出现9:3:4、9:6:1等一系列的特殊分离比。
②利用"合并同类项"妙解特殊分离比的解题步骤:看后代可能的配子组合种类,若组合方式是16种,不管以什么样的比例呈现,都符合基因的自由组合定律。
写出正常的分离比,然后对照题中所给信息进行归类例1:水稻的非糯性(A)对糯性(a)为显性,抗锈病(T)对染病(t)为显性,花粉粒长形(D)对圆形(d)为显性,三对等位基因分别位于三对同源染色体上,非糯性花粉遇碘液变蓝,糯性花粉遇碘液变棕色。
现在四种纯合子基因型分别为:①AATTdd ②AAttDD ③AAttdd ④aattdd ,下列说法正确的是()A.若采用花粉鉴定法验证基因的分离定律,应该用①和③杂交所得F1代的花粉B.若采用花粉鉴定法验证基因的自由组合定律,可以观察①和②杂交所得F1代的花粉C.若培育糯性抗病优良品种,应选用①和④亲本杂交D.将②和④杂交后所得的F1的花粉凃在载玻片上,加碘液染色后,均为蓝色例2藏犬毛色黑色基因A对白色基因a为显性,长腿基因B对短腿基因b为显性。
高中生物孟德尔遗传规律解析
高中生物孟德尔遗传规律解析孟德尔(1822-1884)奥地利人,遗传学的奠基人。
(1)提出了遗传单位是遗传因子(现代遗传学上确定为基因);(2)发现了两大遗传规律:基因的分离定律和基因的自由组合定律。
为什么用豌豆做遗传实验易成功?1.豌豆花大,易于做人工实验2.豌豆:自花传粉;闭花受粉3.自然状态下,永远是纯种4.具有易区分的性状性状:指生物体的形态特征。
相对性状:一种生物的同一种性状的不同表现类型显隐性关系的相对性:1.完全显性2.不完全显性3.共显性4.镶嵌显性完全显性:具有相对性状的纯合亲本杂交,子一代的表现与一个亲本的性状完全相同。
不完全显性:具有相对性状的纯合亲本杂交后,F1显现中间类型的现象F2表现型和基因型的种类和比例相对应呈1:2:1的比例共显性:一个等位基因的两个成员在杂合体中都显示出来的现象人的MN血型系统:L、L基因分别决定红细胞上的M、N抗原嵌镶显性:一个等位基因影响身体的一部分,另一个等位基因则影响身体的另一部分,而在杂合体中两个部分都受到影响的现象称为镶嵌显性。
与共显性并没有实质差异。
致死基因致死基因:指那些使生物体不能存活的等位基因。
隐性致死基因:隐(或显)性基因在杂合时不影响个体的生活力,但在纯合状态有致死效应的基因叫隐性致死基因。
如小鼠的AY基因,植物中的隐性白化基因等。
显性致死基因:杂合状态即表现致死作用的基因。
如显性基因Rb引起的视网膜母细胞瘤。
致死基因的作用发生在不同的发育阶段在配子时致死的,称配子致死在胚胎期或成体阶段致死的,称合子致死输血原则1)同血型者可以输血;2)O型血者可以输给任何血型的个体;3)AB型的人可以接受任何血型的血液4)AB型的血液只能输给AB型的人;Rh血型与新生儿溶血Rh血型系统由R和r基因决定RR和Rr个体的红细胞表面有——Rh抗原——Rh+rr个体的红细胞表面没有Rh抗原——Rh-Rh阴性个体产生抗体的条件:1、反复接受Rh阳性血液2、Rh阴性母亲怀了Rh阳性的胎儿,分娩时阳性胎儿的红细胞可通过胎盘进入母体血循环,使母体产生对Rh阳性的抗体。
高中生物遗传史知识点总结
高中生物遗传史知识点总结一、孟德尔的豌豆实验1. 孟德尔的豌豆杂交实验是遗传学的开端,他通过对豌豆植物的性状进行观察和实验,发现了遗传的基本规律。
2. 孟德尔提出了三个基本遗传原则:分离定律、组合定律和独立分配定律。
3. 分离定律指的是在形成配子时,一个体细胞中的两个等位基因分离,每个配子只含有一个等位基因。
4. 组合定律指的是不同性状的基因在形成配子时,其组合方式是自由的。
5. 独立分配定律指出不同性状的基因在形成配子时,彼此独立,互不干扰。
二、染色体的发现与遗传机制1. 染色体的发现是遗传学发展的重要里程碑,科学家通过显微镜观察到细胞分裂过程中染色体的行为。
2. 萨顿提出了基因位于染色体上的假说,并通过实验证实了染色体与遗传的关系。
3. 摩尔根通过果蝇实验,证明了基因位于染色体上,并发现了染色体上的基因连锁和重组现象。
三、DNA的发现与结构1. 沃森和克里克发现了DNA的双螺旋结构,这是现代遗传学的基础。
2. DNA的双螺旋结构由两条互补的链组成,通过碱基对之间的氢键相互结合。
3. 四种碱基分别是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G),它们按照特定的配对规则结合:A与T配对,C与G配对。
四、遗传密码与蛋白质合成1. 遗传密码是指DNA序列中的三个连续的碱基(一个密码子)决定一个特定的氨基酸。
2. 蛋白质合成包括转录和翻译两个过程,转录是DNA序列转化为RNA的过程,翻译是RNA指导蛋白质的合成。
3. mRNA、tRNA和rRNA在蛋白质合成中扮演重要角色,mRNA携带遗传信息,tRNA携带氨基酸,rRNA是构成核糖体的组成部分。
五、基因突变与修复1. 基因突变是指DNA序列发生改变的现象,包括点突变、插入、缺失等。
2. 基因突变可能导致遗传病或生物的进化。
3. 细胞具有DNA修复机制,能够修复突变的DNA,保持遗传信息的稳定。
六、遗传与环境的相互作用1. 遗传决定了生物的潜能和限制,但环境因素可以影响基因的表达。
高中生物遗传的知识点总结
高中生物遗传的知识点总结遗传学是高中生物课程中的一个重要组成部分,它涉及生物体性状的传递和变异规律。
以下是高中生物遗传的知识点总结:1. 遗传的物质基础- DNA是主要的遗传物质,它的结构为双螺旋。
- 基因是DNA分子上的一段特定序列,负责编码生物体的特定性状。
- 染色体是DNA和相关蛋白质的复合体,存在于细胞的核中。
2. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,提出了遗传的两个基本定律:分离定律和自由组合定律。
- 分离定律:在有性生殖过程中,一个性状的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
- 自由组合定律:不同性状的基因在形成配子时,它们的分离和组合是相互独立的。
3. 遗传的模式- 显性和隐性:显性基因在杂合子中能够表现出来,而隐性基因则不能。
- 等位基因:控制同一性状的不同形式的基因。
- 纯合子和杂合子:纯合子指两个等位基因相同的个体,杂合子则是指两个等位基因不同的个体。
4. 性别遗传- 性染色体:决定性别的染色体,人类中女性为XX,男性为XY。
- 性别连锁遗传:某些基因位于性染色体上,因此其遗传与性别相关联。
5. 遗传变异- 基因突变:基因序列发生改变,可能导致新的性状出现。
- 基因重组:在有性生殖过程中,父母的基因重新组合,产生新的基因型。
6. 人类遗传病- 单基因遗传病:由单个基因突变引起的遗传病,如遗传性肌营养不良。
- 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病,如高血压、糖尿病。
- 染色体异常遗传病:由染色体数目或结构异常引起的遗传病,如唐氏综合症。
7. 遗传学的应用- 基因治疗:通过改变或替换异常基因来治疗遗传病。
- 遗传工程:通过人工手段改变生物体的遗传特性,如转基因技术。
8. 遗传咨询- 遗传咨询旨在帮助个体和家庭了解遗传病的风险,并提供相关的预防和治疗建议。
9. 遗传学实验技术- PCR技术:用于快速复制特定DNA片段的技术。
- DNA测序:确定DNA分子中精确的核苷酸序列。
孟德尔遗传定律知识点
孟德尔遗传规律的现代解释知识点包括基因分离定律的实质、基因的自由组合定律的实质、两个遗传定律的细胞学基础等部分,有关孟德尔遗传规律的现代解释的详情如下:基因分离定律的实质
基因的自由组合定律的实质
(1)位于非同源染色体上的非等位基因的分离或组合是互不干扰的。
(2)在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
两个遗传定律的细胞学基础
(1)分离定律的细胞学基础是等位基因随同源染色体分开而分离,如图:
(2)自由组合定律的细胞学基础是等位基因随同源染色体分开而分离,位于非同源染色体上的非等位基因自由组合,如图:
特别提醒:基因的行为并不都遵循孟德尔遗传规律
(1)并不是所有的非等位基因都遵循基因自由组合定律,只有非同源染色体上的非等位基因遵循自由组合定律。
(2)并不是真核生物中所有的基因都遵循孟德尔的遗传规律,叶绿体、线粒体中的基因都不遵循。
(3)原核生物中的基因都不遵循孟德尔遗传规律。
人教版(2019)高中生物必修二遗传与进化第一章;孟德尔遗传定律的总结、区别及解题思路教学课件
(4)已知双亲基因型,求子代中纯合子或杂合子出现的概率
规对基律因:Aa出子×现代Aa纯纯―→合合14子A子A的的+概出14a率a现的概乘率积等。于按分离定律拆分后各
拆子如①分代亲子杂本代BCbC合组中××子合纯bCb的A合c――a→概子→B1212b率概bCbCC=率C:1×-A子ab代b纯Cc合,子则拆概分率AB。ba× ×Abba― ―→ →1241bAbA+14aa
2.基本题型分类讲解
(1)配子类型的问题
规律:某个体产生配子的类型等于各对 基因单独形成配子种数的乘积。。
如:AaBbCCDd产生的配子种类数
Aa
Bb
CC
Dd
↓
↓
↓
↓
2 × 2 × 1 × 2 =8种
(2)配子间结合方式问题 规律:两基因型不同的个体杂交,配子间结合种类数等 于各亲本产生配子种类数的乘积。
具一对相对性 ⇒ F2性状分离 ⇒ 分离比为3的性
状的亲本杂交
比为3∶1
状为显性性状
深挖教材: F2 出现 9∶3∶3∶1 的性状分离比必须满足的条件有哪些?
提示 ①所研究的每一对相对性状只受一对等位基因 控制,而且等位基因要完全显性。②不同类型的雌、雄配子 都能发育良好,且受精的机会均等。③所有后代都应处于比 较一致的环境中,而且存活率相同。④供实验的群体要足够 大,个体数量要足够多。
Fn 杂合子 纯合子
所占 比例
显性 纯合子
隐性 纯合子
显性性 状个体
隐性性 状个体
②坐标曲线图
Fn 杂合子 纯合子
所占 比例
显性 纯合子
隐性 纯合子
显性性 状个体
隐性性 状个体
例1. 将具有一对等位遗传因
遗传的规律与遗传的变异知识点总结
遗传的规律与遗传的变异知识点总结遗传是生物学中的一个重要概念,它涉及到个体内基因的传递和表现。
遗传规律研究了基因在传代中的变化和规律,而遗传的变异则涉及了个体之间基因差异的产生。
本文将探讨遗传的规律和变异的知识点,并总结相关内容。
一、遗传的规律1. 孟德尔的遗传规律孟德尔是遗传学的奠基人之一,通过对豌豆杂交实验的观察,总结出了三大遗传规律:- 第一法则:分离规律(孟德尔定律)该法则认为,个体的两个形态特征只能表现一种,不会相互影响。
即父代的各个特征独立地以基因的方式传递给子代。
- 第二法则:自由组合规律(孟德尔定律)该法则认为,个体的染色体以及染色体上所携带的基因,在生殖细胞的形成过程中是自由组合的,相互独立的。
- 第三法则:优势规律(孟德尔定律)该法则认为,具有自交性状的个体在杂交中,以自交性状为表现的基因通常在显性位点上。
2. 非孟德尔的遗传规律除了孟德尔的遗传规律外,还存在一些非孟德尔的遗传规律,如:- 全性连锁不平衡规律:指同一染色体上的基因互相连锁,导致正常的基因组合几乎不可能产生。
- 隐性致死规律:指某些基因在显性位点上表现为致死效应,导致表现为显性特征的个体在自然界中极为罕见。
- 不完全显性规律:指在杂交中,显性与隐性基因的相对表现无法完全支配的现象。
二、遗传的变异1. 突变突变是遗传变异的一种常见形式,它是指基因或染色体上的遗传物质发生不带有目的的变化。
突变可以分为点突变和染色体突变两类。
- 点突变指的是单个碱基发生改变,如单核苷酸多态性(SNP)。
- 染色体突变是指整个染色体或染色体片段的结构发生异常,如染色体缺失、重复、倒位和易位等。
2. 重组重组是指在染色体互换发生的过程中,基因座之间的连锁关系发生改变,从而产生新的基因组合。
重组导致了基因的重新组合,为物种的进化提供了遗传变异的来源。
3. 跨染跨染是指不同物种或不同个体之间的基因交流和引入,导致基因组之间发生差异。
跨染可以通过杂交、转基因技术等方式实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物孟德尔遗传定律相关知识总结一、基本概念1.交配类:1)杂交:基因型不同的个体间相互交配的过程2)自交:植物体中自花授粉和雌雄异花的同株授粉。
自交是获得纯合子的有效方法。
3)测交:就是让杂种F1与隐性纯合子相交,来测F1的基因型2.性状类:1)性状:生物体的形态结构特征和生理特性的总称2)相对性状:同种生物同一性状的不同表现类型3)显性性状:具有相对性状的两个纯种亲本杂交,F1表现出来的那个亲本的性状4)隐性性状:具有相对性状的两个纯种亲本杂交,F1未表现出来的那个亲本的性状5)性状分离:杂种后代中,同时出现显性性状和隐性性状的现象3.基因类1)显性基因:控制显性性状的基因2)隐性基因:控制隐性性状的基因3)等位基因:位于一对同源染色体的相同位置上,控制相对性状的基因。
4.个体类1)表现型:生物个体所表现出来的性状2)基因型:与表现型有关的基因组成3)表现型=基因型(内因)+环境条件(外因)4)纯合子:基因型相同的个体。
例如:AA aa5)杂合子:基因型不同的个体。
例如:Aa二、自由交配与自交的区别自由交配是各个体间均有交配的机会,又称随机交配;而自交仅限于相同基因型相互交配。
三、纯合子(显性纯合子)与杂合子的判断1.自交法:如果后代出现性状分离,则此个体为杂合子;若后代中不出现性状分离,则此个体为纯合子。
例如:Aa×Aa→AA、Aa(显性性状)、aa(隐性性状)AA×AA→AA(显性性状)2.测交法:如果后代既有显性性状出现,又有隐性性状出现,则被鉴定的个体为杂合子;若后代只有显性性状,则被鉴定的个体为纯合子。
例如:Aa×aa→Aa(显性性状)、aa(隐性性状)AA×aa→Aa(显性性状)鉴定某生物个体是纯合子还是杂合子,当被测个体为动物时,常采用测交法;当被测个体为植物时,测交法、自交法均可以,但是对于自花传粉的植物自交法较简便。
例如:豌豆、小麦、水稻。
五、分离定律1.实质:在杂合子的细胞中,位于一对同源染色体上的等位基因具有一定的独立性;在减数分裂形成配子的过程中,等位基因也随着同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
2.适用范围:一对相对性状的遗传;细胞核内染色体上的基因;进行有性生殖的真核生物。
3.分离定律的解题思路如下(设等位基因为A、a)判显隐→搭架子→定基因→求概率(1)判显隐(判断相对性状中的显隐性)①具有相对性状的纯合体亲本杂交,子一代杂合体显现的亲本的性状为显性性状。
②据“杂合体自交后代出现性状分离”。
新出现的性状为隐性性状。
③在未知显/隐性关系的情况下,任何亲子代表现型相同的杂交都无法判断显/隐性。
用以下方法判断出的都为隐性性状①“无中生有”即双亲都没有而子代表现出的性状;②“有中生无”即双亲具有相对性状,而全部子代都没有表现出来的性状;③一代个体中约占1/4的性状。
注意:②、③使用时一定要有足够多的子代个体为前提下使用。
(2)搭架子(写出相应个体可能的基因型)①显性表现型则基因型为A (不确定先空着,是谓“搭架子”)②隐性表现型则基因型为aa(已确定)③显性纯合子则基因型为AA(已确定)(3)定基因(判断个体的基因型)①隐性纯合突破法根据分离定律,亲本的一对基因一定分别传给不同的子代;子代的一对基因也一定分别来自两位双亲。
所以若子代只要有隐性表现,则亲本一定至少含有一个a。
②表现比法AB(4)求概率①概率计算中的加法原理和乘法原理②计算方法:用分离比直接计算;用配子的概率计算;棋盘法。
六、自由组合定律1.实质:两对(或两对以上)等位基因分别位于两对(或两对以上)同源染色体上;位于非同源染色体上的非等位基因的分离或组合是互不干扰的;F1减数分裂形成配子时,同源染色体上的等位基因分离,非同源染色体上的非等位基因自由组合。
2.两对相对性状的杂交实验中,F2产生9种基因型,4种表现型。
①双显性性状(Y R )的个体占9/16,单显性性状的个体(Y rr,)yyR )各占3/16,双隐性性状(yyrr)的个体占1/16。
②纯合子(1/16YYRR+1/16YYrr+1/16yyRR+1/16yyrr)共占4/16,杂合子占1—4/16=12/16,其中双杂合子个体(YyRr)占4/16,单杂合子个体(YyRR、YYRr、Yyrr、yyRr)各占2/16,共占8/16③F2中亲本类型(Y R + yyrr)占10/16,重组类型(Y rr+ yyR )占6/16。
注意:具有两对相对性状的纯合亲本杂交,F1基因型相同,但计算F2中重组类型所占后代比列的时候,有两种情况:若父本或母本均是“双显”或“双隐”的纯合子,所得F2的表现型中重组类型(3/16Y rr+ 3/16yyR )占6/16;若父本和母本为“一显一隐”和“一隐一现”的纯合子,则F2中重组类型所占后代比列为(9/16Y R +1/16 yyrr)占10/16。
3.应用分离定律解决自由组合问题将自有组合问题转化为若干个分离定律问题,即利用分解组合法解自由组合定律的题,既可以化繁为简,又不易出错,它主要可用于解决以下几个方面的问题:一、已知亲代的基因型,求子代基因型、表现型的种类及其比例例1 设家兔的短毛(A)对长毛(a)、毛直(B)对毛弯(b)、黑色(C)对白色(c)均为显性,基因型为AaBbCc和aaBbCC两兔杂交,后代表现型为种,类型分别是,比例为;后代基因型为种,类型分别是,比例为;解析此题用分解组合法来解的步骤:第一步:分解并分析每对等位基因(相对性状)的遗传情况Aa×aa→有2种表现型(短,长),比例为1:1;2种基因型(Aa ,aa),比例为1:1Bb×Bb→有2种表现型(直,弯),比例为3:1;3种基因型(BB,Bb,bb),比例为1:2:1 Cc×CC→有1种表现型(黑);2种基因型(CC,Cc),比例为1:1第二步:组合AaBbCc和aaBbCC两兔杂交后代中:表现型种类为:2×2×1=4(种),类型是:短直黑:短弯黑:长直黑:长弯黑,比例为:(1:1)(3:1)=3:1:3:1基因型种类为:2×3×2=12(种),类型是:(Aa+aa)(BB+Bb+bb)(CC+Cc) 展开后即得,比例为:(1:1)(1:2:1)(1:1),按乘法分配率展开。
二、已知亲代的基因型,求亲代产生的配子种类或概率例2 基因型为AaBbCC的个体进行减数分裂时可产生类型的配子,它们分别是_____________,产生基因组成为AbC的配子的几率为______。
解析设此题遵循基因的自由组合规律,且三对基因分别位于不同对同源染色体上1)分解:Aa→1/2A,1/2a;Bb→1/2B,1/2b;CC→1C2)组合:基因型为AaBbCC的个体产生的配子有:2×2×1=4种;配子类型有:(A+a)×(B+b) ×C=ABC+AbC+aBC+abC ;产生基因组成为AbC的配子的概率为:1/2A×1/2b×1C=1/4AbC三、已知亲代的基因型,求某特定个体出现的概率例3 设家兔的短毛(A)对长毛(a)、毛直(B)对毛弯(b)、黑色(C)对白色(c)均为显性,基因型为AaBbCc和AaBbCc两兔杂交,后代中表现型为短直白的个体所占的比例为,基因型为AaBbCC的个体所占的比例为____________。
解析1)分解:Aa×Aa→3/4A(短),1/2Aa;Bb×Bb→3/4B(直),1/2Bb;Cc×Cc→1/4c(白),1/4CC;2)组合:后代中表现型为短直白的个体所占的比例为:3/4×3/4×1/4=9/64后代中基因型为AaBbCC的个体所占的比例为=1/2×1/2×1/4=1/16四、已知亲代的表现型和子代的表现型比例,推测亲代的基因型例4 番茄红果(Y)对黄果(y)为显性,二室(M)对多室(m)为显性。
一株红果二室番茄与一株红果多室番茄杂交后,F1有3/8红果二室,3/8红果多室,1/8黄果二室,1/8黄果多室。
则两个亲本的基因型是。
解析根据题中所给的后代表现型的种类及其比例关系,可知此题遵循基因的自由组合规律;1)分解:F1中红果:黄果=(3/8+3/8):(1/8+1/8)=3:1→推知亲本的基因型为Yy×Yy二室:多室=(3/8+1/8):(3/8+1/8)=1:1→亲本的基因型为Mm×mm2)组合:根据亲本的表现型把以上结论组合起来,即得亲本的基因型分别为YyMm×Yy mm五、已知子代的表现型比例,推测亲代的基因型在遵循自由组合定律的遗传学题中,若子代表现型的比例为9:3:3:1,可以看作为(3:1) (3:1),则亲本的基因型中每对相对性状为杂合子自交;若子代表现型的比例为3:3:1:1,可以看作为(3:1)(1:1),则亲本的基因型中一对相对性状为杂合子与隐性纯合子杂交,另一对相对性状为显性纯合子与隐性纯合子杂交。
例5 已知鸡冠性状由常染色体上的两对独立遗传的等位基因D、d和R、r决定,有四种类型:胡桃冠(D R )、豌豆冠(D rr)、玫瑰冠(ddR )和单冠(ddrr)。
两亲本杂交,子代鸡冠有四种形状,比例为3:3:1:1,且玫瑰冠鸡占3/8,则亲本的基因型是。
解析1)分解:由子代鸡冠有四种形状,比例为3:3:1:1,可推知单冠(ddrr)占1/8,由玫瑰冠鸡(ddR )占3/8,可推知子代中D :dd=(3+1):(3+1)=1:1→推知亲本的基因型为Dd×dd;则子代中另一对基因R :rr=3:1→推知亲本的基因型为Rr×Rr。
2)组合:根据子代鸡冠形状的比例及分解结果可组合得出亲本基因型为:DdRr×dd Rr。