碳纤维复合材料

合集下载

又轻又硬的材料

又轻又硬的材料

又轻又硬的材料
碳纤维复合材料是一种又轻又硬的材料,它由碳纤维和树脂基
体组成,具有优异的机械性能和轻质化特点。

碳纤维复合材料在航
空航天、汽车工业、体育器材等领域有着广泛的应用,成为现代工
程材料中的瑰宝。

首先,碳纤维复合材料的轻质化特点使其成为理想的替代材料。

碳纤维的比重很小,只有钢铁的四分之一,因此制成的复合材料非
常轻盈。

这种轻质化特点使得碳纤维复合材料在航空航天领域有着
广泛的应用,可以大幅减轻飞机和航天器的重量,提高其燃料效率
和飞行性能。

其次,碳纤维复合材料具有优异的硬度和强度。

碳纤维本身具
有很高的拉伸强度和模量,是常见的金属材料的数倍甚至数十倍。

而且,碳纤维与树脂基体的复合结构使得材料具有很好的抗压性和
抗弯性。

因此,碳纤维复合材料在汽车工业中可以用于制造车身和
零部件,提高汽车的安全性和性能。

此外,碳纤维复合材料还具有优异的耐腐蚀性和耐磨性。

由于
碳纤维本身具有很好的化学稳定性,不易受到酸碱等化学物质的侵
蚀。

同时,碳纤维复合材料的表面可以进行特殊的处理,提高其耐
磨性能,使其在体育器材和工程结构中有着广泛的应用前景。

总的来说,碳纤维复合材料作为一种又轻又硬的材料,具有很
多优异的性能和广阔的应用前景。

随着科技的不断进步,碳纤维复
合材料将会在更多领域展现其独特的魅力,为人类创造更多的奇迹。

碳纤维复合材料的成型工艺

碳纤维复合材料的成型工艺

碳纤维复合材料的成型工艺一、碳纤维复合材料概述碳纤维复合材料是一种由碳纤维增强体和树脂基体组成的新型高性能材料。

它以其轻质、高强度、高刚度、耐疲劳、耐腐蚀等优异性能,在航空航天、汽车制造、体育器材、建筑结构等领域得到了广泛的应用。

本文将探讨碳纤维复合材料的成型工艺,分析其重要性、挑战以及实现途径。

1.1 碳纤维复合材料的特点碳纤维复合材料的特点主要包括以下几个方面:- 轻质高强:碳纤维具有很高的比强度和比模量,使得复合材料在保持轻质的同时,具有很高的承载能力。

- 高刚度:碳纤维复合材料的刚度远高于传统材料,可以提供更好的结构稳定性。

- 耐疲劳:碳纤维复合材料具有优异的耐疲劳性能,适用于承受反复循环载荷的应用。

- 耐腐蚀:碳纤维复合材料对多种腐蚀性介质具有很好的抵抗力,适用于恶劣环境。

1.2 碳纤维复合材料的应用领域碳纤维复合材料的应用领域非常广泛,包括但不限于以下几个方面:- 航空航天:用于飞机结构、发动机部件等,以减轻重量、提高性能。

- 汽车制造:用于车身、底盘等部件,以提高燃油效率和车辆性能。

- 体育器材:用于自行车、网球拍、高尔夫球杆等,以提供更好的运动性能。

- 建筑结构:用于桥梁、高层建筑等,以提高结构的承载能力和耐久性。

二、碳纤维复合材料的成型工艺碳纤维复合材料的成型工艺是实现其优异性能的关键环节。

不同的成型工艺会影响材料的性能和应用范围。

2.1 预浸料成型工艺预浸料成型工艺是一种常用的碳纤维复合材料成型方法。

该工艺首先将碳纤维与树脂基体预先混合,形成预浸料,然后在模具上铺设预浸料,通过热压或真空袋压等方法固化成型。

预浸料成型工艺具有成型效率高、产品质量好等优点。

2.2 树脂传递模塑成型工艺树脂传递模塑(RTM)成型工艺是一种先进的复合材料成型技术。

该工艺通过将树脂注入闭合模具中,使树脂在模具内流动并浸润碳纤维,最终固化成型。

RTM工艺可以实现复杂形状的制品成型,且具有较低的生产成本。

碳纤维及其复合材料

碳纤维及其复合材料

碳纤维及其复合材料碳纤维具有优秀的力学性能,比强度高,比重轻,具有优异的抗拉、抗压和抗弯强度。

它的比强度约为钢铁的10倍,比重则只有钢铁的1/4、这使得碳纤维特别适用于高强度和轻量化要求较高的领域,如航空航天、航空发动机、车辆轻量化等。

此外,碳纤维还具有良好的耐腐蚀性、热稳定性和低热膨胀系数,使其在高温环境下能够保持较好的性能。

碳纤维的制备主要有干法和湿法两种方法。

干法制备主要是通过将聚丙烯腈(PAN)等聚合物纤维进行氧化、碳化处理制成。

湿法制备则是通过炭化纤维进行碳化处理得到碳纤维。

无论是干法还是湿法制备,都需要在高温下进行炭化处理,通常在1000℃以上。

碳纤维的复合材料是将碳纤维与树脂等基体材料复合而成的材料。

碳纤维复合材料综合了碳纤维的高强度和树脂的良好的塑性和可加工性,具有更优越的性能。

常见的碳纤维复合材料有碳纤维增强聚合物复合材料、碳纤维增强陶瓷基复合材料以及碳纤维增强金属基复合材料。

碳纤维复合材料在航空航天领域中的应用广泛。

例如,制造飞机的机身、机翼等部件时,碳纤维复合材料可以替代传统的金属材料,实现减重和提高结构强度的目的。

而在汽车行业,碳纤维复合材料的轻量化优势可以提高汽车的燃油经济性,降低碳排放量。

此外,碳纤维复合材料还广泛应用于体育器材、建筑领域等。

然而,碳纤维及其复合材料也存在一些问题和挑战。

首先,碳纤维复合材料的成本较高。

由于制备工艺的复杂性和原材料的昂贵性,使得碳纤维复合材料的成本较高,限制了其在一些领域的应用。

其次,碳纤维复合材料的环保性仍然是一个问题。

目前,碳纤维的废弃物处理和回收利用仍然存在一定的困难。

综上所述,碳纤维及其复合材料是一种具有优异性能的材料,在航空航天、汽车、体育器材等领域有广泛的应用前景。

随着技术的不断进步,碳纤维复合材料的制备工艺和成本将得到进一步改善,有望在更多领域发挥重要作用。

碳纤维复合材料的分类

碳纤维复合材料的分类

碳纤维复合材料的分类
以下是 7 条关于碳纤维复合材料分类的内容:
1. 短纤维碳纤维复合材料呀,就好像是一群小士兵紧密地排列在一起执行任务!你想想看,那些汽车的内饰件很多不就是用它来制造的嘛,让车子更轻便又结实。

2. 连续纤维碳纤维复合材料呢,这可牛了,就如同坚韧的绳索一样强大!飞机的某些部件不就是用这个嘛,保证了飞行的安全和高效,厉害吧!
3. 编织碳纤维复合材料呀,这不就像是精心编织的布一样嘛!在高端的体育器材里经常能看到它的身影,让运动员们如虎添翼呀!
4. 颗粒增强碳纤维复合材料,嘿,这就好似给材料里加了一份特别的力量调料!一些耐用的工具上就用了它,能更耐用哦!
5. 层合碳纤维复合材料,哇哦,就好像是一层层叠起来的坚固堡垒!在航天器上经常用到呢,助力探索浩瀚宇宙,这多牛啊!
6. 纳米碳纤维复合材料,听着就很高科技对不对,简直就是微观世界里的小能手啊!某些电子设备可少不了它,让科技更酷炫呢!
7. 混杂碳纤维复合材料,这可有趣了,就像是各种厉害角色的大融合!在一些特殊的工程领域中大展身手呢,起到意想不到的效果呀!
我觉得碳纤维复合材料的这些分类真的是各有千秋,都为我们的生活和科技发展带来了巨大的助力呀!。

碳纤维复合材料

碳纤维复合材料

碳纤维复合材料碳纤维复合材料是一种由碳纤维和树脂基体组成的高性能材料,具有轻质、高强度、耐腐蚀和耐磨损等优点,被广泛应用于航空航天、汽车制造、船舶建造、体育器材等领域。

本文将从碳纤维复合材料的制备工艺、性能特点及应用领域等方面进行介绍。

首先,碳纤维复合材料的制备工艺包括预浸料制备、层叠成型、固化和后处理等步骤。

预浸料是将碳纤维与树脂预先混合,形成一种浸渍了树脂的碳纤维布,以便于后续的成型加工。

层叠成型是将预浸料铺在模具中,按照设计要求依次叠加,形成所需的复合材料结构。

固化是通过加热或加压等方式使树脂固化,使碳纤维与树脂基体充分结合。

最后进行后处理,包括修整、表面处理等工艺,以提高复合材料的表面质量和性能。

其次,碳纤维复合材料具有轻质、高强度、耐腐蚀和耐磨损等优点。

碳纤维的比强度和比模量都很高,比重却很低,因此碳纤维复合材料具有很高的强度和刚度,同时又非常轻便。

此外,树脂基体的耐腐蚀性能和碳纤维的耐磨损性能也使得碳纤维复合材料在恶劣环境下有着良好的表现。

因此,碳纤维复合材料被广泛应用于航空航天领域,用于制造飞机机身、机翼等部件,以减轻飞机重量,提高飞行性能。

同时,汽车制造业也将碳纤维复合材料应用于汽车车身、悬挂系统等部件,以提高汽车的安全性和燃油经济性。

在船舶建造领域,碳纤维复合材料可以用于制造船体结构、船舶内部装饰等部件,以提高船舶的航行性能和舒适性。

此外,碳纤维复合材料还被广泛应用于体育器材制造,如高尔夫球杆、自行车车架等,以提高器材的性能和使用寿命。

综上所述,碳纤维复合材料具有制备工艺简单、性能优异、应用广泛等特点,是一种具有很高发展潜力和广阔市场前景的材料。

随着科技的不断进步和人们对轻质高强材料需求的增加,碳纤维复合材料必将在未来得到更广泛的应用和发展。

碳纤维复合材料论文

碳纤维复合材料论文

碳纤维复合材料论文导言碳纤维复合材料(CFRP)是一种由碳纤维和树脂基体组成的高性能材料。

随着科技的进步,CFRP在航空航天、汽车工业、体育用品等领域中得到了广泛的应用。

本论文将就CFRP的制备方法、性能特点以及应用前景进行详细探讨。

1. CFRP的制备方法CFRP的制备方法通常包括纺丝、预浸料、固化和成型四个步骤。

1.1 碳纤维纺丝碳纤维是由多个碳纤维丝束组成的。

纺丝过程中,先将碳纤维丝束在高温下拉伸,然后进行表面处理,以增加纤维与树脂的粘合性能。

1.2 预浸料制备预浸料是将纺丝得到的碳纤维与树脂基体进行浸渍得到的材料。

树脂基体一般采用环氧树脂。

预浸料制备过程中需要控制纤维的含量、纤维间的排列方式以及树脂的渗透性。

1.3 固化固化是指通过加热或加压将树脂基体中的单体或低分子量聚合物转变为高分子量聚合物的过程。

固化可以提高CFRP的强度和刚度。

1.4 成型成型是将固化后的预浸料经过特定形状的模具加热或加压成型,得到最终的CFRP产品。

2. CFRP的性能特点CFRP具有许多优良的性能特点,使其成为许多领域的首选材料。

2.1 高强度和高刚度相比于传统的金属材料,CFRP具有更高的强度和刚度。

其拉伸强度可以达到2000 MPa,弹性模量可以达到150 GPa以上。

2.2 轻质CFRP的密度大约为1.6 g/cm³,相比于钢材(7.8 g/cm³)和铝材(2.7g/cm³),CFRP具有更轻的重量优势。

2.3 抗腐蚀性由于CFRP的主要组成部分是碳纤维和树脂基体,它具有优良的抗腐蚀性能,不易受潮湿环境、化学物质和气候变化的影响。

2.4 热稳定性CFRP具有较高的热稳定性,可以在高温环境下长期使用而不发生形变或脆化。

2.5 高耐疲劳性由于CFRP的高强度和高刚度,它具有出色的耐疲劳性能,适用于长期受到重复加载的应用场景。

3. CFRP的应用前景随着CFRP技术的不断发展,其在各个领域的应用前景十分广阔。

碳纤维复合材料加工

碳纤维复合材料加工

碳纤维复合材料加工
碳纤维复合材料是一种由碳纤维和树脂基体组成的高强度、轻质材料,具有优
异的机械性能和耐腐蚀性能,因此在航空航天、汽车、船舶、体育器材等领域得到广泛应用。

碳纤维复合材料加工是指对碳纤维布料进行裁剪、预浸树脂、成型、固化等一系列工艺过程。

本文将介绍碳纤维复合材料加工的相关知识和技术要点。

首先,碳纤维复合材料加工的第一步是对碳纤维布料进行裁剪。

在裁剪过程中,需要根据零件的形状和尺寸,利用模具或者数控切割机对碳纤维布料进行精确的裁剪。

裁剪时要注意布料的方向,以保证零件在使用时具有良好的力学性能。

接下来是预浸树脂。

预浸树脂是指事先浸渍好树脂的碳纤维布料,其目的是为
了提高树脂与碳纤维之间的结合强度。

预浸树脂的制备需要控制树脂的浸渍量和固化剂的添加量,以确保树脂的固化度和性能稳定。

然后是成型工艺。

碳纤维复合材料的成型工艺有手工成型、压缩成型、注塑成
型等多种方式。

在成型过程中,需要根据零件的结构和要求,选择合适的成型工艺,并严格控制成型温度、压力和时间,以保证成型零件的质量。

最后是固化工艺。

固化是指树脂在一定温度下发生化学反应,形成坚固的结构。

在固化过程中,需要控制固化温度和时间,以确保树脂充分固化,同时避免产生气泡和裂纹。

总之,碳纤维复合材料加工是一项复杂的工艺过程,需要严格控制各个环节,
以确保最终产品具有优异的性能和质量。

希望本文的介绍能够对碳纤维复合材料加工有所帮助,也希望读者能够在实际操作中加以参考和运用。

碳纤维复合材料的制备工艺及其应用

碳纤维复合材料的制备工艺及其应用

碳纤维复合材料的制备工艺及其应用一、碳纤维复合材料概述碳纤维复合材料是一种由碳纤维和树脂基体组成的材料,具有轻质、高强、高模量、耐腐蚀、耐高温、耐磨损等优点,是目前运用广泛的一种高性能材料。

碳纤维复合材料被广泛应用于航空航天、汽车、体育器材、建筑结构等领域。

如今,其中最为流行的应用就是在制造高档化、高速度、高精度单体器和新颖双翼飞行器上。

二、碳纤维复合材料的制备工艺碳纤维复合材料的制备过程是由多个工艺环节组成的,下面将针对每个环节逐一介绍。

1.纤维预处理碳纤维预处理是将原始碳纤维进行表面处理的过程,主要是增加碳纤维与树脂基体间的结合力。

预处理方法主要有物理法、化学法和物化结合法等。

2. 纤维束成型纤维束成型过程即是对碳纤维进行方向、密度、弯曲等要求的布放,旨在保障最终制品的力学性能和外观质量。

这个过程是全过程中最主要的工艺点。

3. 预浸胶(浸渍)预浸胶过程即是将干燥的碳纤维通过浸渍机进行一遍遍地浸润预浸膜,以保障纤维与树脂基体的结合质量和防止气泡的存在。

浸前要在浸润池内先提前进行啊溶剂和树脂的混合溶解,提高浸渍的成效。

4.层叠成形层叠成形过程即是替代传统的钣金模具来进行原料成型工艺,具有工艺灵活、生产效益高的特点。

一般有人工贴放和机器封装成型两种方法。

一个部位若是需要多层叠放,需对第一个和最后一个层间进行封闭处理。

5. 热固化热固化是将层叠成型后的半成品传送至热压机进行加压热处理,达成树脂基体固化硬化的工艺过程,这个过程也是碳纤维复合材料制品性能优良的重要原因。

三、碳纤维复合材料的应用碳纤维复合材料的优异性能,使得其在许多工业领域得以广泛应用,下面将对其主要应用领域进行介绍。

1. 航空航天领域碳纤维复合材料在航空航天领域中得到了广泛应用,如飞机翼、机身、尾翼等部位以及航空发动机的结构件等。

其优秀的轻重比使得飞机自身质量大大减轻,節省燃油成本以及大幅减少大气污染。

2. 汽车领域碳纤维复合材料在汽车领域中的应用也越来越广泛,碳纤维车身、内饰、动力传输部件以及刹车片等等都是一个个优秀的代表。

碳纤维复合材料标准

碳纤维复合材料标准

碳纤维复合材料标准碳纤维复合材料是一种具有轻质、高强度、耐腐蚀等优异性能的材料,广泛应用于航空航天、汽车制造、体育器材等领域。

为了保证碳纤维复合材料的质量和安全性,制定了一系列的标准来规范其生产、加工和使用。

本文将介绍碳纤维复合材料标准的相关内容,以便读者更加全面地了解这一材料。

首先,碳纤维复合材料的标准主要包括材料的基本性能、加工工艺、质量检测和使用规范等方面。

在材料的基本性能方面,标准规定了碳纤维复合材料的密度、强度、弹性模量、热膨胀系数等物理和力学性能指标,以及其在不同温度、湿度下的性能要求。

这些基本性能的标准化可以帮助生产厂家和用户更好地选择和使用碳纤维复合材料,提高材料的可靠性和稳定性。

其次,在加工工艺方面,碳纤维复合材料的标准规定了材料的成型、固化、表面处理等工艺要求,以及加工过程中的质量控制和检测方法。

这些标准化的加工工艺可以保证碳纤维复合材料在生产过程中的质量稳定性和一致性,提高生产效率和降低生产成本。

此外,质量检测是保证碳纤维复合材料质量的关键环节。

标准规定了碳纤维复合材料的质量检测方法和标准样品的制备要求,以及对材料表面缺陷、内部缺陷、化学成分等方面的检测要求。

这些质量检测标准可以保证生产出的碳纤维复合材料符合规定的质量标准,确保其在使用过程中不会出现安全隐患。

最后,标准还规定了碳纤维复合材料的使用规范,包括材料的存储、运输、安装和维护等方面的要求。

这些使用规范可以帮助用户正确地选择和使用碳纤维复合材料,延长材料的使用寿命,减少因使用不当而导致的损坏和事故。

综上所述,碳纤维复合材料标准的制定对于保障碳纤维复合材料的质量和安全性具有重要意义。

通过遵守这些标准,可以帮助生产厂家提高产品质量,帮助用户选择和使用合格的碳纤维复合材料,促进碳纤维复合材料行业的健康发展。

希望本文对读者对碳纤维复合材料标准有所帮助,谢谢阅读。

碳纤维及其复合材料讲解

碳纤维及其复合材料讲解

碳纤维及其复合材料讲解引言碳纤维是近年来广泛应用于各个领域的一种先进材料,它具有低密度、高强度、高模量、耐热性等优异的性能,在航空航天、汽车、体育器材等领域有着重要的应用。

本文将对碳纤维及其复合材料进行深入讲解,介绍其结构、特性以及应用领域。

碳纤维的结构和制备方法碳纤维是由碳元素组成的纤维状材料,其结构由纯净的碳元素构成,具有高度有序的晶体结构。

碳纤维的制备方法主要包括聚丙烯纤维炭化法、聚丙烯纤维长丝法和聚丙烯纤维溶胶纺丝法等。

其中,聚丙烯纤维炭化法是最常用的方法,它通过将聚丙烯纤维经过预处理后进行高温炭化,得到纯净的碳纤维。

碳纤维复合材料的制备及特性碳纤维复合材料是将碳纤维与树脂基体进行复合制备而成的一种材料。

它具有轻质、高强度、高模量、耐腐蚀等多种特性。

碳纤维复合材料的制备工艺主要包括预浸法、自动定型法和预浸层叠法等。

其中,预浸法是最常用的方法,它通过将碳纤维预先浸渍于树脂中,然后进行固化和压制,最终得到具有预定形状和性能的复合材料。

碳纤维复合材料具有优异的力学性能,其强度和刚度远远超过许多传统材料。

它还具有良好的耐热性和耐腐蚀性能,在高温和恶劣环境下能够保持较好的性能。

此外,碳纤维复合材料还具有良好的阻尼性能,能够吸收和分散冲击能量,提高结构的抗震能力。

碳纤维及其复合材料的应用领域碳纤维及其复合材料在各个领域都有广泛的应用。

在航空航天领域,碳纤维复合材料被广泛应用于飞机、卫星等结构中,以减轻重量并提高飞行性能。

在汽车领域,碳纤维复合材料能够替代传统金属材料,减少车身重量,提高燃油经济性。

在体育器材领域,碳纤维复合材料制成的高尔夫球杆、网球拍等器材具有轻盈、刚性等优势,提高了运动员的表现。

此外,碳纤维复合材料还广泛应用于建筑、能源、电子等领域。

在建筑领域,碳纤维复合材料能够替代传统的钢筋混凝土,提高结构的抗震性能。

在能源领域,碳纤维复合材料被用于制造风力发电叶片、太阳能电池等设备,提高能源转换效率。

碳纤维复合材料

碳纤维复合材料

碳纤维复合材料
碳纤维复合材料是一种非常重要的先进材料,具有很多优秀的性能和应用。

碳纤维复合材料是由碳纤维和树脂基复合材料制成的,具有轻质、高强度、高模量、耐腐蚀等优点。

首先,碳纤维复合材料具有轻质高强度的特点。

碳纤维是由碳元素组成的纤维状材料,具有很高的强度和刚度。

与传统的金属材料相比,碳纤维复合材料的重量只有其1/4左右,但强度却是其2倍以上。

这使得碳纤维复合材料成为各种高性能轻型结构的理想选择,如飞行器、航天器、汽车、运动器材等。

其次,碳纤维复合材料具有高模量的特点。

模量是材料抵抗变形的能力,反映了材料的刚度。

碳纤维的模量比传统的金属材料高很多,因此碳纤维复合材料具有更好的抵抗变形和承载能力。

在航空航天领域,碳纤维复合材料被广泛应用于制造各种高速飞行器和卫星,以提高其刚度和稳定性。

此外,碳纤维复合材料还具有很好的耐腐蚀性能。

由于其主要组成为碳纤维和树脂基复合材料,不含金属元素,所以不会受到常见金属材料的腐蚀和氧化影响。

这使得碳纤维复合材料在恶劣的环境下仍然能保持良好的性能,可以应用于海洋工程、石化设备等领域。

然而,碳纤维复合材料也存在一些缺点。

首先,其制造成本较高,主要是由于碳纤维的生产成本较高。

其次,碳纤维复合材料在高温下的性能会受到影响,容易软化和失效。

因此,在高温环境下的应用还需要进一步改进。

总的来说,碳纤维复合材料具有轻质、高强度、高模量以及耐腐蚀等优点,是一种非常重要的先进材料。

随着制造技术的不断进步,其应用范围将会越来越广泛,给各个领域带来更多的创新和发展。

碳纤维复合材料的介绍

碳纤维复合材料的介绍

碳纤维复合材料的介绍
碳纤维复合材料是一种由碳纤维和树脂基体组成的高强度、轻质材料。

它具有优异的力学性能和化学稳定性,被广泛应用于航空航天、汽车、体育器材和建筑等领域。

碳纤维是由纯碳纤维束或纤维织物制成的,具有高强度和高刚度的特点。

这些纤维通过树脂基体进行粘结,形成了复合材料的结构。

常用的树脂基体包括环氧树脂、聚酰亚胺和酚醛等。

碳纤维复合材料具有以下优点:
1. 高强度和刚度:相比传统材料如钢铁和铝合金,碳纤维复合材料具有更高的强度和刚度。

2. 轻质:碳纤维复合材料的密度较低,比重轻,可以减轻结构负荷和提高运行效率。

3. 耐腐蚀性:碳纤维本身不易受到腐蚀,使得复合材料在恶劣环境中具有较好的耐久性。

4. 良好的热导性:碳纤维具有良好的热导性,可以有效分散和传导热量。

5. 设计自由度高:碳纤维复合材料可根据需要进行定制设计,形成各种复杂形状和结构。

然而,碳纤维复合材料也存在一些挑战:
1. 成本高:相对于传统材料,碳纤维复合材料的制造成本较高,限制了其在某些领域的广泛应用。

2. 易受冲击破坏:碳纤维复合材料对冲击和撞击容易产生损伤,需要采取适当的保护和维修措施。

3. 可回收性有限:由于复合材料中纤维与树脂的组合结构,碳纤维复合材料的回收和再利用相对困难。

尽管面临一些挑战,碳纤维复合材料的优异性能使其成为许多行业追求轻量化、强度高的理想选择,同时也促进了材料科学和工程领域的进步与创新。

碳纤维复合材料介绍

碳纤维复合材料介绍

碳纤维复合材料介绍碳纤维复合材料是一种由碳纤维和基体材料组成的新型材料。

碳纤维是一种由碳元素纤维构成的轻质、高强度材料,而基体材料可以是树脂、金属、陶瓷等。

碳纤维复合材料具有优异的性能,并在航空航天、汽车制造、体育器材等领域得到广泛应用。

首先,碳纤维复合材料具有出色的强度和刚度。

碳纤维本身具有极高的强度和刚度,其比强度和比刚度分别是金属的数倍,比玻璃纤维的数十倍。

而通过将碳纤维与基体材料复合,可以进一步提高强度和刚度。

这使得碳纤维复合材料成为一种轻质、高强度的材料选择,适用于许多领域。

其次,碳纤维复合材料具有优异的耐腐蚀性能。

与金属相比,碳纤维复合材料不容易受到一般酸、碱等腐蚀物质的侵蚀。

这使得碳纤维复合材料在一些腐蚀环境下具有广泛应用的潜力,例如船舶、化工管道等领域。

此外,碳纤维复合材料还具有极好的疲劳性能。

由于碳纤维自身的高强度和高刚度,以及碳纤维与基体材料之间的良好结合,碳纤维复合材料具有优异的耐疲劳性能。

这意味着碳纤维复合材料在高强度、高应变条件下仍然能够保持材料的性能,延长了材料的使用寿命。

另外,碳纤维复合材料的导热性能也值得关注。

尽管碳纤维本身具有较低的导热性,但在一些情况下可以通过添加导热剂来改善导热性能。

这使得碳纤维复合材料能够用于高温环境下的应用,如航空发动机燃烧室、航天器耐热外壳等。

此外,碳纤维复合材料还具有良好的绝缘性能和抗磨损性能。

由于碳纤维复合材料的基体材料可以选择具有良好绝缘性能和抗磨损性能的材料制成,使得碳纤维复合材料在电气工程和机械工程中得到广泛应用。

总之,碳纤维复合材料是一种具有优异性能的新型材料。

它具有高强度、高刚度、耐腐蚀、耐疲劳、导热性能好、绝缘性能好和抗磨损等特点,适用于航空航天、汽车制造、体育器材等众多领域。

随着科学技术的不断发展,碳纤维复合材料的应用前景将会更加广阔。

碳纤维复合材料PPT

碳纤维复合材料PPT

碳纤维复合材料PPT
碳纤维复合材料是近几十年来开发的先进材料,具有较高的强度和刚度,特别是在结构轻量化和高性能应用,以及机械和航空航天等领域深受
欢迎,成为现代工业中不可或缺的一部分。

本文将对碳纤维复合材料的性
能进行深入的研究,并探讨其在现代工业中的应用。

一、碳纤维复合材料概述
碳纤维复合材料是一种复合材料,是由碳纤维和其它种类复合而成的
材料。

它由高分子材料和短碳纤维组成,碳纤维可以是碳素物质的任何形式,也可以是合成或天然碳纤维。

由于碳纤维具有较高的强度和弹性系数,所以具有良好的抗拉强度、抗压强度和抗弯曲强度,在结构轻量化和高性
能等领域得到广泛应用。

二、碳纤维复合材料的特点
碳纤维复合材料具有较高的抗拉强度、抗压强度和抗弯曲强度。

碳纤
维复合材料的重量轻、密度小,比强度高,比模量大,具有良好的抗冲击性,弹性恢复性能好,抗潮解能力强,耐腐蚀性好。

此外,碳纤维复合材
料易于加工,可以用钻孔、切削、冲压、热成型等加工方法制作成各种复
杂结构的零件。

三、碳纤维复合材料在现代工业中的应用。

碳纤维复合材料

碳纤维复合材料
7
谢引
二、碳纤维复合材料的应用
3.、作为轨道交通车辆的车体结构
轻量化是减少列车运行能耗的一项关键 技术,金属制造的轨道列车,虽车体强度 高,但质量大、能耗高。CFRP是新一代高 速轨道列车车体选材的重点,它不仅可使 轨道列车车体轻量化,还可以改进高速运 行性能、降低能耗、减轻环境污染、增强 安全性。当前,CFRP在轨道车辆领域的应 用趋势:从车箱内饰、车内设备等非承载 结构零件向车体、构架等承载构件扩展; 从裙板、导流罩等零部件向顶盖、司机室、 整车车体等大型结构发展;以金属与复合 材料混杂结构为主,CFRP用量大幅提高。
3
谢引
二、碳纤维复合材料的应用
• 碳纤维是最重要的无机高性能纤维,这点是由其材料本性、产业技术复 杂性、应用领域重要性和市场规模性等因素决定的,其首个市场化应用是 1972年市售的碳纤维增强树脂钓鱼竿。此后,碳纤维应用快速向以航空航 天器主结构材料为代表的高端化发展。 碳纤维最主要的应用形式是作为树脂材料的增强体,所形成的碳纤维增 强树脂(CFRP)具有优异的综合性能,其在导弹、空间平台和运载火箭, 航空器,先进舰船,轨道交通车辆,电动汽车,卡车,风电叶片,燃料电 池,电力电缆,压力容器,铀浓缩超高速离心机,特种管筒,公共基础设 施,医疗和工业设备,体育休闲产品,以及时尚生活用具等十六个领域, 有着实际和潜在的应用。 下面将从上述提到的几个领域中挑选其3对碳纤维的应用及其近期的技术 进展加以综述。
• 近些年来无论国际还是国内,碳纤维的用量都在稳定增长,
9
世界上碳纤维的格局还是以日本为主,目前中国 的碳纤维企业在世界的碳纤维产业版图上已经有了 一席之地。而其中最具代表性的就是中复神鹰(即 CCGC),多年产销量稳定在千吨以上,产品品质收 到市场检验和客户认可,2017年产销量达2500吨, 占国产碳纤维销量一半以上。

碳纤维复合材料

碳纤维复合材料
世界各国均把C/C复合材料用作先进飞行 器高温区的主要热结构材料,其次是作为 飞机和汽车等的刹车材料。 飞行器中的应用 刹车材料方面应用 其他应用 发展趋势与应用前景
6.5.1 先进飞行器上应用
作为高性能的重返大气层飞行器的鼻嘴和 热屏蔽材料,先进的推进装置的耐冲蚀、 尺寸稳定和热稳定材料。 表6-7 C/C在航天飞机上的应用 表6-8 C/C在战略导弹上的应用。
体时应考虑下列特性-黏度、碳收获率、碳 的微观结构和晶体结构。通常有热固性树 脂和沥青两大类。其中常用的有酚醛树脂 和呋喃树脂以及煤焦油沥青和石油沥青。 热固性树脂:经热解其碳的质量转化率为 50%~60%; 沥青:常压下产碳率为50%左右,在 10MPa氮压和550℃下产碳率可高达90%。
24 2500
142 190
42.7 70.4
38.2 68.5
•T-50-221-44为三向正交细编C/C复合材料
6.3 C/C用组分材料选择
C/C用碳纤维选择 C/C的基体前驱体

6.3.1 C/C用碳纤维选择
1)碳纤维碱金属等杂质含量越低越好

C/C的一个重要用途是耐烧蚀材料,钠等碱金属是 碳的氧化催化剂; 当C/C用来制造飞行器烧蚀部件时,飞行器飞行过 程中由于热烧蚀而在尾部形成含钠离子流,易被 探测和跟踪,突防和生存能力受到威胁。 制造C/C的碳纤维碱金属含量要求<100mg/kg,目 前黏胶基碳纤维和PAV基碳纤维(特别是石墨纤 维)碱金属含量均满足要求。碱金属含量 <50mg/kg的超纯碳纤维的研制也正在进行中。

6.2.2 物理性能




热膨胀性能低:常温下为-0.4~1.8×10-6/K,仅 为金属材料的1/5~1/10; 导热系数高:室温时约为0.38~0.45 cal/cm· s· ℃ (铁:0.13),当温度为1650℃时,降为0.103 cal/cm· s· ℃。 比热高:其值随温度上升而增大,因而能储存大 量的热能,室温比能约为0.3 kcal/kg· ℃(铁: 0.11),1930℃时为0.5 kcal/kg· ℃。 密度:<1.7~1.9; 熔点:4100℃。 耐磨性:摩擦系数小,具有优异的耐磨擦磨损性 能,是各种耐磨和摩擦部件的最佳候选材料。

碳纤维复合材料的研究与应用

碳纤维复合材料的研究与应用

碳纤维复合材料的研究与应用简介碳纤维复合材料是一种高强度、高刚度、轻质化、高耐蚀性的高级材料。

它由碳纤维和树脂基体组成,具有优异的力学、物理、化学等性能。

目前,碳纤维复合材料已广泛应用于航空航天、汽车制造、体育器材、医疗器械等领域。

碳纤维的生产碳纤维是一种高强度、高模数的纤维材料,其主要成分是碳元素。

碳纤维的生产主要分为以下几步:原料选择碳纤维的原材料是聚丙烯腈(PAN)、沥青和煤焦油。

其中以PAN为主要原料,其次是沥青和煤焦油。

PAN的纤维化程度高,且经济实惠,是碳纤维生产的主要原料。

纤维化PAN经过预处理后,再通过拉伸和碳化的工序,制成碳纤维。

碳纤维的制备过程主要分为三个阶段:预氧化、碳化和石墨化。

预氧化是指将PAN预处理后固化,以便将其碳化成为具有一定强度的原始碳纤维。

碳化是指将预氧化后的PAN在高温下进行重整制备成高强高模的碳纤维。

石墨化是将碳化后的碳纤维在高温下处理,结晶化,以提高其强度与模量。

将制成的碳纤维进行表面处理,并进行丝束整理、筛分、对捻等后处理加工,成为纤维束或纤维绳。

树脂基体的选择和制备树脂基体常用的材料有热固性树脂和热塑性树脂。

热固性树脂多用于碳纤维的制造中,热塑性树脂主要用于易于成型的产品。

热固性树脂主要有环氧树脂、苯醇酚树脂、酚醛树脂等。

环氧树脂是最常用的基体材料,它具有良好的化学稳定性和耐久性,且可通过改变配比,达到不同的性能要求。

热塑性树脂主要有聚酰亚胺树脂、聚酰胺树脂等。

与热固性树脂相比,热塑性树脂具有成型性好、质量稳定、加工稳定等优点,但强度和耐用性较弱。

碳纤维复合材料的制备碳纤维和树脂基体通过复合工艺制成碳纤维复合材料。

碳纤维复合材料的制造一般包括以下工艺流程:布料、预浸渍、硬化、成型、修整、钻孔、表面处理等工序。

布料纤维以规定长度、宽度、厚度等要求,堆放在模具内。

将环氧树脂预浸渍碳纤维纱线匀布在模具上,排出预浸渍后的碳纤维,压实为薄片,形成初步成型。

硬化放入烤箱中,固化出初步制成的树脂固体。

碳纤维树脂复合材料

碳纤维树脂复合材料

碳纤维树脂复合材料碳纤维树脂复合材料是一种由碳纤维和树脂基体组成的复合材料,具有轻质、高强度、耐腐蚀等优点,因此在航空航天、汽车制造、体育器材等领域得到广泛应用。

首先,碳纤维是一种由碳元素组成的纤维材料,具有高强度、高模量、低密度等特点。

它的强度是钢的几倍,密度却只有钢的四分之一,因此在航空航天领域被广泛应用于制造飞机、火箭等载具,能够减轻重量、提高飞行性能。

其次,树脂基体是碳纤维复合材料中的另一个重要组成部分,常用的树脂有环氧树脂、酚醛树脂、聚酯树脂等。

树脂的选择直接影响着复合材料的性能,不同的树脂可以赋予复合材料不同的力学性能、耐热性能、耐腐蚀性能等。

碳纤维树脂复合材料的制备工艺通常包括预浸法、纺丝法、层叠法等。

预浸法是将干燥的碳纤维预先浸渍于树脂中,再经过固化而形成复合材料;纺丝法是通过将树脂和碳纤维同时纺丝并固化而制备复合材料;层叠法则是将预浸的碳纤维层叠在一起,经过加热和压缩而形成复合材料。

碳纤维树脂复合材料具有很高的比强度和比模量,因此在航空航天领域得到广泛应用。

例如,飞机的机身、机翼等部件采用碳纤维树脂复合材料可以大幅减轻重量,提高飞行性能;火箭的外壳、推进器等部件也可以采用碳纤维树脂复合材料,以提高载荷能力和减轻整体重量。

此外,汽车制造领域也是碳纤维树脂复合材料的重要应用领域。

汽车的车身、悬挂系统、制动系统等部件采用碳纤维树脂复合材料可以降低整车重量,提高燃油经济性和行驶性能。

同时,碳纤维树脂复合材料还具有良好的耐腐蚀性能,能够延长汽车的使用寿命。

在体育器材领域,碳纤维树脂复合材料也被广泛应用。

例如,高尔夫球杆、网球拍、自行车车架等都可以采用碳纤维树脂复合材料制造,以提高产品的强度和耐用性。

总的来说,碳纤维树脂复合材料具有轻质、高强度、耐腐蚀等优点,在航空航天、汽车制造、体育器材等领域具有广泛的应用前景。

随着科技的不断进步,碳纤维树脂复合材料的制备工艺和性能将得到进一步提升,为各个领域带来更多的创新和发展机遇。

《碳纤维复合材料》课件

《碳纤维复合材料》课件

切割与加工
在高温下进行热处理,消除材料中的 内应力,提高其稳定性和耐久性。
根据需要,对碳纤维复合材料进行切 割和加工,以满足不同应用的需求。
表面涂装与防护
对碳纤维复合材料表面进行涂装和防 护处理,以提高其耐腐蚀、耐磨等性 能。
碳纤维复合材料的
03
性能与测试
碳纤维复合材料的力学性能
01
02
03
高强度与高刚性
碳纤维复合材料具有极高 的抗拉强度和弹性模量, 使其成为承受重负载和抵 抗变形的理想选择。
疲劳性能优异
碳纤维复合材料在循环载 荷下表现出良好的耐久性 ,适用于需要承受周期性 载荷的场合。
损伤容限高
碳纤维复合材料的独特结 构使其能够承受部分损伤 而不影响整体性能,提高 了结构的安全性。
碳纤维复合材料的热学性能
将碳纤维与树脂等基体材料混合,制备成预浸料。预浸料的制备质 量直接影响复合材料的性能。
铺层与成型
将预浸料按照设计要求进行铺层,然后在一定温度和压力下进行成 型处理,使材料固化形成碳纤维复合材料。
后处理与加工
对成型的碳纤维复合材料进行后处理和加工,以满足不同应用需求 。
碳纤维复合材料的后处理工艺
热处理与消除内应力
将聚合物单体进行聚合,然后纺成纤维。这一过程中,需要控制温度 、压力等参数,以确保纤维的质量。
预氧化与碳化
在高温下进行预氧化和碳化处理,使纤维中的氢、氧等元素得以去除 ,同时形成碳纤维的结构。
表面处理与涂层
对碳纤维表面进行处理和涂层,以提高其与其他材料的粘附性和功能 性。
碳纤维复合材料的成型工艺
预浸料制备
良好的热稳定性
碳纤维复合材料在高温下仍能保持稳定的力学性能, 适用于高温环境。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维用途
混凝土结构物、桥梁及建筑物的梁、柱、
面板加固。
隧道、港湾设施、烟囱、仓库、厂房的加 固。 受盐害的混凝土、桥梁以及河川构造物的 防护和加固。
碳纤维应用
碳纤维加固 碳纤维布 碳纤维棒
碳纤维管
碳纤维加固法
碳纤维加固法可用于混凝土结 构抗弯、抗剪加固,同时广泛 用于各类工业与民用建筑物、 构造物的防震、防裂、防腐的 补强。
纤维缠绕成型

纤维缠绕成型是将浸渍树脂的纤维丝束或带, 在一定张力下,按照一定规律缠绕到芯模上,然 后在加热或常温下固化成制品的方法。纤维缠绕 成型的主要特点是,纤维能保持连续完整,制件 线形可按制品受力情况设计即可按性能要求配置 增强材料,结构效率高,制品强度高;可连续化、 机械化生产,生产周期短,劳动强度小;产品不 需机械加工,但设备复杂,技术难度高,工艺质 量不易控制。
结构和性能
人生最重要的不是努力,不是奋斗,而是抉择。
化学性能
碳纤维具有稳定价态, 具有稳定的化学性质! 耐强酸,耐强碱等优 异性能!
物理性能
耐高温、耐摩擦、 导电、导热
比重不到钢的1/4
抗拉强度是钢的 7~9倍
碳纤维特点
(1) 密度小、质量轻,碳纤维的密度为1.5-2g/cm3,相当 于钢密度的1/4、铝合金密度的1/2; (2) 强度、弹性模量高,其强度比钢大4-5倍,弹性回复为 100%; (3)热膨胀系数小, 导热率随温度升高而下降,耐骤冷、 急热,即使从几千摄氏度的高温突然降到常温也不会炸裂; (4)摩擦系数小,并具有润滑性; (5)导电性好, 25℃时高模量碳纤维的比电阻为 775Ω·cm,高强度碳纤维则为1500Ω·cm; (6)耐高温和低温性好,在3000℃非氧化气氛下不熔化、 不软化,在液氮温度下依旧很柔软也,不脆化;耐酸性好, 对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。除此之外, 碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中 子减速等特性。
抗拉强度大,弹性模量 高,轻质,耐久性能好, 耐磨损,抗腐蚀。用于 鱼杆的配尖、风筝骨架、 账棚撑杆、运动器材等。
高比强、高比 模、耐疲劳、抗 蠕变、耐高温、耐 腐蚀、耐磨损、尺寸稳 定、导电、导热、热膨 胀系数小、自润滑和吸 能抗震等碳纤维的另一 重要特性就是比重小。
碳纤 维棒
碳纤维的制备

碳纤维根据原料不同,可以分为聚丙烯腈基碳纤维、黏 胶基碳纤维和沥青基碳纤维三种。 碳纤维主要经过原料的聚合,纺丝,预氧化,炭化和石 墨化之后即可制得。聚丙烯腈溶液聚合、乳液聚合、悬浮 聚合和本体聚合,通过湿法纺丝或者是干喷湿纺法纺丝制 得原丝。黏胶基碳纤维的制备工艺流程具体如图所示。
飞机 一次构造件:主翼、尾翼、 机体 二次构造件:辅助翼、方向 舵、升降舵 内装材:地板、间隔、梁、 洗面所、座席 火箭 助推器、防护罩、发 动机罩、高频传送器 人造卫星 天线、太阳能电 池板、结构件
汽车 航空航天 国防用碳 纤维布 传动轴、赛车、 尾翼、引擎盖、整流 罩 摩托车 头盔、排气管罩 、后视镜壳 火车列车 列车车体、磁悬 浮列车、座席 .
碳纤维复合材料
碳纤维复合材料
社会一旦有技术上的需要,则这种需要就会比十所大学 更能把科学推向前进.——— 恩格斯
1 2 3 4
5
概括 结构-性能 制备工艺 应用 发展前景
概括--碳纤维
碳纤维(carbon fiber)它不仅具有碳材料的固有本征特性, 又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃 纤维(GF)相比,杨氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比, 不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀, 耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶 液中,时间已过去30多年,它至今仍保持纤维形态。碳纤维作为一种 高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐 射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能。 此外,还具有纤维的柔曲性和可编性。碳纤维既可用作结构材料承载 负荷,又可作为功能材料发挥作用。因此碳纤维及其复合材料近几年 发展十分迅速。

碳纤维复合材料加工工艺

碳纤维增强复合材料一直是被区分为长(连续)纤维 和短纤维来加工的,从典型的300~400米到几个毫米分 为不同的品级。过去10年中,人们一直在改进不同种类的 碳纤维复合材料的性能和加工方法,从短纤维混料注射加 工到层压成型,从预浸料处理到模塑法加工,力求为这种 性能优良的材料寻找到最佳的加工方法。目前常见的生产 工艺有手糊成型工艺、树脂传递模塑、RTM 喷射成型工 艺、注射成型、纤维缠绕成型、拉挤成型
树脂传递模塑 RTM工艺流程
喷射成型工艺
喷射成型是通过喷枪将短切纤维和雾化树脂同时喷 射到开模表面,经辊压、固化制取复合材料制件的方 法。它是为改进手糊成型而创造开发的一种半机械化 成型技术。喷射成型对原材料有一定的要求。如树脂 体系的黏度应适中(0.3~ 0.8Pa· s),容易喷射雾化、 脱除气泡、润湿纤维而又不易流失以及不带静电等。 制品纤维含量控制在28%~33%,纤维长度25~ 50mm。其优点是生产效率比手糊提高2~4倍,劳动 强度低,可用较少设备投资实现中批量生产,材料成 本低;制品整体性好,制件的形状和尺寸不受限制; 可自由调节产品壁厚、纤维与树脂比例。主要缺点是 现场污染大,树脂含量高,制件的承载能力低。
手糊成型工艺
• 手糊工艺的最大特色是以手工操作为主,适于多 品种、小批量生产,且不受制品尺寸和形状的限 制。但这种方法生产效率低、劳动条件差,且劳 动强度大; 制品质量不易控制,性能稳定性差, 制品强度较其他方法低。如图
放个视频先!
教你如何手工制作碳纤维
树脂传递模塑 RTM
• RTM是一种适宜多品种、中批量、高质量符合材 料制品的低成本技术。目前,在发达国家里复合 材料工业已由“产量大、消费大”步入“个性化、 高级化、产量中等”阶段,这也正适合“个性化、 高级化、产量中等”要求的树脂传递模塑(RTM) 工艺,从而使其获得蓬勃发展。如图。
碳纤维增强复合材料

纤维增强基复合材料是由碳纤维织物增强碳 或石墨化的树脂(包括沥青)碳以及化学气相沉 积碳所形成的复合材料,简称碳-碳复合材料。它 以碳纤维或碳纤维织物为增强体,以碳或石墨化 的树脂作为基体。复合以后的这种材料在高温下 的强度好,高温形态稳定,升华温度高,烧蚀凹 陷性,平行于增强方向具有高强度和高刚性,能 抗裂纹传播,可减震,抗辐射。
拉挤成型工艺图示
碳纤维增强基复合材料的分类
尽管碳纤维可单独使用发挥某些功能, 然而, 它属于脆性材料,只有将它与基体材料牢固地结合 在一起时,才能利用其优异的力学性能,使之更好地 承载负荷。因此,碳纤维主要还是在复合材料中作 增强材料。根据使用目的不同可选用各种基体材 料和复合方式来达到所要求的复合效果。碳纤维 可用来增强树脂、碳、金属及各种无机陶瓷。其
分类大致有碳纤维增强陶瓷基复合材料、 碳/碳复合材料
碳纤维增强陶瓷基复合材料
• 陶瓷具有优异的耐蚀性、耐磨性、耐高温性和化学稳 定性, 广泛应用于工业和民用产品。它的弱点是对裂纹、 气孔和夹杂物等细微的缺陷很敏感。碳纤维增强陶瓷可有 效地改善韧性, 改变陶瓷的脆性断裂形态, 同时阻止裂纹在 陶瓷基体中的迅速传播、扩展。目前国内外比较成熟的碳 纤维增强陶瓷材料是碳纤维增强碳化硅材料, 因其具有优 良的高温力学性能, 在高温下服役不需要额外的隔热措施, 因而在航空发动机、可重复使用航天飞行器等领域具有广 泛应用。 • 其主要制备方法有:泥浆浸渗和混合工艺,化学合成 工艺(溶胶-凝胶及聚合物先驱体工艺),熔融浸渗工艺, 原位化学反应(CVD、CVI反应烧结等)等。
碳复合材料的特性
碳复合材料的特性主要表现在力学性能、热物理性能和 热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中, 它是最轻的材料;高温的强度好,在2200℃时可保留室温强 度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强 度和弹性模量高于一般的碳素材料,纤维取向明显影响材料 的强度,在受力时其应力-应变曲线呈现“假塑性效应”即在 施加载荷初期呈线性关系,后来变成双线性关系,卸载后再 加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热 率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由 于热化学和机械过程中引起的固体材料表面损失的现象,通 过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。
பைடு நூலகம்
碳纤维布
工业用碳 纤维布
钓具
钓鱼杆、卷线器 高尔夫 杆、头、面板、鞋 球拍 网球、羽毛球、壁球 自行车 车架、车轮、龙头
体育娱乐 器材用碳 纤维布
钓竿
用碳纤维制造的钓竿具有 轻、坚实、抗拉强度高的 特点,但在使用时应特别 注意防电。
Vision 02
Vision 04
碳纤 维管
管道
表面光滑、重量轻、高 强度、高摸量;耐腐蚀、 抗紫外线不易老化;机 械性能优良等优良特点。
碳纤维增强金属基复合材料
碳纤维增强金属基复合材料是以碳纤维为增强纤维,金 属为基体的复合材料。碳纤维增强金属基复合材料与金属材料 相比, 具有高的比强度和比模量; 与陶瓷相比,具有高的韧性和 耐冲击性能, 金属基体多采用铝、镁、镍、钛及它们的合金等, 其中,碳纤维增强铝、镁复合材料的制备技术比较成熟。制造碳 纤维增强金属基复合材料的主要技术难点是碳纤维的表面涂层, 以防止在复合过程中损伤碳纤维,从而使复合材料的整体性能下 降。目前,在制备碳纤维增强金属基复合材料时碳纤维的表面改 性主要采用气相沉积、液钠法等,但因其过程复杂、成本高,限 制了碳纤维增强金属基复合材料的推广应用。 主要制备工艺方法有:固相法、液相法和原位复合法。固 相法主要有粉末冶金、固态热压法、热等静压法;液态法主要 有真空压力浸渍法、挤压铸造法;原位复合法主要包括共晶合 金定向凝固、直接金属氧化物法、反应生成法。
相关文档
最新文档