电导法测定难溶盐的溶解度和Kspppt课件(20200825195118)

电导法测难溶盐溶解度

电导法测定难溶盐的溶解度 一、实验目的 1.掌握电导法测定难溶盐溶解度的原理和方法 2.掌握电导率仪的使用方法 二、基本原理 惠斯顿电桥 O H pbso pbso 2 4 4 κκκ-=溶液 由电导率仪测出 )]2 1()21 ([2)(24244 - ∞+∞∞+=≈so pb pbso m m m pbso λλλλ 由离子独立移动定律, 查表计算 4 4 )(3pbso pbso m mol C λκ= ?- 或 4 4 1000)(3pbso pbso dm mol C λκ?= ?- 三、装置图 四、操作步骤 1、制备硫酸铅饱和溶液。 2、用0.02mol/L 氯化钾溶液校正电导池常数。 用25℃,0.02mol/lKCL 溶液。查附录二十二,其12765.0-?=m s κ。若实测 12865.0-?=m s κ,则2865.0/2765.0=cell K 。或把电导电极插入KCL 溶液,若显 示12865-?cm us ,只需调“常数”旋钮,使显示为12765-?cm us ,然后把“选择”开关指向“检查”,此时显示值即为cell K 3、测水电导率。 4、测硫酸铅溶液电导率。 )(4pbso m ∞λ=1222421 22110 02.3)]()([2---∞+∞???=+mol m s so pb m m λλ(查附录二十三) 溶解度S=C×M=1.391×10-4×0.303=4.21×10-5 (无单位) 或S=4.21×10-2g/l 六、实验注意事项 1.配制溶液需用电导水(电导率小于1us/cm )。处理方法是,向蒸馏水中加入少量高锰酸钾,用硬质玻璃烧瓶进行蒸馏。 2.饱和溶液必须经三次煮沸制备,以除去可溶性杂质。 3.温度对电导有较大影响,所以测电导率时必须在恒温槽中恒温后方可测定。 4.铂黑电极上的溶液不能擦,用滤纸吸,以免破坏电极表面积。电极不用时,应

AgCl溶度积的测定

AgCl溶度积的测定 一、实验目的 1、学会用电池电动势法测定氯化银的溶度积。 2、加深对液接电势概念的理解及学会消除液接电势的方法。 二、实验原理 电池电动势法是测定难溶盐溶度积的常用方法之一。测定氯化银的溶度积,可以设计下列电池: Ag(s), AgCl(s)┃KCl(a1)‖AgNO3(a2)┃AgCl(s),Ag(s) Ag-AgCl电极的电极电动势可用下式表示 (18-1) 由于AgCl的溶度积Ksp为 Ksp=aAg+ ·aCl- (18-2) 将(19-2)式代入(19-1)式得(18-3) 电池的电动势为电极电势之差。 整理后得lg Ksp= -EF/2.303RT+ lg aAg+ ?aCl- (18-4) 若已知银离子和氯离子的活度,测定了电池的电动势值就能求出氯化银的溶度积。 三、仪器和试剂 电势差计及附件1套; 超级恒温水浴1套; 粗试管 2支; 烧杯(50ml) 2 只; Ag-AgCl电极2只; 饱和氯化钾盐桥2支; KCl(饱和) ; AgNO3(0.1000mol.L-1)。 本实验所用试剂均为分析纯,溶液用重蒸水配制。 四、操作步骤 1、电极的制备 (好像不用) 制备Ag-AgCl电极,将表面经过清洁处理的铂丝电极作为阴极,把经过金相砂纸打磨光洁的银丝电极作为阳极,在镀银溶液中镀银。电流控制在5mA左右,40分钟后在铂丝上镀上紧密的银层。制好的银电极用蒸馏水仔细冲洗。然后用它作阳极,另用一铂丝作阴极,用0.1mol/L的HCl溶液电解,电流同前。通电20分钟,在银层上形成Ag-AgCl镀层(紫褐色)。制成的电极不用时放在含AgCl沉淀的HCl中,暗处保存。 镀银液配方:分别将AgNO3(35-45g)、KS2O5(35-45g)、NaS2O3(200-250g)溶于300mL蒸馏水中,然后,混和前2种溶液,并不断搅拌,生成白色的焦亚硫酸银沉淀,再加入NaS2O3,不断搅拌,直到沉淀消失,加水到1000mL。新配制的镀银溶液略呈黄色,或略混浊或沉淀,放置数日后,经过滤可得非常澄清的镀银液。 制得的Ag-AgCl电极电势之差不得大于5×10-4V。 2、电池的组合 将Ag-AgCl电极按图18-1所示,组合成下列电池: Ag(s), AgCl(s)┃KCl(a1)‖AgNO3(a2)┃AgCl(s),Ag(s) 3、池电电动势的测量 用UJ-25型电势差计测量25。C时电池电动势值。电池电动势的测定可将电池置于25。C 的超级恒温槽中进行。测定时,电池电动势值开始时可能不稳定,每隔一定时间测定一次,到测定得稳定值为止。 五、数据记录和处理 1、记录上述电池的电动势值。 2、已知25。C时0.1000mol/kg硝酸银溶液中银离子的平均活度系数为0.731, 0.1000mol/kg 氯化银溶液中氯离子的平均活度系数为0.769,并将测得的电池电动势代入(19-4)式,求出氯化银的溶度积。

试验报告 镍钴铝三元素复合氢氧化物化学分析方法 第5部分:硫酸根含量的测定 硫酸钡比浊法

镍、钴、铝三元素复合氢氧化物化学分析方法第5部分:硫酸根含量的测定 硫酸钡比浊法 实验报告 北矿检测技术有限公司 周航

1 前言 硫酸根含量测定的方法有:比浊法、离子色谱法、重量法等。重量法是经典方法,该法操作繁琐且不适于硫酸根低含量样品的测定。硫酸钡比浊法是在微酸性条件下,水中硫酸根与氯化钡生成细微的硫酸钡沉淀悬浊液,在一定范围内其浊度可用分光光度计测定,该法适用于较低含量的硫酸根测定,但必须严格控制操作条件。离子色谱法快速灵敏,适用于清洁水样,可同时测定其他多种阴离子,设备成本较高。 这些方法各有优缺点:重量法不适于硫酸根含量低的样品的测定;离子色谱法精密度高但设备价格较贵,酸化处理后样品还需再次处理方能进样;比浊法操作简单、快速,仪器使用范围广泛,通过严格控制操作条件可以达到较好的结果。 综合考虑选择硫酸钡比浊法比作为镍、钴、铝三元素复合氢氧化物中的硫酸根离子含量的测定方法。试料经盐酸分解,加入氯化钡-稳定剂生成细微的硫酸钡沉淀悬浊液,在一定范围内其浊度可用分光光度计测定,以工作曲线法进行定量。 在本研究中,我们做了如下工作:样品前处理方法、试验条件、方法线性范围、重复性和回收率等。实验表明,该方法简单快速,有较好的重现性和精密度。 2 实验部分 2.1 范围 本部分规定了镍、钴、铝三元素复合氢氧化物中硫酸根含量的测定方法。 本部分用于镍、钴、铝三元素复合氢氧化物中硫酸根含量的测定。测定范围:0.10%~1.00%。 2.2 方法提要 试样用盐酸溶解,加入氯化钡-甘油-乙醇混合稳定剂生成细微的硫酸钡沉淀悬浊液,在一定时间内,于分光光度计波长440 nm处测定其吸光度,扣除试剂空白,从工作曲线查得硫酸根的质量浓度。 2.3 试剂 除非另有说明,本部分所用试剂均为分析纯试剂,所用水均为二次去离子水。 2.3.1 盐酸(ρ1.19 g/mL)。

实验6 电导法测定难溶盐的溶解度

实验10 电导法测定难溶盐的溶解度 一、实验目的 1. 掌握电导法测定难溶盐溶解度的原理和方法。 2. 学会电导率仪的使用方法。 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示,即电导: (10.1) 式中G称为电导,单位是西门子S、 导体的电阻与其长度成正比,与其截面积成反比,即: (10.2) 是比例常数,称为电阻率或比电阻。根据电导与电阻的关系,则有: (10.3) k称为电导率或比电导,它相当于两个电极相距1m,截面积为导体的电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol电解质全部置于相距为1m的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C表示,则摩尔电导可以表示为: (10.4) 式中Λm的单位是;C的单位是。Λm的数值常通过溶液的电导率k,经(10.4)式计算得到。而k与电导G有下列关系,由(10.3)式可知: (10.5) 对于确定的电导池来说,是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。

溶液的电导常用惠斯顿电桥来测定,线路如图10.1所示。其中S为信号发生器;R1、R2和R3是三个可变电阻,R x为待测溶液的阻值;H为检流计,C1是与R1并联的一个可 变电容,用于平衡电导电极的电容。测定时,调节R1、R2、R3和C1,使检流计H没有电流通过。此时,说明B、D两点的电位相等,有下面的关系式成立: (10.6) Rx的倒数即为该溶液的电导。 本实验测定硫酸铅的溶解度。直接用电导率仪测定硫酸铅饱和溶液的电导率(K溶液)和配制溶液用水的电导率(K水)。因溶液极稀,必须从溶液的电导率(K溶液)中减去水的电导率(K水),即为: K硫酸铅=K溶液-K水(10.7) 根据10.4式,得到: (10.8) 式中:C是难溶盐的饱和溶液的浓度。由于溶液极稀,Λm可视为Λm∞。因此: (10.9) 硫酸铅的极限摩尔电导可以根据数值求得。因温度对溶液的电导有影响,本实验在恒温下测定。 电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:二次蒸馏水配制 四、操作步骤

(完整版)实验电导法测难溶盐的溶度积

实验 电导法测难溶盐的溶度积 一、实验目的 1. 掌握电导测定的原理和电导仪的使用方法。 2. 通过实验验证电解质溶液电导与浓度的关系。 3. 掌握电导法测定BaSO 4的溶度积的原理和方法。 二、实验原理 导体导电能力的大小常以电阻的倒数去表示,即有 R G 1= 式中G 称为电导,单位是西门子S 。 导体的电阻与其长度成正比与其截面积成反比即: A l R ρ= ρ是比例常数,称为电阻率或比电阻。根据电导与电阻的关系则有: )(l A G κ= κ称为电导率或比电导 ρκ1 = 对于电解质溶液,浓度不同则其电导亦不同。如取1mol 电解质溶液来量度,即可在给定条件下就不同电解质溶液来进行比较。1mol 电解质溶液全部置于相距为1m 的两个平行电极之间溶液的电导称之为摩尔电导,以λ表示之。如溶液的摩尔浓度以c 表示。则摩尔电导可表示为 c 1000κ λ=

式中λ的单位是S.m 2.mol -1,c 的单位是mol.L -1。λ的数值常通过溶液的电导率k 式计算得到。 G A l =κ 或 R A l 1?=κ 对于确定的电导池来说l/A 是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。 在测定电导率时,一般使用电导率仪。使用电导电极置于被测体系中,体系的电导值通过电子线路处理后,通过表头或数字显示。每支电极的电导池常数一般出厂时已经标出,如果时间太长,对于精密的测量,也需进行电导池常数校正。仪器输出的值为电导率,有的电导仪有信号输出,一般为0~10mV 的电压信号。 在测定难溶盐BaSO 4的溶度积时,其电离过程为 BaSO 4 → Ba 2+ + SO 42- 根据摩尔电导率Λm 与电导率κ的关系: )()()(444BaSO c BaSO BaSO m κ=Λ 电离程度极小,认为溶液是无限稀释,则可Λm 用Λm ∞代替。 )()(242-∞+∞∞ +=Λ≈ΛSO Ba m m m m λλ )(),(242-∞ +∞SO Ba m m λλ可通过查表获得。 c ) O H ()() ()(244κκκ-==Λ溶液c BaSO BaSO m 而 )Ba (c )SO (c )BaSO (c 22 44+-== 所以 22 42c )SO (c )Ba (c Ksp =?=-+ 这样,难溶盐的溶度积和溶解度是通过测定难溶盐的饱和溶液的电导率来确定的。很显然,测定的电导率是由难溶盐溶解的离子和水中的H +和OH -所决定的,故还必须要测定电导水的电导率。

7.电导法测定难溶盐的溶解度(1)资料讲解

7.电导法测定难溶盐 的溶解度(1)

电导法测定难溶盐的溶解度 一、实验目的 1.掌握电导法测定难溶盐溶解度的原理和方法 2.掌握电导率仪的使用方法 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示, 即电导: R G 1= (1) 式中G 称为电导,单位是西门子S 、 导体的电阻与其长度成正比,与其截面积 成反比,即: A l R ρ= (2) ρ 是比例常数,称为电阻率或比电阻。 根据电导与电阻的关系,则有:?? ? ??=l A G κ (3) k 称为电导率或比电导κ=1/ρ,它相当于两个电极相距1m ,截面积为 导体的 电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol 电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol 电解质全部置于相距为1m 的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C 表示,则摩尔电导可以表示为: c m κΛ= (4) 式中Λm 的单位是;C 的单位是。Λm 的数值常通过溶液的电导率k ,经(10.4)式计算得到。而k 与电导G 有下列关系,由(10.3)式可知: ?? ? ??=A l G κ 或 A l R ?=1κ (5)

对于确定的电导池来说,l/A 是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。 本实验测定硫酸钡的溶解度。直接用电导率仪测定;硫酸钡饱和溶液的电导率(κ溶液)和配制溶液用水的电导率(κ水)。因溶液极稀,必须从溶液的电导率 (κ溶液)中减去水的电导率(κ水),即为: O H Bbso Bbso 244κκκ-=溶液 根据(4)式,得到: C BaSO mBaSO 4 4κ=Λ式中:C 是难溶盐的饱和溶液的浓度。 由于溶液极稀,Λm 可视为Λm∞。 因此: C BaSO mBaSO 4 4κ=Λ∞ 硫酸钡的极限摩尔电导可以查表得。因温度对溶液的电导有影响,本实验在恒温下测定。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:0.01mol/l 标准氯化钾溶液,BaSO 4(A.R.),电导水。 四、操作步骤 1. 调节恒温槽温度至25±0.1℃。 2.测定电导池常数 用少量0.01mol/L KCl 溶液浸洗电导电极两次,将电极插入盛有适量 0.01mol/L KCl 溶液的锥形瓶中,液面应高于电极铂片2mm 以上.将锥形瓶放入恒温槽内,十分钟后测定电导,然后换溶液再测定两次,求平均值。 3.测定BaSO4溶液的电导率

实验三 电导法测定难溶盐溶度积

齐齐哈尔大学 化学专业实验 实验题目电导法测定难溶盐的溶度积 院系专业班级化学与化学工程学院化学081班 学生姓名宁连双 同组者姓名陈娜董艳丽龚灿灿刘宝艳刘俊宏鲁亮指导老师陈伟 实验日期2011-10-25

实验三 电导法测定难溶盐的溶度积 一、目的 1、掌握电导法测定难溶盐溶解度的原理和方法。 2、加深对溶液电导概念的理解及电导测定应用的了解。 3、测定在BaSO 4在25℃的溶度积和溶解度。 二、基本原理 1.电导法测定难溶盐溶解度的原理 难溶盐的溶解度很小,其饱和溶液可近似为无限稀,饱和溶液的摩尔电导率m Λ与难溶盐的无限稀释溶液中的摩尔电导率m ∞Λ是近似相等的,即 m Λ≈m ∞ Λ 在一定温度下,电解质溶液的浓度c 、摩尔电导率m Λ与电导率κ的关系为 m c κ Λ= (Ⅰ) 电导率κ与电导G 的关系为 κ= l A G=cell K G (Ⅱ) 确定κ值的方法是:先将已知电导率的标准KCl 溶液装入电导池中,测定其电导G ,由已知电导率κ,从式(Ⅱ)可计算出cell K 值。 难溶盐在水中的溶解度极微,其饱和溶液的电导率κ溶液实际上是盐的正、负离子和溶剂(H 2O )解离的正、负离子(H +和OH -)的电导率之和,在无限稀释条件下有 κ溶液=κ盐+κ水 (Ⅲ) 因此,测定κ溶液后,还必须同时测出配制溶液所用水的电导率κ水 ,才能求得κ盐。 测得κ盐后,由式(Ⅰ)即可求得该温度下难溶盐在水中的饱和浓度c ,经换算即得该难溶盐的溶解度。 2.溶液电导测定原理 电导是电阻的倒数,测定电导实际是测定电阻,采用较高频率的交流电,其频率高于1000Hz 。另外,构成电导池的两极采用惰性铂电极,以免电极与溶液间发生化学反应。 精密的电阻常数用途图1所示的交流平衡电桥测量。其中R x 为电导池两极间的电阻。R 1、R 2、R 3在精密测量中均为交流电阻箱(或高频电阻箱),在简单情况下R 2、R 3可用均匀的滑线电阻代替。这样,R 1、R 2、R 3构成电桥的四个臂,适当调节R 1、R 2、R 3,使C 、E 两点的电位相等,CE 之间无电流通过。电桥达到了平衡,电路中的电阻符合下列关系:

电导法测定难溶盐的溶解度

电导法测定难溶盐得溶解度 一、实验目得 1、掌握惠斯顿电桥测定电导得原理及方法 2、掌握电导测定得原理与电导仪得使用方法。 3、学会用电导法测定难溶盐得溶解度 二、基本原理 1、电导法原理 导体导电能力得大小常以电阻得倒数去表示,即有 式中G称为电导,单位就是西门子S。 导体得电阻与其长度成正比与其截面积成反比即: ρ就是比例常数,称为电阻率或比电阻。根据电导与电阻得关系则有: κ称为电导率或比电导,单位:S·m-1 对于电解质溶液,浓度不同则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质溶液来进行比较。lmol电解质溶液全部置于相距为1m得两个平行电极之间溶液得电导称之为摩尔电导,以λ表示之。如溶液得摩尔浓度以c表示。则摩尔电导可表示为 式中λ得单位就是S、m2、mol-1,c得单位就是mol、L-1。λ得数值常通过溶液得电导率k式计算得到。 对于确定得电导池来说l/A就是常数,称为电导池常数。电导池常数可通过测定已知电导率得电解质溶液得电导(或电阻)来确定。

本实验测定PbSO4得溶解度,首先测定PbSO4饱与溶液得电导率,因溶液极稀,必须从k溶液中减去水得电导率(kH20): 因为: 则: C就是难溶盐得饱与溶解度,由于溶液极稀,λ可视为λ0 ,因此: PbSO4得极限摩尔电导λ0可以根据离子独立移动定律得: 其中25℃时得可查表得到。 2、惠斯顿电桥测电阻得原理 三、仪器与试剂 DDS—307型电导仪1台; 玻璃恒温水浴1台; 电导电极(铂黑) 1支; 锥形瓶100ml3个 PbSO4饱与溶液重蒸水 四、实验步骤 1、连接好电路 2、测定重蒸水得电导率 取少量重蒸水,浸洗电导电极两次中,将电极插入盛有适量重蒸水得锥形瓶中,液面应高 于电极铂片2mm以上。将锥形瓶放入恒温水槽中,十分钟后测定电导,然后换溶液再测两次,求平均值。 3、测定PbSO4溶液得电导率

钡含量的测定硫酸钡沉淀重量法

FCLHSTKSHBa001铁矿 ─ 钡含量的测定 ─ 硫酸钡沉淀重量法 F_CL_HS_TKSH_Ba_001铁矿 ─ 钡含量的测定 ─ 硫酸钡沉淀重量法    1 范围  本推荐方法采用硫酸钡沉淀重量法测定铁矿石中钡的含量 铁精矿(m/m)以上钡含量的 测定 硝酸 过滤 残渣用 氢氟酸除硅 碳酸钾熔融转化乙酸铵缓冲溶液(pH5.9)中 再用碳酸盐分离引入的铬 加硫酸使钡定量生 成硫酸钡沉淀    3 试剂  3.1 混合熔剂  一份无水碳酸钠与一份碳酸钾研细混合   3.3 焦硫酸钾 ρ 1.19g 3.5 盐酸 19ρ  1.42g  3.7 氢氟酸 mL11  3.9 氨水 1 30  3.11 硝酸银溶液 3.12 氯化钡盐酸溶液  称取1g氯化钡 加3mL盐酸混匀  10 g/L乙酸铵缓冲溶液 加7.5mL冰乙酸 混匀   3.15 重铬酸钾溶液 3.16 重铬酸钾洗液   3.17 乙酸铵溶液 3.18 硫化氢气体 用气体发生器制取 95)中通硫化氢约10min 2g/L  称0.2g甲基红溶于60mL乙醇中   中 国分 析网

3.21 甲基橙指示剂    4 操作步骤  4.1 称样  按表1取试样    表1 称取试样质量  钡含量(m/m) 试样质量 所用试剂须取自同一试剂瓶 加15mL盐酸加5mL硝酸 取下1)冷却加热至微沸取下用慢速滤纸过滤 99)洗净烧杯6次3次 将沉淀连同滤纸移入铂坩埚中在80020min 用水润湿8滴硫酸(110mL氢氟酸   于铂坩埚中加入3在90010min置于400mL烧杯中洗出坩埚稍冷 用碳酸钠溶液洗涤沉淀及纸至无硫酸根(用氯化钡盐酸溶液检查) 9)将沉淀溶解于原烧杯中(漏斗上盖表皿用热水洗净滤纸 铌和钛等元素的难溶试样  称取试样按4.3.1.1操作进行至 加3g焦硫酸钾熔融熔融5冷却 99)浸取熔融物[当试样铌或二氧化钛含量大于1加1mL过氧化氢]  用慢速滤纸过滤99)洗净烧杯6次 3次灰化以下操作按4.3.1.1从 5g混合熔剂……  4.3.1.3 铅含量大于0.05 用氨水(1再用盐酸(1并过量5用水稀释至100mL通硫化氢5min再通硫化氢5min60min以饱和硫化氢盐酸溶液洗沉淀8收集滤液和洗液于400mL烧杯中1)  4.3.1.4 氧化锶大于0.02 取下用氨水(1

硫酸钡重量法测定硫酸根的含量

硫酸钡重量法测定硫酸根的含量 一原理。 本法基于碳酸钠—氧化锌半熔,将试样中的全部硫转化成可溶性的硫酸盐,然后在微酸性的溶液中与氯化钡作用生成硫酸钡沉淀,经洗涤,烘干,灼烧,称量计算硫酸根的含量。 铅,锑,铋,锡,硅,钛等元素在稀盐酸溶液中易水解而夹杂在硫酸钡沉淀中,或生成硫酸盐沉淀干扰测定。高价铁盐易与硫酸钡形成共沉淀。锰含量高时亦会因共沉淀造成误差。以上元素均能在碳酸钠—氧化锌半熔后,浸取过滤除去。氟离子,硝酸盐,氯酸盐均能在沉淀硫酸钡时形成共沉淀,导致结果偏高。因此必须避免引入或在沉淀前除去。 二试剂配制。 碳酸钠—氧化锌混合物。AR(3+2 ) 氯化钡 AR 10% 三分析步骤。 准确称取试样 0.5000g于底部加有5g碳酸钠-氧化锌混合物的30ml磁坩埚中,搅匀后在覆盖一层碳酸钠—氧化锌混合物,于马弗炉750—800度半熔 1.5小时。取出冷却后,将坩埚移入400ml烧杯中,加150ml

热水在不断搅拌下煮沸10分钟,以浸取熔块。 用热水洗净坩埚,若呈现绿色锰的颜色时,加入5ml乙醇,煮沸使锰还原,有倾泻法过滤,以2%的碳酸钠热溶液洗涤沉淀12次。滤液收集于500ml烧杯中,向滤液中加入1滴0.5%的甲基橙指示剂,用盐酸(1+1)中和变红后在过量5ml,用水稀释至300ml,煮沸2分钟,在不断搅拌下滴入氯化钡热溶液20ml,保温30分钟后在静臵2小时,用定量滤纸过滤,有热水洗涤沉淀无氯离子反应。 将滤纸和沉淀放入已恒量的磁坩埚中,灰化后于750—800度灼烧30分钟,取出,臵于干燥器中冷却室温后称量。 计算: S o4% == G1÷G2×0.4116×100 式中G1 ——硫酸钡沉淀的质量。 G2 ——称取试样量。 0.4116 ——硫酸钡换算成硫酸根的系数。 化验室

实验2 难溶盐的溶度积的测定

实验2 难溶盐的溶度积的测定 一、实验目的 (1)用电池电动势及电导法测定难溶盐AgCl 的溶度积。 (2)熟练掌握电位差计及电导率仪的使用,提高自己的独立工作能力。 二、设计提示 (1)电池电动势法测定难溶盐溶度积的原理: 用电池电动势法测定难溶盐溶度积首先需要设计相应的原电池,使电池反应就是该难溶盐的溶解反应,例如:我们如果要测定AgCl 的溶度积,可设计如下电池: Ag(s) ︱Ag + (a Ag+)‖Cl -(a Cl -)︱AgCl(s)+Ag(s) 左边负极反应: Ag(s)→Ag +(a Ag+)+e - 右边正极反应: AgCl(s)+ e -→Ag(s) + Cl -(a Cl -) 电池总反应: AgCl(s) →Ag(s) + Cl -(a Cl -) AgCl 的溶度积: Ag Cl ln ln()sp zEF K a a RT +-=+? 根据能斯特方程: Ag Cl ln()2RT E E a a F θ+-=-? (4-2-1) 将ln 2sp RT E K F θ=代人(4-2-1)式中,整理的 Ag Cl ln ln()sp zEF K a a RT +-=+? (4-2-1) 若已知银离子和氯离子的活度(可由所配制溶液的的浓度和γ±值计算得 到),测定了电池的电动势E 值,就能求出氯化银的溶度积。 (2)电导法测定难溶盐溶度积的原理: 难溶盐饱和溶液的浓度极稀,可认为m m ∞Λ≈Λ,m ∞Λ的值可由离子的无限稀释摩尔电导率相加而得到。 运用摩尔电导率的公式可以求得难溶盐饱和溶液的浓度。 m ∞ Λ (盐)= κ(盐) / c m ∞ Λ可由手册数据求得,κ可以通过测定溶液电导G 求得,c 便可从上式求得。 电导率κ与电导G 的关系为: cell G G l K A κ==

电导法测定难溶盐的溶解度和Ksp(最新讲义)

电导法测定难溶盐的溶解度和K sp 一、实验目的 1.掌握电导法测定难溶盐溶解度和K sp 的原理和方法 2.掌握电导率仪的使用方法 二、基本原理 Pb 2++ SO 42 - PbSO 4↓ 平衡时,)sp(PbSO SO Pb 424 2K c c =?-+ 故 4424 2PbSO )sp(PbSO SO Pb S K c c == =-+ ∑ ?= += ?+?= =-+--+ + 1000 )(1000 1000 1000 4 424 2424 24 224 PbSO PbSO SO Pb PbSO SO SO Pb Pb i i PbSO λλλλλλκS S c c c 4 4 4 44P b S O P b S O P b S O 6 -P b S O P b S O 1000) (10)(1000λκλκ?= ??= 读数值读数值S (mol·L -1) )s p (P b S O 4K = 2 PbSO 4S 其中:O H PbSO PbSO 244κκκ-=溶液,由电导率仪测出 ][2)SO 2 1 () Pb 2 1 ()(PbSO PbSO 2424 4 ∞∞ ∞- ++=≈λλλλ 可查表。 三、装置图 1.仪器 超级恒温槽 一套 DDS —307型电导率仪 一台 电导电极(镀铂黑) 一支 锥形瓶(200 mL ) 五个 电炉 一台 2.试剂 0.01mol/L 氯化钾溶液 硫酸铅(A.R.) 四、操作步骤 1. 调节恒温槽温度至25±0.1 2. 测定电导池常数 用0.01mol ·L -1的KCl 溶液。查附录,25℃的电导率。用少量标准KCl 溶液洗涤电导电极两次,将电极插入盛适量溶液的锥形瓶中,液面高于电极2毫米以上。将锥形瓶放入恒温槽内,恒温10分钟后,测定其电导率以确定所用电极的电导池常数θ(以24℃为例:查附

分光比浊法测定硫酸根离子

分光比浊法测定硫氰酸铵中硫酸根 摘要:通过实验,建立了在酸性介质中,吸收波长为410 nm、以聚乙烯醇(PVA)作稳定剂测定硫氰酸铵成品中硫酸根的分光比浊分析方法。试验考察了稳定剂的选择、稳定剂的PVA浓度、PVA存在下体系的稳定时间、盐酸加入量、硫氰酸根的影响等因素对该法的影响并进行优化。 由于硫氰酸铵成品中硫酸根含量极少,测定其含量不能用普通的重量法和滴定法,而传统的目视比浊法不能得到精确连续的数据,且带有个人主观性。根据目视比浊法的原理,采用分光光度计比浊法来测定硫氰酸铵成品中少量的硫酸根。本实验基于在酸性介质中,试样溶液中的硫酸盐与加入的钡离子形成细微的硫酸钡结晶,使水溶液混浊,其混浊程度和试样中硫酸盐含量呈正比关系这一原理,采用聚乙烯醇作稳定剂,用分光比浊法测定硫氰酸中硫酸盐,测试结果准确,且操作简便、快捷,可批量检测,尤其适合工厂或基层实验室的常规分析,具有较高的实用价值。 1.实验部分 1.1仪器与试剂 6B-80型COD快速测定仪; 硫酸盐标准溶液:称取0.1479g无水硫酸钠,溶于少量水中,并定容至1000ml,即为0.1mg/ml-1硫酸盐(SO42-)标准贮备溶液。 盐酸:(1+3)盐酸溶液; 无水乙醇(95%,分析纯); 氯化钡溶液:称取62.5g氯化钡 (AR),溶于二次蒸馏水,移入250ml容量瓶,稀释至刻度。 稳定剂:称取20g醇(AR)放入烧杯,加入100 ml二次蒸馏水,置于电炉上加热,边加热边搅拌,直到聚乙烯醇完全溶解,待冷却后移入1000 ml容量瓶,润洗烧杯3次,移入容量瓶,稀释至刻度。 1.2实验方法 称取20g试样(准确至0.0001g),置于干燥清洁的烧杯中,加水20ml,用玻璃棒搅拌5min,用滤纸过滤得澄清待测溶液。取3ml待测液于50ml比色管,加1ml盐酸,摇匀,加入3ml氯化钡和10ml PVA溶液,用水定容至50 ml,摇匀,静置20 min。在410 nm波长、1cm比色皿条件下,以硫酸根标准溶液空白为参比测定其吸光值。 1.3 实验原理 吸光比浊法的原理[2]:以Tyndall效应为基础,当溶液中的颗粒受到光照射后,发生散射作用。散射光强度(I)用reyleigh公式表示: I=KI0uV2/λ 4 (1) 式中:K为常数;I0为入射光强度;K为波长;u为单位体积的粒子数;V为单个粒子的体积。由上式可知,在吸光浊度法测定中,散射光强度I愈大,吸光度A愈高,且与单位体积的粒子数u

难溶盐溶度积的测定

电导法测定PbSO 4的溶度积 张玉 吴玲 一、实验目的 (1)掌握电导法测定难溶盐溶解度的原理和方法; (2)掌握电导率仪的使用方法; (3)注意有毒物质的排放。 二、基本原理 难溶电解质在水中会建立一种特殊的动态平衡。尽管难溶电解质无法溶解, 但仍有一部分阴阳离子进入溶液, 当这两个过程的速率相等时, 难溶电解质的溶解就达到平衡状态, 这样的平衡状态叫沉淀溶解平衡, 其平衡常数叫溶度积。在一定温度下, 一种难溶电解质的饱和溶液中形成一种多相离子平衡, 可表示为: AmBn( s) ? nAm+ ( aq) + mBn- ( aq) K sp= αn (Am+ ) αm ( Bn- ) K sp 称为溶度积常数, 简称溶度积。若能测出难溶电解质的饱和溶液中相应离子浓度, 就可计算出溶度积。难溶盐的饱和溶液浓度很低,可以把浓度当做活度处理,即c ≈α,所以: K sp= cn (Am+ ) cm ( Bn- ) 难溶盐PbSO 4在其饱和溶液中存在如下溶解平衡: PbSO 4(s )?Pb 2+(aq )+ SO 42-(aq ) 其溶度积为: K sp= c (Pb 2+ ) c (SO 42-)=c (PbSO 4) 本实验采用电导法测定PbSO 4的溶度积,惠斯顿电桥 G K G A L L A G cell ?=?=?? =κκ 由电导率仪测出:O H pbso pbso 244κκκ-=溶液 由离子独立移动定律,查表计算:

)]2 1()21([2)(24244 - ∞+∞∞+=≈so pb pbso m m m pbso λλλλ 4 4)(3pbso pbso m m ol C λκ=?- 或 4 4 1000)(3pbso pbso dm mol C λκ?=?- 所以: K sp=c 2(mol.m -3) 因温度对溶液的电导有影响,本实验在恒温下测定。电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、实验仪器与试剂 (1)仪器 电导率仪1台,恒温水浴装置1套,滤纸若干,洗瓶1只,烧杯若干,玻璃棒一根。 (2)试剂 KCl 标准溶液(0.1mol/L),硝酸铅固体试样,去离子水。 四、实验步骤 (1)将恒温水浴温度调至25℃。 (2)制备PbSO 4饱和溶液 准确称取PbSO 4固体试样0.0045g (最好稍微过量一点),放入250ml 烧杯中,用100ml 容量瓶取100ml 去离子水加入烧杯中,放入恒温槽中恒温并用玻璃棒搅拌溶解(由于PbSO 4很难溶解,必要时用电炉加热溶解)。 (3)测定电导池常数k cell 取适量配置好的0.1mol/L KCl 标准溶液,在恒温槽中恒温10分钟后,用电导率仪测其电导率,重复三次。 (4)测定电导水的的电导率 调节好电导率仪的电导池常数k cell ,将电极和电导池用电导水洗干净并擦干,然后测电导水的电导率,重复三次。 (5)测定PbSO 4饱和溶液的电导率

麦氏比浊法

细菌浓度的简单确定法:麦氏比浊法 麦氏比浊管是McFarland发明的一种用于微生物比浊的不同浊度的标准浊度管。具体的配制方法是根据硫酸和氯化钡的比例来定的,有表可查,这样不同比例生成的硫酸钡沉淀的浓度不同,且都有定值。 麦氏比浊管的配比如下: 操作方法: 1、轻摇标准试管。 2、无菌操作将被测定的肉汤培养物加到与标准管相同直径(大小)的无菌试管中。 3、以无菌操作向被测定试管加入无菌生理盐水(NaCl),直到浓度与所要求的标准管的浓度相同。 使用技巧: 1、直接用眼睛看(需要经验,误差较大)。 2、找张白纸,打上平行直线,然后看(如图示,利用光在不同浓度液体折射不同)。

注意事项: 1、如果测定的肉汤培养物不澄清,由培养物的值减去未接种培养基的值来校正细菌浓度。4号管(肉汤培养物)-1号管(孵育过的未接种的肉汤管)=3号管(校正读数)。 2、如果肉汤颜色很深,把未接种试管放在标准管的后面读数即可。 编者注: 1、测定好的细菌,最好做一下梯度稀释涂布计数。 2、此浓度是对应的大肠杆菌的浓度,如果是其他细菌,会有一定的差别,但编者做过的几个菌差别都在一个数量级之内,适合于普通实验。 3、此种方法测定的准确性不是很高,如果是对细菌数量要求较精确的,请用紫外分光光度计。 麦氏比浊法麦氏比浊管 麦氏比浊管

【使用方法】: 1、轻摇标准试管。 2、无菌操作将被测定的肉汤培养物加到与标准管相同直径(大小)的无菌试管中。 3、以无菌操作向被测定试管加入无菌蒸馏水,直到浓度与所要求的标准管的浓度相同。 【计算被测培养物试管的浓度】: 1、第2个标准管为3×108细菌/ml的倍数。 2、细菌浓度标准管号×3×108=该管号的细菌/ml。 3、例如:3号管(#3)为9×108细菌/ml。 【制备所要求的浓度,如需要105细菌的浓度】: 1、相当1号管(3×108)的细菌作1:3稀释到108。 2、再作1:1000稀释。 3、108-103=105 【注意事项】: 1、如果测定的肉汤培养物不澄清。 A、由培养物的值减去未接种培养基的值来校正细菌浓度。 B、列: 4号管(肉汤培养物)-1号管(孵育过的未接种的肉汤管)=3号管(校正读数) 2、如果肉汤颜色很深,把未接种试管放在标准管的后面读数即可。

(新)实验二 电导法测定难溶盐溶度积

实验三 电导法测定难溶盐的溶度积 一、目的 ①掌握电导法测定难溶盐溶解度的原理和方法。 ②加深对溶液电导概念的理解及电导测定应用的了解。 ③测定在BaSO 4在25℃的溶度积和溶解度。 二、基本原理 1.电导法测定难溶盐溶解度的原理 难溶盐如BaSO 4、PbSO 4、AgCl 等在水中溶解度很小,用一般的分析方法很难精确测定其溶解度。但难溶盐在水中微量溶解的部分是完全电离的,因此,常用测定其饱和溶液电导率来计算其溶解度。 难溶盐的溶解度很小,其饱和溶液可近似为无限稀,饱和溶液的摩尔电导率m Λ与难溶盐的无限稀释溶液中的摩尔电导率m ∞ Λ是近似相等的,即 m Λ≈m ∞Λ m ∞Λ可根据科尔劳施(Kohlrausch )离子独立运动定律,由离子无限稀释摩尔电导率相加而 得。 在一定温度下,电解质溶液的浓度c 、摩尔电导率m Λ与电导率κ的关系为 m c κ Λ= (Ⅰ) m Λ可由手册数据求得,κ通过测定溶液电导G 求得,c 便可从上式求得。 电导率κ与电导G 的关系为 κ= l A G=cell K G (Ⅱ) 电导G 是电阻的倒数,可用电导仪测定,上式的K cell =l /A 称为电导池常数,它是两极间距l 与电极表面积A 之比。为防止极化,通常将Pt 电极镀上一层铂黑,因此A 无法单独求得。通常确定κ值的方法是:先将已知电导率的标准KCl 溶液装入电导池中,测定其电导G ,由已知电导率κ,从式(Ⅱ)可计算出cell K 值(不同浓度的KCl 溶液在不同温度下的κ值参见附录)。 必须指出,难溶盐在水中的溶解度极微,其饱和溶液的电导率κ溶液实际上是盐的正、负离子和溶剂(H 2O )解离的正、负离子(H +和OH -)的电导率之和,在无限稀释条件下有 κ溶液=κ盐+κ水 (Ⅲ) 因此,测定κ溶液后,还必须同时测出配制溶液所用水的电导率κ水 ,才能求得κ盐。

实验2难溶盐的溶度积的测定

实验2难溶盐的溶度积的测定 一、 实验目的 (1) 用电池电动势及电导法测定难溶盐 AgCI 的溶度积。 (2) 熟练掌握电位差计及电导率仪的使用,提高自己的独立工作能力。 二、 设计提示 (1)电池电动势法测定难溶盐溶度积的原理: 用电池电动势法测定难溶盐溶度积首先需要设计相应的原电池, 使电池反应 就是该难溶盐的溶解反应,例如:我们如果要测定 AgCI 的溶度积,可设计如下 电池: Ag(s) 1 Ag + (a Ag+) || C 「(a ci -) | 左边负极反应: Ag(s)—Ag +(a Ag+)+e - 右边正极反应: AgCI(s)+ e - —Ag(s) + CI (a cI -) 电池总反应: AgCI(s) — Ag(s) + C 「(a cl-) AgCI 的溶度积: ln G RT ln(a Ag a Cl ) 根据能斯特方程: E E R 】n(a Ag a 。) (4-2-1 ) RT 将E 2F InK sP 代人 ( 4-2-1 )式中,整理的 ln K sp RT ln(a Ag a CI ) (4-2-1 ) 若已知银离子和氯离子的活度(可由所配制溶液的的浓度和 丫 士值计算得 到),测定了电池的电动势 E 值,就能求出氯化银的溶度积。 (2)电导法测定难溶盐溶度积的原理: 难溶盐饱和溶液的浓度极稀,可认为 m , 的值可由离子的无限稀 m m 释摩尔电导率相加而得到。 运用摩尔电导率的公式可以求得难溶盐饱和溶液的浓度。 m (盐)=K 盐)/ C m 可由手册数据求得,K 可以通过测定溶液电导 G 求得,c 便可从上式求得 电导率K 与电导G 的关系为: G- K ceii G

硫酸钡比浊法测定氧化铁中硫酸根

硫酸钡比浊法测定氧化铁中硫酸根 张丽英,李斌 (莱芜钢铁集团有限公司技术中心,山东莱芜 271104) 摘要:在盐酸介质中,钡离子与硫酸根离子生成难溶的硫酸钡,使溶液混浊,采用乙醇作稳定剂,利用分光光度计进行比色,可测定氧化铁中硫酸根。该法手续简便,准确性高。 Determining Sulfate Radical in Iron Oxide by Barium Sulfate Nephelometry ZHANG Li-ying,LI Bin (The Technical Center of Laiwu Iron and Steel Group Co.,Ltd.,Laiwu 271104,Chin a) Abstract:In hyarochloride medium,barium ion reacts ch emically with sulfate radical ion to produce barium sulfate which is defficuulty to solve and do turbidity to solution.Taking on alcohol as stabilizer,using spectrophotometer to do colorimetric analysis the sulfate radical in iron oxi de can be determined.This method has the characters of convenient operation and high accuracy. Key words:nephelometry;sulfate radical;absorbance 1前言 铁氧体是一种应用极为广泛的磁性材料,在电子行业中,从开关电源变压器、功率逆变器、电视、电子仪器中许多电感元件,到集成电感元件都使用铁氧体材料。其中硫酸根是一种非常重要的指标,其行业标准采用目视比浊法测定,误差很大,用X射线荧光光谱分析需要贵重仪器,难以普及。本文介绍了一种采用钡离子与硫酸根离子生成难溶的硫酸钡,当硫酸根离子含量较低时,在一定时间内呈悬浮体,使溶液混浊,然后用比色计进行比色测定的方法。此法手续简便,准确性高。 2试验部分 2.1 主要试剂与仪器 盐酸溶液(1:1);氯化钡(250g/L)溶液;乙醇溶液(30%体积比)

麦氏比浊法

麦氏比浊法制作细菌悬液 麦氏比浊管是McFarland发明的一种用于微生物比浊的不同浊度的标准浊度管。具体的配制方法是根据硫酸和氯化钡的比例来定的,有表可查,这样不同比例生成的硫酸钡沉淀的浓度不同,且都有定值。 麦氏比浊管的配比如下: (1.175%w/v BaCL2·2H2O) 操作方法: 1、轻摇标准试管。 2、无菌操作将被测定的肉汤培养物加到与标准管相同直径(大小)的无菌试管中。 3、以无菌操作向被测定试管加入无菌生理盐水(NaCl),直到浓度与所要求的标准管的浓度相同。 使用技巧: 1、直接用眼睛看(需要经验,误差较大)。 2、找张白纸,打上平行直线,然后看(如图示,利用光在不同浓度液体折射不同)。

注意事项: 1、如果测定的肉汤培养物不澄清,由培养物的值减去未接种培养基的值来校正细菌浓度。4号管(肉汤培养物)-1号管(孵育过的未接种的肉汤管)=3号管(校正读数)。 2、如果肉汤颜色很深,把未接种试管放在标准管的后面读数即可。 编者注: 1、测定好的细菌,最好做一下梯度稀释涂布计数。 2、此浓度是对应的大肠杆菌的浓度,如果是其他细菌,会有一定的差别,但编者做过的几个菌差别都在一个数量级之内,适合于普通实验。 3、此种方法测定的准确性不是很高,如果是对细菌数量要求较精确的,请用紫外分光光度计 ================= 在临床微生物学检验中,麦氏比浊法常用于细菌鉴定、药敏实验前配置菌液时大致判断菌液浓度的一种方法,通常认为,如将配菌液浓度配成0.5麦氏比浊管时,相当于1.5×108细菌数/ml,由于方法本身就是一种估计的方法,所以尽管不同细菌大小差异很大,除了真菌孢子,细菌的差别不大,结果不会有影响。但是,标准比浊管的浓度,是药敏实验结果的影响因素之一。 K-B法药敏试验时接种物配制有两种方法,第一种是肉汤增菌法(对数生长法),是用接环挑取3-5个细菌菌落入肉汤增菌管中进行增菌4-6小时,然后用生理盐水或肉汤对增菌管中的培养物进行稀释校正使其浓度达到0.5麦氏比浊标准(因为经过增菌培养其培养物浓度一般都高于此标准)。第二种方法是直接菌落法:从孵育18-24小时的非选择性培养基上,挑取3-5菌落,直接用肉汤或盐制成悬液作为接种,然后将浊度调整至0.5麦氏比浊标准。此法是检测苛养菌(如嗜血杆菌、淋病奈瑟菌和链球菌)和潜在的对甲氧西林耐药的葡萄球菌的推荐方法。 0.5麦氏比浊管配制方法:相当于1.5×108细菌数/ml

相关文档
最新文档