高一联赛班春季班第14讲初等数论——格点与高斯函数
【VIP专享】高中数学竞赛讲义——格点问题
格点问题[赛点直击]1.格点,是指方格纸上纵线和横线的交点,如果取一个格点为原点,通过该点的横线与纵线为x 轴和y 轴,且设一个方格的边长为1,那么,格点就是平面直角坐标系中宗横坐标都为整数的点。
因此,格点又称为整点。
2.坐标平面内顶点为格点的三角形称为格点三角形,类似地也有格点多边形的概念。
3.格点多边形的面积必为整数或半整数(奇数的一半)。
4.格点关于格点的对称点为格点。
5.设格点多边形内部有I 个格点,边界上有p 个格点,则格点多边形的面积为S=I+P/2-1(见例5)。
[赛题精析]例1 平面上整点(纵、横坐标都是整数的点)到直线s=5/3x+4/5的距离中的最小值是 ( )A . D .120130 思路点拨:可以引进整点坐标,利用点到直线的距离公式,建立整点到直线距离的二元函数。
通过对距离函数最值的探求获得问题的解。
而不同角度的探求又能得到不同的解法。
解法一 已知直线可写成25x-15y+12=0整点到直线的距离为()00,x y d 由,均可为整数知必为整数,从而为无理数,否定C,D. 0x 0y 00251512x y -+d 若选A ,则002515121x y -+=即0025151x y -=±有00251513x y -=-或00251511x y -=-但是5的倍数,不会取-13,-11。
故否定A ,从而选B ()00002515553x y x y -=-解法二 距离d 的大小完全有来确定,当最小时,d 12152500+-y x 12152500+-y x 也相应的取最小值。
由于是5的倍数,故)35(515250000y x y x -=-。
另一方面,当时,.d 212152500≥+-y x 4,200-=-=y x 212152500=+-y x ∴取最小值。
故选B 。
85343452=评注:(1)直线上设有格点,因为如果有,则0121525=+-y x 是5的倍数,与 相矛盾。
高中数学竞赛讲义——格点问题
⾼中数学竞赛讲义——格点问题格点问题[赛点直击]1.格点,是指⽅格纸上纵线和横线的交点,如果取⼀个格点为原点,通过该点的横线与纵线为x 轴和y 轴,且设⼀个⽅格的边长为1,那么,格点就是平⾯直⾓坐标系中宗横坐标都为整数的点。
因此,格点⼜称为整点。
2.坐标平⾯内顶点为格点的三⾓形称为格点三⾓形,类似地也有格点多边形的概念。
3.格点多边形的⾯积必为整数或半整数(奇数的⼀半)。
4.格点关于格点的对称点为格点。
5.设格点多边形内部有I 个格点,边界上有p 个格点,则格点多边形的⾯积为 S=I+P/2-1(见例5)。
[赛题精析]例1 平⾯上整点(纵、横坐标都是整数的点)到直线s=5/3x+4/5的距离中的最⼩值是()A B .120 D .130 思路点拨:可以引进整点坐标,利⽤点到直线的距离公式,建⽴整点到直线距离的⼆元函数。
通过对距离函数最值的探求获得问题的解。
⽽不同⾓度的探求⼜能得到不同的解法。
解法⼀已知直线可写成25x-15y+12=0整点()00,x y 到直线的距离为d =由0x ,0y 均可为整数知00251512x y -+必为整数,从⽽d 为⽆理数,否定C,D. 若选A ,则002515121x y -+=即0025151x y -=±有00251513x y -=-或00251511x y -=-但()00002515553x y x y -=-是5的倍数,不会取-13,-11。
故否定A ,从⽽选B 解法⼆距离d 的⼤⼩完全有12152500+-y x 来确定,当12152500+-y x 最⼩时,d 也相应的取最⼩值。
由于)35(515250000y x y x -=-是5的倍数,故212152500≥+-y x 。
另⼀⽅⾯,当4,200-=-=y x 时,212152500=+-y x .∴d 取最⼩值85343452=。
故选B 。
评注:(1)直线0121525=+-y x 上设有格点,因为如果有,则)53(5152512x y y x -=+-=是5的倍数,与相⽭盾。
数论的方法和技巧 03高斯函数
高斯函数[x]的性质及应用定义:用[x]表示不超过x 的最大整数,函数y=[x]称为高斯函数.例如,5]5[=.2]2[-=-用{x}表示x- [x]称为x 的小数部分.例如,22}2{,0}5{-=-=等。
显然,.1}{0}.{][<≤+=x x x x1.函数y =[x]及y={x}的性质.0]}{[,0}][{],[]][[===x x x x ① .1][][1+<≤<-x x x x ②③若,y x <则].[][y x ≤即函数][x 是不减的,④若,0>b 由),0,(,b r z q r bq a ≤≤∈+=得⋅=q ba][⑤若,Z n ∈则,][][n x n x +=+}.{}{x n x =+ }.{}{}{],[][][y x y x y x y x +≥++≤+⑥⑦若,0,0≥≥y x 则].[][][y x xy ⋅≥⑧若,}{β=x 则⋅<≤∈=)10,(},{}{ββZ n n nx2.函数][x y =和}{x y =的图象:][x y = }{x y =由图象可以看出,函数y=[x]的图象是个阶梯形的图象, 而y={x}则是一个周期为1的周期函数.在解与[x]有关的题目时,通常可以利用[x]性质把问题转化为不等式求解,因此限定x 的范围,使问题得解,(1)与 [x] 有关的计算 例1 求和式]10123[1001nn ∑=的值例2. (1993年亚太地区竞赛题)求函数[]]4[]3[]35[]2[)(x x x x x x f ++++=在0≤x≤100上所取的不同的整数值的个数.例3. (1993年全国高中联赛)试求正整数]31010[3193+的末两位数字.例4. 设,N n k ∈、,41212+++=k k α求n α的整数部分][n α除以k 所得的余数.(2)运用 [x ] 的性质证明含[f (n )]的恒等式和不等式 例5. 对于任意),1(>∈n N n 试证明:][log ][log ][log ][][][323n n n n n n n n +++=+++例6. 若),7()1(,][+⋅⋅+=∈n n n x N x n 求证:.67][24++=n n x例7. ,N n ∈求证:①].[][2]2[1][nx nnx x x ≤+++例8. 设有n 个小于1 000的正整数:⋅n a a a 、、21其中任意两个数j i a a 、的最小公倍数,1000],[≥j i a a 求证:①⋅<∑=2311i ni a(3)运用 [x ] 的性质解含[α]的恒等式和不等式 例9. 解方程02][lg lg 2=--x x例10.(1989年第二十三届全苏竞赛题)当n 是怎样的最小自然数时,方程1989]10[=x n有整数解?例11. (第三届美国邀请赛题)前1000个正整数中可以表示成]8[]6[]4[]2[x x x x +++ 的正整数有多少个?例12. ,N n ∈求证:].[][])[1(][][ny nx y x n y x +≤+-++(4)运用 [x ] 的性质解含[α]的杂题 例13. 设集合},,23|{2N n n n a a A n n ∈-==}.],213[)(|)({N n n n n f n f B ∈++==求证:.,N B A B A =∅=例14. 设,=x求[x]的末三位数.+5(1000)62例15. 令],2[n a n 求证:在数列}{n a 中有无穷多个项是2的整数次方幂,例16. (1992年四川高中竞赛题)设正实数a >1,自然数n ≥2.且方程[ax ]=x 恒有n 个不同的解.求a 的取值范围.练习题1.用<x> 表示不小于x 的最小整数,则方程024][82=++><x x 的解为( )A. -5 <x< -4 B . 一6<x< -5 C.x< -5 D. -5≤x≤-42.方程8082]310[3]310[31212-=+⨯-+⨯-++x x x x 的整数解的个数为( )A. 0B. 1C. 2D. 33.=++++]32[]32[]32[]31[10002 。
1高斯函数
第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x],即y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n 1]+[x+n 2]+…+[x+nn 1-]=[nx]; 证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa +11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 .3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 .2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+[4y]+ 月份 1 2 3 4 5 6 7 8 9 10 11 12[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字(见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 .2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= .3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+ 第一讲:高斯函数 3[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:对应的m 值 11 12 1 2 3 4 5 6 7 8 9 101.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . ③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = .②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 .2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .4 第一讲:高斯函数②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23] ③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.[练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数).6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 第一讲:高斯函数 5⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= . 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ]. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.8.不等问题:[例8]:(1981年美国数学奥林匹克试题)对正整数n 和一切实数x.求证:[nx]≥1][x +2]2[x +…+nnx ][. [解析]:为方便,记a n =1][x +2]2[x +…+nnx ][.用数学归纳法证明:①当n=1时,a 1=[x],[nx]=[x]⇒原不等式成立;②假设当k<n 时,原不等式均成立,即a 1≤[x],a 2≤[2x],…,a n-1≤[(n-1)x];注意到:a k -a k-1=kkx ][⇒ka k -ka k-1=[kx]⇒na n =a 1+(2a 2-a 1) 6 第一讲:高斯函数+(3a 3-2a 2)+…+[na n -(n-1)a n-1]=a 1+(2a 2-2a 1)+(3a 3-3a 2)+…+(na n -na n-1)+(a 1+a 2+…+a n-1)=[x]+[2x]+[3x]+…+[nx]+(a 1+a 2+…+a n-1)≤n[nx]⇒a n ≤[nx].[练习8]:1.(第10届地中海地区数学奥林匹克试题)设x 为大于1的实数.证明:(][}{x x x +-}{][x x x +)+(}{][x x x +-][}{x x x +)>29.2.(2005年国家集训队训试试题)求所有正整数m 、n,使得不等式[(m+n)α]+[(m+n)β]≥[m α]+[m β]+[n(α+β)]对任意实数α、β都成立.3.(2005年国家集训队选拔考试试题)设n 是任意给定的正整数,x 是正实数.证明:∑++-=nk x kx x k x 1])1)[1(][(≤n.第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x]与y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n1]+[x+n2]+…+[x+nn 1-]=[nx];证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+ n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa+11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .解:因f(x)+f(-x)=(x a +11-21)+(x a -+11-21)=x a +11+xxa a +1-1=0⇒f(-x)=-f(x);设f(x)=k+α,其中,k ∈Z,0≤α<1,①若α=0,则f(x)=k ⇒-f(x)=-k ⇒[f(x)]=k,[f(-x)]=-k ⇒[f(x)]+[f(-x)]=0;②若α≠0,则f(x)=k+α⇒-f(x)=-k-α= -(k+1)+(1-α)⇒[f(x)]=k,[f(-x)]=-(k+1)⇒[f(x)]+[f(-x)]=-1⇒[f(x)]+[f(-x)]的值域是{-1,0}. 2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 . 解:令g(x)=kx+k,由图知g(2)≤1,g(3)>1⇒41<k ≤31. 3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 . 解:令f(k)=[51-k ]-[52-k ],则f(k+5)=[515-+k ]-[525-+k ]=[1+51-k ]-[1+52-k ]=[51-k ]-[52-k ]=f(k),故f(k)是周期为5的函数;计算可知:f(2)=0,f(3)=0,f(4)=0,f(5)=0,f(6)=1;由x k =x k-1+1-5f(k)⇒x k -x k-1=1-5f(k)⇒x 2008=x 1+(x 2- x 1)+(x 3-x 2)+…+(x 2008-x 2007)=x 1+2007-5[f(2)+f(3)+…+f(2008)]=x 1+2007-5[4001(f(2)+f(3)+…+f(6))+f(2)+f(3)]=3;同理可得y 2008=402.所以,2008棵树的种植点为(3,402).2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+ [4y ]+[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字 (见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 . 解:因c=20,y=8,d=18,m=4⇒d+[2.6m-0.2]+y+[4y ]+[4c]-2c=18+[10.2]+8+[2]+[5]-40=3≡3(mod7)⇒2008年6月18日是星期三.2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值. 解:因为0<1<2π,2π<2、3<π,π<4<23π,23π<5、6<2π⇒sin1、sin2、sin3∈(0,1),sin4、sin5∈(-1,0)⇒[sin1]=第一讲:高斯函数 3[sin2]=[sin3]=0,[sin4]=[sin5]=-1⇒[sin1]+[sin2]+[sin3]+[sin4]+[sin5]=-2.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= . 解:因为0<1<2π,2π<2<π,43π<3<π,π<4<23π,23π<5<2π,47π<6<2π⇒sin1∈(0,1),cos2∈(−1,0),tan3∈(−1, 0),sin4∈(−1,0),cos5∈(0,1),tan6∈(−1,0)⇒[sin1]+[cos 2]+[tan 3]+[sin 4]+[cos5]+[tan 6] =0+(-1)+(-1)+(-1) +0+(-1)=-4.3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数. 解:当20052k <1,即k<44时,[20052k ]=0;当1≤20052k <2,即45≤k<63时,[20052k ]=1;当2≤20052k <3,即64≤k<77时,[20052k ]=2; 当3≤20052k <4,即78≤k<89时,[20052k ]=3;当4≤20052k <5,即90≤k<100时,[20052k ]=4;当5≤20052k <6,即100≤k<109时,月份 1 2 3 4 5 6 7 8 9 10 11 12 对应的m 值111212345678910[20052k ]=5;当6≤20052k <7,即110≤k<118时,[20052k ]=6;当7≤20052k <8,即119≤k<126时,[20052k ]=7;…,集合{n|n=[20052k ], 1≤k ≤2004,k ∈N}的元素个数=1503.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . 解:由k<)1(+k k <k+21⇒2)1(+n n <a n <2)1(+n n +21n ⇒n+1<n a n 2<n+2⇒[n a n 2]=n+1. ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . 解:设f(x)=nx 3+2x-n,易知,当n 为正整数时,f(x)为增函数;f(1)=2>0,且当n ≥2时,f(1+n n )=n(1+n n )3+21+n n -n=3)1(+n n (- n 2+n+1)<0⇒x n ∈(1+n n ,1)⇒n<(n+1)x n <n+1⇒a n =[(n+1)x n ]=n ⇒10051(a 2+a 3+…+a 2011)=2013. ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 解:由b n =[5n a ]=[523-n ]⇒b 5k+r =[52)5(3-+r k ]=[3k+523-r ]=3k+[523-r ](r=0,1,2,3,4)⇒b 5k =3k-1,b 5k+1=b 5k+2=3k,b 5k+3=3k+1,b 5k+4=3k+2⇒b 5k-4+b 5k-3+b 5k-2+b 5k-1+b 5k =15k-10⇒b 1+b 2+…+b 2007=(b 1+b 2+…+b 5)+…+(b 401×5-4+b 401×5-3+b 401×5-2+b 401×5-1+b 401×5)+(b 401×5+1+b 401×5+2)=152)4011(401+-10×401+(3×401+3×401)=(15×201-4)401=1207411.3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 4 第一讲:高斯函数2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:1.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .解:当2t ≤k<2t+1时,[log 2k]=t,t=0,1,2,…,且在区间[2t ,2t+1)中的正整数有2t 个.设f(x)=[log 2x],注意到29=512,所以, [log 21]+[log 22]+[log 23]+…+[log 2500]=∑=5001)(k k f =f(1)+∑-=1222)(k k f +∑-=12232)(k k f +∑-=12243)(k k f +∑-=12254)(k k f +∑-=12265)(k k f +∑-=12276)(k k f +∑-=12287)(k k f +∑=50028)(k k f =0+1×21+2×22+3×23+4×24+5×25+6×26+7×27+8(28-11)=3498.②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . 解:因为1≤k ≤9⇒[lgk]=0;10≤k ≤99⇒[lgk]=1;100≤k ≤999⇒[lgk]=2;1000≤k ≤2010⇒[lgk]=3;所以,[lg1]+ [lg2]+[lg3]+…+[lg2010]=60×1+900×2+1011×3=4923.③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.解:由[log 36]=[log 37]=[log 38]=1⇒[log 36]+[log 37]+[log 38]=3;[log 39]=[log 310]=…=[log 326]=2⇒[log 39]+[log 310]+ …+[log 326]=36;[log 327]=[log 328]=…=[log 380]=3⇒[log 327]+[log 328]+…+[log 380]=162;[log 381]=[log 382]=…= [log 3242]=4⇒[log 381]+[log 382]+…+[log 3242]=648;3+36+162+648=849;[log 3243]=[log 3244]=…=[log 3728]=5⇒ [log 3243]+[log 3244]+…+[log 3728]=2430⇒n=474.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .解:当log 2n 为整数时,{log 2n}=[log 2n](n=20,21,…,210);当log 2n 为整数时,{log 2n}=[log 2n]+1;所以,{log 21}+{log 22}+…+{log 21991}=[log 21]+[log 22]+…+[log 21991]+1991-11;由a=2,1024=210<1991<211⇒m=10,由1991-210=967⇒b=967⇒ [log 21]+[log 22]+…+[log 21991]+1991-11=[2×9-2]29+2+10×968+1991-11=19854.2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .解:当k 为整数时,[k ]+[-k ]=0(k=12,22,…,19892),当k 不是整数时,设k =n+α(0<α<1),则[k ]=n,[-k ]=[-n-α]=[-(n+1)+(1-α)]=-(n+1)⇒[k ]+[-k ]=-1⇒[1]+[2]+[3]+…+[19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]=-1989×1990+1989=-19892.②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.解:因为nlg2和nlg5是无理数,那么可以表示nlg2=m+a 其中m=[nlg2],a={nlg2}≠0,而nlg5=n-nlg2=n-m-a=(n-m-1)+(1- a)⇒[nlg5]=n-m-1⇒[nlg2]+[nlg5]=n-1=2012⇒n=2013.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = . 解:由1222012++k k <1⇒2012+2k <2k+1⇒2k>2012⇒k>11⇒当k>11时,[1222012++k k ]=0;当k=0时,[1222012++k k ]=1006;当k=1时,[1222012++k k]=503;当k=2时,[1222012++k k ]=250;当k=3时,[1222012++k k ]=126;当k=4时,[1222012++k k ]=63;当k=5时,[1222012++k k ]=31;当k=6时,[1222012++k k ]=16;当k=7时,[1222012++k k ]=8;当k=8时,[1222012++k k ]=4;当k=9时,[1222012++k k ]=2;当k=10、第一讲:高斯函数 511时,[1222012++k k ]=1⇒∑+=+20121]222012[k k k =1006+503+250+126+63+31+16+8+4+2+1+1=2012.②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.解:设下x=a n ×2n+a n-1×2n-1+…+a 2×22+a 1×21+a 0×20,其中a i ∈{0,1}(i=0,1,2,…,n),则x-2[2x ]=a 0;[2x ]-2[22x]=a 1; [22x ]-2[32x ]=a 2,…,[nx 2]-2[12+n x ]=a n ⇒a 0+a 1+a 2+…+a n =(x-2[2x ])+([2x ]-2[22x ])+([22x ]-2[32x ])+…+([n x2]- 2[12+n x])=x-([2x ]+[22x ]+[32x ]+…+[12+n x ])=x-m=x 的“亏损数”⇒亏损数”为9的最小正整数x=1+2+22+…+28=511. 4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .解:由81<2x <8⇒-3<x<3⇒[x]=-3,-2,-1,0,1,2;①若[x]≤-2,则x 2=2[x]+3<0,没有实数解;②若[x]=-1,则x 2=1⇒x=-1; ③若[x]=0,则x 2=3,没有符合条件的解;④若[x]=1,则x 2=5,没有符合条件的解;⑤若[x]=2,则x 2=7⇒有一个符合条件的解x=7⇒ A ∩B={-1,7}.②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .解:因|x|<2⇒[x]的值可取-2,-1,0,1;当[x]=-2,则x 2=0无解;当[x]=-1,则x 2=1⇒x=-1;当[x]=0,则x 2=2无解;当[x]=1,则x 2=3⇒x=3⇒A ∩B={-1,3}.③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . 解:由0≤2cos 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,cosx=0,tanx 无意义;当[tanx]=1时,cosx=±22, 注意:[tanx]=1⇒x=k π+4π(k ∈Z);当[tanx]=2时,cosx=1⇒sinx=0⇒tanx=0,矛盾. ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 . 解:由0≤2sin 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,sinx=0,tanx=0⇒x=k π;当[tanx]=1时,sinx=±22,注意:[tanx]=1⇒x=2k π+4π(k ∈Z);当[tanx]=2时,sinx=1⇒cosx=0⇒tanx=0无意义.2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .6 第一讲:高斯函数解:由4[x]2-36[x]+45<0⇒23<[x]<215⇒2≤[x]≤7⇒2≤x<8. ②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23]解:因[|x 2-1|]=10⇔10≤|x 2-1|<11⇔-11<x 2-1≤-10,或10≤x 2-1<11⇔x ∈(-23,-11]∪[11,23),选(C).③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 解:显然x>0;①若x ≥3,则[x]≥3⇒x [x]≥27>29;②若0<x<2,则0≤[x]<2⇒x [x]<22=4<29;③若2≤x<3,则[x]=2⇒x 2=29 ⇒x223. 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .解:由x ≥[x]=872+x ⇒1≤x ≤7⇒[x]=1,2,3,4,5,6,7⇒x=1,33,41,7.②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .解:1,2005,2006,2007.③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .解:设2x+1=k,则x=21-k ,3x-465=6389-k =k+6383-k ,于是原方程等价于[k+6383-k ]-k=0⇒[6383-k ]=0⇒0≤6383-k<1⇒338≤k<344⇒k=13,14⇒解是x=6,213. ④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 解:设2x-21=k ∈Z,则x=412+k ,3x+1=k+1+432+k ,于是原方程等价于[432+k ]=-1,即-2<432+k ≤-1⇒-211<k ≤-27⇒k=-5,-4⇒x=-49,-47⇒所有实根之和为-4. 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q ])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.第一讲:高斯函数 7 [练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).解:由x-1<[x]≤x;①当x ≥3时,x 3-3[x]≥x 3-3x=x(x 2-3)≥3(32-3)=18;②当x ≤-3时,x 3-3[x]<x 3-3(x-1)=x(x 2-3)+3≤ -3[(-3)2-3]+3=-15;③当-3<x<3时,[x]=-3,-1,-1,0,1,2;若[x]=-3,则x 3=3[x]+4=-5,不合要求;若[x]=-2,则x 3=3[x]+4= -2⇒x=-32,合要求;若[x]=-1,则x 3=3[x]+4=-1,不合要求;若[x]=0,则x 3=3[x]+4=4,不合要求;若[x]=1,则x 3=3[x]+4= 7⇒x=37,合要求;若[x]=2,则x 3=3[x]+4=10⇒x=310,合要求⇒(-32)3+(37)3+(310)3=15.2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .解:由[x 3]+[x 2]+[x]∈Z ⇒{x}−1∈Z ⇒{x}=0⇒x ∈Z ⇒x 3+x 2+x=-1⇒(x+1)(x 2+1)=0⇒x=-1.②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. 解:设[x]=n,x-[x]=α(0≤α<1),则x 2−2x=(n+α)2-2(n+α)=n 2-2n+α2+2(n-1)α,所以原方程等价于[n 2-2n+α2+2(n-1)α]=n 2-2n ⇔[α2+2(n-1)α]=0⇔0≤α2+2(n-1)α<1;当α=0时,不等式成立,此时,x=n;当α≠0时,由0≤α2+2(n-1)α<1⇔0<α<1)1(2+-n -(n-1)⇔0<x-n<1)1(2+-n -(n-1)⇔x ∈(n,1)1(2+-n +1)(n=1,2,…). ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 解:由[x]+[!x 3]+[!x 5]+[!x 7]=1993⇒[x]<1993⇒x<1994⇒[!x 7]=0⇒[x]+[!x 3]+[!x5]=1993⇒x>5!;设x=5!n+r(0≤r<5!=120)⇒(120n+r)+(20n+[6r ])+n=1993⇒141n+r+[6r ]=1993=14×141+19⇒n=14,r+[6r]=19⇒r=17⇒x=1697. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.解:因为当3k≤n<3k+1时,[log 3n]=k(k=0,1,2,…),且区间[3k,3k+1)内的正整数个数=3k+1-3k=2×3k,所以,S k =[log 31]+[log 32]+ [log 33]+[log 34]+…+[log 3(3k+1-1)]=2(0×30+1×31+2×32+…+k ×3k)=(23k-43)3k +43;令(23k-43)3k+43≤2007⇒(2k- 1)3k≤2675⇒k ≤5;S 5=1391,2007-1391=6×101⇒n=36+100=829. ②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数). 解:{5,6}.6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 ⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= .解:若a 为负整数,则a 2>0,2b(a+b)<0,不可能,故a ≥0;于是a 2=2b(a +b)<2(a+1)⇒a 2-2a-2<0⇒0≤a<1+3⇒a=0,1,8 第一讲:高斯函数2;a=0时,b=0;a=1时,2b 2+2b-1=0⇒b=213-;a=2时,b 2+2b-2=0⇒b=3-1. 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .解:由[x]2+[y]2=50⇒[x]=±1,[y]=±7;[x]=±5,[y]=±5;[x]=±7,[y]=±1.每组解有4种情况,每种情况下的面积为1⇒图形的面积是12.②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.解:设[x]=a,[y]=b,即所有这样的点(x,y)组成的图形就是a ≤x<a+1,b ≤y<b+1界定的区域,它的面积为1,又2011是质数,所以满足[x][y]=2011的点(x,y)组成的图形是4个面积为1的区域,即[x]=1,[y]=2011;[x]=2011,[y]=1;[x]=−1,[y] =−2011;[x]=−2011,[y]=−1.这些图形的总面积是4.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .解:由[x][y]=2013=1×2013=3×671=11×183=33×61,共有16种情况,每种情形下的面积为1,所以,所有点(x,y)组成的图形面积为16.3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7解:设a n =(3+8)2n +(3-8)2n =(17+122)n +(17-122)n ,则a 1=34,a 2=342-2=1154,a n+2=34a n+1-a n ⇒a 1≡2(m0d8),a 2≡2(m0d8),a 3≡34×2-2≡2(m0d8)⇒a n ≡2(m0d8);又因0<(3-8)2n <1⇒[(3+8)2n ]=a n -1⇒[(3+8)2n]≡1(m0d8).选(A).②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .解:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<(0.008)300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?解:设[x ]=n,由[x ]≤x <[x ]+1⇒n ≤x <n+1⇒n 2≤x <(n+1)2⇒n 2≤[x ]<(n+1)2⇒n ≤][x <n+1⇒n ≤[][x ]<n+1⇒[][x ]=n ⇒[][x ]=[x ]成立.②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ].第一讲:高斯函数 9解:因(n +1+n )2=2n+1+2)1(+n n <2n+1+[n+(n+1)]=4n+2⇒n +1+n <24+n ⇒[n +1+n ]≤[24+n ];若存在某个正整数n,使得[n +1+n ]≠[24+n ],则[n +1+n ]<[24+n ];设[24+n ]=k,则n +1+n <k ≤24+n⇒2n+1+2)1(+n n <k 2≤4n+2⇒2)1(+n n <k 2-(2n+1)≤2n+1⇒4n(n+1)<[k 2-(2n+1)]2≤4n(n+1)+1(因4n(n+1)与4n(n+1)+1是连续整数)⇒[k 2-(2n+1)]2=4n(n+1)+1⇒k 2=4n+2,但任意整数的平方被4除不余2,矛盾. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. 解:设[r]=n,r=n+α(0≤α<1),则[r+100i ]=[n+α+100i ]=n(当0<α+100i <1时),或n+1(当1≤α+100i<2时),设其中有 73-k 个n,k 个n+1,则(73-k)n+k(n+1)=546⇒n=7+7335k -⇒k=35,n=7⇒α+10056<1,α+10057≥1⇒10043≤α<10044⇒7+10043≤r<7+10044⇒743≤100r<744⇒[100r]=743. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 解:设f(x)=[x]+[2x]+[4x]+[8x]+[16x]+[32x],则f(x)单调不减;由f(x)≤[(1+2+4+8+16+32)x]=[63x]≤63x ⇒x ≥6312345>195;f(196)=63×196=12348⇒x<196⇒x ∈(195,196);令t=x-195,则t ∈(0,1),且f(x)=[195+t]+[2(195+t)]+ [4(195+t)]+[8(195+t)]+[16(195+t)]+[32(195+t)]=63×195+[t]+[2t]+[4t]+[8t]+[16t]+[32t]<12285+0+1+3+7+15+31 =12342⇒方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解.3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.解:由a n+1-a n =b([c n ++1]-[c n +]),由题知,a n+1-a n =0,或2⇒b([c n ++1]-[c n +])=0,或2;由c n ++1-c n +=cn c n ++++11≤1⇒c n +<c n ++1≤c n ++1⇒[c n +]<[c n ++1]≤[c n +]+1⇒[c n ++1]-[c n +]=0,或1;显然b ≠0,当b([c n ++1]-[c n +])=2时,b=2,[c n ++1]-[c n +]=1;由a 1=2[c +1]+d=1⇒c ≥-1,d=1-2[c +1];注意到2k a =2k-1⇒2[c k +2]+d=2k-1⇒2[c k +2]+1-2[c +1]=2k-1⇒[c k +2]-[c +1]=k-1对任意的k ∈N +恒。
高一联赛班春季班第11讲初等数论——唯一分解定理
唯一分解定理:每个大于1的自然数n 均可分解为有限个素数之积,如不计素数在乘积中的顺序,那么这种分解方式是唯一的.将相同的素因子写在一起,那么n 可以唯一地写成:1212k k n p p p ααα=⋅⋅⋅其中12,,,k p p p ⋅⋅⋅为互不相同的素数,而12,,,k ααα⋅⋅⋅是正整数,上式称为n 的标准分解.自然数n 的正约数个数公式:12()(1)(1)(1)k n τααα=++⋅⋅⋅+.第11讲 初等数论唯一分解定理11.1唯一分解定理【例1】 ⑴数135720132015⨯⨯⨯⨯⋅⋅⋅⨯⨯的末三位数字为多少?⑵完全平方数除以1999所得的不同余数有几个?【例2】 设,a b 为正整数,1a b ≤<.证明:连续b 个整数中必有两个数的积被ab 整除.【例3】 记1!2!100!S =.证明:有一个整数k ,1100k ≤≤,使!S k 是一个完全平方数,并且这样的k是唯一的.【例4】 证明:若整数,a b 满足2223a a b b +=+,则a b -和221a b ++都是完全平方数.【例5】 证明:任意正整数可以表示为(不同)素因子的个数相等的正整数之差.【例6】 设,,a b c 是给定的整数.证明:有无穷多个正整数n ,使得32n an bn c +++不是完全平方数.【例7】 求正整数k ,使得存在函数:f N Z →满足:⑴(2000)2001f =;⑵()()()((,)),,f ab f a f b kf a b a b N =++∀∈.(其中(,)a b 表示,a b 的最大公约数.)【例8】 设12n p p p p =是最初的n 个质数的乘积,这里*n N ∈,2n ≥.证明:1p -和1p +都不是完全平方数.【例9】 求最小的质数(3)p >,使得不存在非负整数,a b 满足32a b p -=.【演练1】证明:存在无穷多个由连续3个正整数组成的数组,使得该数组中的每个数都可以表示为两个整数的平方和.(追问:是否存在这样的连续4个正整数?)实战演练【演练2】已知存在*,m n N ∈,使得195m n k =-,正整数k 的最小值为多少?【演练3】求出所有的正整数,a b ,使得对所有的正整数n ,n n a b +都是正整数的1n +次幂.【演练4】设正整数,,,a b c d满足ab cd+++不是素数.=,求证:a b c d【演练5】任意给定正整数n,证明:存在连续的n个正整数都是合数.。
高斯函数.doc
精英班数学讲义高斯函数一、知识纲要1 、定义: 设 x R ,用 x 表示不超出 x 的最大整数。
则 y x 称为高斯函数,也叫取整函数。
明显,y x 的定义域是 R ,值域是 Z 。
任一实数都能写成整数部分与非负纯小数之和,即 x x a 0 a 1 ,所以, x x x 1,这里, x 为 x 的整数部分,而 x x x 为 x 的小数部分。
定理 2 设 f (x) x x ,则 f ( x) 是一有界、周期为1 的非单一函数,其图像如( b ).2 、性质(a)(b)1、函数 y x 是一个分段表达的不减的无界函数,即当 x 1 x 2 时,有 x 1x 2 ;2、 n x nx ,此中 n Z ;3、 x1x xx 1 ;4、若 xyn ,则 x n a, y n b, 此中 0 a, b 1 ;5、关于一确实数 x, y 有 xy x y ;6、若 x 0, y 0 ,则 xy x y ;7、x x 1( x 不是整数时)x( x 是整数时 )x8、若 n Nx;当 n 1时,xx ;,则nn9、若整数 a,b 合适 abq r ( b 0, q, r 是整数, 0 r b ),则a q ;b10、 x 是正实数, n 是正整数,则在不超出x 的正整数中, n 的倍数共有x 个;n下边再来议论高斯函数 x 的图像及 x 的图像和性质 .关于函数 y x ,怎样做出它的图像呢?我们先来剖析一下高斯函数x 的图像的基天性质和特点 .(1) 由 y x 的性质知 x 的图形在 y x 的图形的下方 .(2) 由 y x 的性质知 x 的图像是一组阶高为 1的平行于 x 轴的平行线段 这组平行线段呈阶,梯形 .可见函数 yx 是一个不减 (非单一 ) 的非周期的函数,其图像以下 ( a )例 1 、方程 [ x]x 1 实数根的个数例 2 、函数 f (x) 定义在 R 上,对随意x R , 有 f ( x 1) f (x) ,则函数 f ( x) 在 R 上能否为增函数,请说明原因。
培优联盟骨干教师数学讲座-竞赛培优课件讲座(共82张PPT)
单墫:怎样搞数学竞赛 【很重要的高中竞赛学习策略】
在进度方面: 要在高一开学之前的那个暑假里把整个高中 的数学内容全部学完,并在高一上 学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了120分,不可 小视。然后,就是竞赛内容了,不要以为看几本 竞赛书就可以了,因为那些书 上讲得较粗略;要多向老师学习并要不断地总结重要的思想方法,使自己能够 灵活运用。
几个重要的极值:到三角形三顶点距离之和最小的点——
费马点,到三角形顶点距离的平方和最小的点——重心。
三角形内到三边距离之积最大的点——重心。
几何不等式 简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大 在周长一定的简单闭曲线的集合中,圆的面积最大 在面积一定的n边形的集合中,正n边形的周长最小 在面积一定的简单闭曲线的集合中,圆的周长最小 几何中的运动:反射、平移、旋转。
复数方法、向量方法。
2、代数
在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。 三倍角公式,三角形的一些简单的恒等试,三角形不等式。 第二数学归纳法。 递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。 N个变元的平均不等式,柯西不等式,排序不等式及应用。
3、立体几何 多面角,多面角的性质;三面角、直三面角的基本性 质;正多面体, 欧拉定理;体积证法;截面,会作截面、表面展开图。 4、平面解析几何 直线的法线式,直线的极坐标方程,直线束及其应; 二元一次不等式表示的区域;三角形的面积公式;圆锥 曲线的切线和法线;圆的幂和根轴。 5、其他 抽屉原理;容斥原理;极端原理;集合的划分;覆盖。
漫话高斯函数
漫话高斯函数作者:仓万林来源:《新高考·数学基础》2019年第02期“数学王子”高斯小时候的故事,连小学生都知道.在许多人眼中,他就是数学的代名词.高斯(Gauss,1777 1855),德国著名数学家,近代数学奠基者之一.如果推选世界十大数学家,高斯是其中的一位;如果推选世界三大數学家,高斯仍然位列其中.一、高斯函数简介我们把不超过实数x的最大整数称为x的整数部分,记作[x].取整函数y=[x]早在18世纪就为“数学王子”高斯采用,因此得名为高斯函数.和前面遇到的狄利克雷函数一样,高斯函数也是高中阶段我们会遇到的感觉“怪怪”的函数.它的图象是由一些高低不同的水平线段组成,形状上像个阶梯,通常义称为“阶梯函数”.二、高斯函数的应用例1 (2017年北京顺义区二模)某学校为了提高学生综合素质、发展创新能力和实践能力,促进学生健康成长,开展评选“校园之星”活动.规定各班每10人推选一名候选人,当各班人数除以10的余数大于7时再增选一名候选人,那么,各班可推选候选人数y与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[x/10]B.y=[x+2/10]c.y=[x+3/10]D.y=[x+4/10]答案 B.解析由题意,根据规定每10人推选一名代表,当各班人数除以10的余数大于7时再增加一名代表,即余数分别为8,9时可以增选一名代表,此时要进一位,所以x最小应该加2,最大要小于3,因此利用取整函数可表示为y=[x+2/10],所以选项B是正确的.点评本题在处理时,除了用高斯函数性质来分析外,也可以直接特殊化确定结论.例2 (2016年高考课标理科卷)Sn为等差数列{an}的前n项和,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如:[0. 9]=0,[lg99] =1.(1)求bl,b11,b101;(2)求数列{bn}的前1 000项和.解析(1)设{an}的公差为d,据已知有7+21d=28,解得d=l,所以{an}的通项公式为an=n.b1=[lg1]=0,b11=[lg11] =1,b101=[lg101]=2.(2)因为bn={ 0,1≤n<10, 1,10≤n<100, 2,1OO≤n<1 OOO, 3,n=1 OOO,所以数列{bn)的前1 000项和为1×90+2×900+3×1=1 893.点评原本简单的基本量运算问题,和高斯函数进行整合后立即变得很新颖.一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”.要看清问题的本质,我们可以在阅读上多下功夫.类比取整函数,我们不难构造出小数函数f(x)=x-[x].图象如图2所示:例3 已知x为实数,[x]表示不超过x的最大整数,则函数f(x)=x- [x]在R上为()A.奇函数B.偶函数C.增函数D.周期函数答案 D.解析因为f(x)=x-[x],则f(x+1)=(x+1)- [x+1]=x+1- ([x]+1)=x-[x]=f(x),所以f(x) =x一[x]在R上是周期为1的函数,故选D.1855年高斯去世,留下遗言把正十七边形(高斯第一个给出了正十七边形的尺规作图法)刻在墓碑上,母校哥廷根大学实现了他的遗愿,树立了以正十七棱柱为底座的墓碑,由于完整的十七边形,看起来会和圆难以区分,所以用正十七边形的各顶点代替,刻在墓碑上,以此纪念“数学王子”对数学的贡献.。
数论的方法和技巧 03高斯函数
高斯函数[x]的性质及应用定义:用[x]表示不超过x 的最大整数,函数y=[x]称为高斯函数.例如,5]5[=.2]2[-=-用{x}表示x- [x]称为x 的小数部分.例如,22}2{,0}5{-=-=等。
显然,.1}{0}.{][<≤+=x x x x1.函数y =[x]及y={x}的性质.0]}{[,0}][{],[]][[===x x x x ① .1][][1+<≤<-x x x x ②③若,y x <则].[][y x ≤即函数][x 是不减的,④若,0>b 由),0,(,b r z q r bq a ≤≤∈+=得⋅=q ba][⑤若,Z n ∈则,][][n x n x +=+}.{}{x n x =+ }.{}{}{],[][][y x y x y x y x +≥++≤+⑥⑦若,0,0≥≥y x 则].[][][y x xy ⋅≥⑧若,}{β=x 则⋅<≤∈=)10,(},{}{ββZ n n nx2.函数][x y =和}{x y =的图象:][x y = }{x y =由图象可以看出,函数y=[x]的图象是个阶梯形的图象, 而y={x}则是一个周期为1的周期函数.在解与[x]有关的题目时,通常可以利用[x]性质把问题转化为不等式求解,因此限定x 的范围,使问题得解,(1)与 [x] 有关的计算 例1 求和式]10123[1001nn ∑=的值例2. (1993年亚太地区竞赛题)求函数[]]4[]3[]35[]2[)(x x x x x x f ++++=在0≤x≤100上所取的不同的整数值的个数.例3. (1993年全国高中联赛)试求正整数]31010[3193+的末两位数字.例4. 设,N n k ∈、,41212+++=k k α求n α的整数部分][n α除以k 所得的余数.(2)运用 [x ] 的性质证明含[f (n )]的恒等式和不等式 例5. 对于任意),1(>∈n N n 试证明:][log ][log ][log ][][][323n n n n n n n n +++=+++例6. 若),7()1(,][+⋅⋅+=∈n n n x N x n 求证:.67][24++=n n x例7. ,N n ∈求证:①].[][2]2[1][nx nnx x x ≤+++例8. 设有n 个小于1 000的正整数:⋅n a a a 、、21其中任意两个数j i a a 、的最小公倍数,1000],[≥j i a a 求证:①⋅<∑=2311i ni a(3)运用 [x ] 的性质解含[α]的恒等式和不等式 例9. 解方程02][lg lg 2=--x x例10.(1989年第二十三届全苏竞赛题)当n 是怎样的最小自然数时,方程1989]10[=x n有整数解?例11. (第三届美国邀请赛题)前1000个正整数中可以表示成]8[]6[]4[]2[x x x x +++ 的正整数有多少个?例12. ,N n ∈求证:].[][])[1(][][ny nx y x n y x +≤+-++(4)运用 [x ] 的性质解含[α]的杂题 例13. 设集合},,23|{2N n n n a a A n n ∈-==}.],213[)(|)({N n n n n f n f B ∈++==求证:.,N B A B A =∅=例14. 设,=x求[x]的末三位数.+5(1000)62例15. 令],2[n a n 求证:在数列}{n a 中有无穷多个项是2的整数次方幂,例16. (1992年四川高中竞赛题)设正实数a >1,自然数n ≥2.且方程[ax ]=x 恒有n 个不同的解.求a 的取值范围.练习题1.用<x> 表示不小于x 的最小整数,则方程024][82=++><x x 的解为( )A. -5 <x< -4 B . 一6<x< -5 C.x< -5 D. -5≤x≤-42.方程8082]310[3]310[31212-=+⨯-+⨯-++x x x x 的整数解的个数为( )A. 0B. 1C. 2D. 33.=++++]32[]32[]32[]31[10002 。
高斯函数——精选推荐
⾼斯函数⾼斯函数⼀、定义对于任意R x ∈,[]x 是不超过x 的最⼤整数,称[]x 为x 的整数部分。
y=[]x 称为定义在实数集上的函数,即取整函数,⼜称为⾼斯函数。
由定义知,[]x x ≤,故[]0≥-x x ,称[]x x -为x 的⼩数部分,记作{}x 。
y={}x 称为x 的⼩数部分函数。
如[]23.2=,[]33.2-=-,[]025.0=;{}3.03,2=,{}7.03.2=-,{}25.025.0=,{}75.025.0=-。
⼆、性质1、[]x y =的定义域为R ,值域为Z ;{}x y =的定义域为R ,值域为[)1,0。
2、[][]11+<≤<-x x x x3、y=[x]是不减函数,即若21x x ≤,则[][]21x x ≤4、[x+n]=n+[x],{x+n}={x},其中x ∈R,n ∈N. 证明:因为n+x=n+[x]+{x}及0≤{x}<1, 所以n+[x]≤n+x5、[x+y]≥[x]+[y],其中x,y ∈R ,且{x}+{y}≥{x+y} 证明:x+y=[x]+[y]+{x}+{y},0≤{x}<1,0≤{y}<1 x+y=[x+y]+ {x+y}即[x]+[y]+{x}+{y}=[x+y]+ {x+y} 因为{x}+{y}≥{x+y}所以[x+y]≥[x]+[y]说明:{x}+{y}≥{x+y}是显然成⽴的。
0≤{x}+{y}<2 若{x},{y}都⼩于1/2⼀般地,[]∑∑==≥ni i n i i x x 11 ,R x i ∈,[][]x n nx ≥特别地,??≥?b a n b na ,N n ∈ 6、[][][]y x xy ?≥,其中+∈R y x ,,⼀般地有[]+==∈≥∏∏R x x x i ni i n i i ,11特别地[][]x x nn ≤,+∈R x7、[]??=n x n x ,其中N n R x ∈∈, [][]x n nx =,??=???mn x n m x 证明:(1)因为[][]11+<≤<-x x x x 所以[][])1(+<≤x n nx x n ,由性质5,[][][])1(+<≤x n nx x n 所以[][][]1+<≤x nnx x因此[][]x n nx =??。
高中数学竞赛专题讲义-高斯函数
高斯函数(1)[知识点金]1. 有关概念对于任意实数x ,[]x 为不超过x 的最大整数,,[]y x =称为取整函数或叫高斯函数,并将{}[]y x x x ==-称为小数部分函数,表示x 的小数部分.2. 重要性质(1) []y x =的定义域是R ,值域为Z ;(2) 如果,x R n Z ∈∈,则有[][]n x n x +=+;(3) 对任意x R ∈,有[][][]1,1x x x x x x ≤<+-<≤;(4) 当x y ≤时,有[][]x y ≤,即[]y x =是不减函数;(5) 对于,x y R ∈,有[][][][][]1x y x y x y +≤+≤++;(6) 如果,n N x R +∈∈,则[][]nx n x ≥;(7) 如果,n N x R +∈∈,则[]x x n n ⎡⎤⎡⎤≥⎢⎥⎢⎥⎣⎦⎣⎦. 3. 常用方法(1) 定义法 (2) 讨论 (3) 分组法 (4) 去整法 (5) 构造法[例题精析]例1 求方程21310380x x +⎡⎤-⨯+=-⎣⎦的解的个数.例2 解方程 [][]83523x x -=.例3 求方程[]2lg lg 20x x --=的实数根的个数.例4 求函数15()1(0100)15x f x x x -⎡⎤⎡⎤=+<<⎢⎥⎢⎥⎣⎦⎣⎦的值域.例5 求证:方程[][][][][][]248163212345x x x x x x +++++= 无实数解.例6 (1) ,x R n N ++∈∈,且1至x 之间的整数中,有x n ⎡⎤⎢⎥⎣⎦个是n 的倍数. (2) 在!n 中,质数P 的最高方次数是23(!)n n n P n p p p ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ . (3) x 为实数,n 为正整数,求证: [][]121.n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦例7 若实数x 满足192091546100100100x x x ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ,求[]100x 的值.例8 求100123101n n =⎡⎤⎢⎥⎣⎦∑的值.例9 求2000010010103⎡⎤⎢⎥+⎣⎦的个位数字.例10 设[]x 表示不超过实数x 的最大整数,求集合2,12004,2005k n n k k N ⎧⎫⎡⎤⎪⎪=≤≤∈⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭的元素个数.[同步检测1]1.求232007232007⎡⎡⎡++++++⎢⎢⎢⎣⎦⎣⎦⎣⎦的值. 2. 已知,x y 满足[][]23325y x y x ⎧=+⎪⎨=-+⎪⎩,求x y +的取值范围. 3. 求方程[]2tan 2cos x x =的解集. 4. 解方程 []2440510x x -+=. 5. 求方程[]2870x x -+=的所有解. 6. 解方程[]33x x -=. 7. 求函数1122(),(0,90)1122x f x x x ⎡⎤⎡⎤-⎢⎥⎢⎥=⋅∈⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦的值域. 8. 求实数933110103⎡⎤⎢⎥+⎣⎦的末两位数字.9. 对任意的n N +∈,计算和1022k k k n S ∞+=⎡⎤+=⎢⎥⎣⎦∑.10. 计算和式5020305503n n S =⎡⎤=⎢⎥⎣⎦∑的值.11. 设M 为一正整数,问方程[]{}222x x x -=在[]1,M 中有多少个解?12. 对自然数n 及一切自然数x ,求证: [][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ .13. 在区域{}(,),0,1x y x y x y >=中,求函数[][][][](,)1x yf x y x y x y +=⋅+++的值域,其中[]a 表示a 的整数部分.14. 设n 是给定的大于1的正整数,求证: 存在唯一的正整数2A n <,使得21n n A ⎡⎤+⎢⎥⎣⎦.高斯函数(2)前述部分重要性质的证明:性质5: []{}[]{}[][][]{}{},,x x x y y y x y x y x y ⎡⎤=-=-+=+++⎣⎦[][]0x y =++或1性质6: []{}[][]{}[]{}[],x x x nx n x n x n x n x n x ⎡⎤=+=+=+≥⎡⎤⎣⎦⎣⎦ 性质7: []1x x x x x x x n x n n n x n n n n n n n n n ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤≤<+⇒≤<+⇒≤<+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ [][]1x x x x x n n n n n ⎡⎤⎡⎤⎡⎤⎡⎤⇒≤<+⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. 例11.从992到1992的整数中,有多少个数是7的倍数?如果79929931992k⋅⋅ ,求最大的正整数k .例12. 求1992!末尾的0 的个数.例13.在整数列22221231980,,,,1980198019801980⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 中,包含着多少个互不相等的整数?例14.求数列1,2,2,3,3,3,,,,,k k k k个的通项公式.[同步检测2]1.[][]x y =是1x y -<的 条件.A. 充分不必要 B 必要不充分 C. 充分必要 D.既不充分也不必要2.在1000!的十进制展开中,末尾有 个零.3.方程[]292x x -=的实数解为 .4.求和++++ .5.求证:对于任意实数,x y 都有[][][][][]22x y x x y y +≥+++6.对于n 为大于2 的正整数,求证:(1)1424n n n n ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦.7.求和[]102421log N N =∑。
初中数学竞赛中的高斯函数问题
2中等数学●数学活动课程讲座●初中数学竞赛中的高斯函数问题姜照华(山东省枣庄市第二十九中学,277000)中图分类号:0174文献标识码:A文章编号:1005—6416(2010)11—0002—04(本讲适合初中)在初中数学竞赛中,经常出现含有取整符号【石】的问题.所谓的【茗】,就是表示不超过实数髫的最大整数,例如,【3.4】=3,【一2.7】=一3.这一规定最早为大数学家高斯所使用,故【菇】被称为高斯函数.很明显,由规定直接可得:(1)当石是整数时,【茗】=茗;’(2)当石不是整数时,茗一l<【石】<戈.将两种情况合在一起,即是对任一实数z有茗一1<【戈】≤戈.运用这一基本性质和高斯函数的意义,可轻松地解决相关的赛题.1求单个高斯函数值例1设a:堑羔;丛.贝0【d16】=一(2008,“五羊杯”数学竞赛(初三))【分析】注意到a:巫#-q卢:亟≠(0<芦<1)能使a+卢=届与qB=1.因此,可以通过计算a16+口16的值进行判断.解设卢:笪≯.则a+卢=石,邮=1.于是,a2+矿=(a+卢)2—20口=3,a4+∥=(a2+矿)2—2(af t)2=7,a8+矿=(∥+矿)2—2(af t)4=47,a16+矿=(a8+矿)2—2(q8)8=2207.由0<卢<1,知0</316<1.所以,2206<O t l6<2207.收稿日期:2010一∞一2l因此,【a16】=2206.例2计算【V(五i-乃赢i三丽】的值(2008共出现了2008次).(2008,青少年数学国际城市邀请赛)【分析】尽管有2008次开平方运算,只要从里往外耐心地进行估算,规律自然会显现出来.解记d。
=√2008+42008+…+以008 (共7/,个2008,乃=l,2,…).由44<√2008<45,知452<2008+44<2008h俪<2008+45<462.则45<42008+~/2008<46,即45<Ⅱ2<46.故452<2008+45<2008+a2<2008+46<462.于是,45<以008+02<46,即45<a3<46.同理,45<a4<46,……45<1/,2瞄<46.所以,【a2瞄】=45.例3设一11 52—[(10—+——+…+_xll-1)2][(1l x12]'1)2]L10×l l J L11×12Jr(49xS0—1)‘1【49x50J则[30S】=().(A)l(B)2(C)3(D)0(2002,“五羊杯”学竞赛(初二))【分析】此题需要化简s,以便判断30S2010年第11期3的僵哆卜f 哪两个连续的整数之I 刚.解当n ≥l O ,且n 是整数时,【咄1”…)-2+志1】【n(,l +)J 一【¨、¨’17’n(,l +)J=n(,l +1)一2=(n 一1)(n+2).故s=志+百未+-.+石b.注意到玎去酉=丁1Iil 一j 丽1).N3s=(i }一古)+(;【_一吉)+…+(三i 一击)lI111l=一+一+…一….9。
高中数学竞赛讲义-高斯函数
§28高斯函数数论函数][x y =,称为高斯函数,又称取整函数. 它是数学竞赛热点之一.定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -==由][x 、}{x 的定义不难得到如下性质:(1)][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[ (2)对任意实数x ,都有1}{0},{][<≤+=x x x x 且. (3)对任意实数x ,都有x x x x x x ≤<-+<≤][1,1][][.(4)][x y =是不减函数,即若21x x ≤则][][21x x ≤,其图像如图I -4-5-1;}{x y =是以1为周期的周期函数,如图I -4-5-2.图Ⅰ—4—5—1 图Ⅰ—4—5—2(5)}{}{];[][x n x x n n x =++=+.其中*∈∈N n R x ,. (6)∑∑==∈≥+≥++≥+ni iin i iR xx x y x y x x y x y x 11],[][};{}{}{{];[][][;特别地,].[][ba nb na ≥ (7)][][][y x xy ⋅≥,其中+∈R y x ,;一般有∑∏=+=∈≥ni iin i iR xx x 11],[][;特别地,*∈+∈≤N n R x x x n n ,],[][.(8)]][[][nx n x=,其中*∈+∈N n R x ,.例题讲解1.求证:,2!211--=⇔k n n n 其中k 为某一自然数.2.对任意的∑∞=+*+=∈01].22[,K k kn S N n 计算和3.计算和式.]503305[502的值∑==n nS4.设M 为一正整数,问方程222}{][x x x =-,在[1,M]中有多少个解?5.求方程.051][4042的实数解=+-x x6..][3]3[2]2[1][][:,,nnx x x x nx N n R x ++++≥∈+∈*证明7.对自然数n 与一切自然数x ,求证:].[]1[]2[]1[][nx nn x n x n x x =-+++++++ .8.求出]31010[10020000+的个位数字例题答案:1.证明:2为质数,n!中含2的方次数为∑∞==1].2[)!(2t t n n若∑∑∞=-=--------=-=++++====1111221111122221]2[]2[)!(2,2t k t k k t k t k k n n n 则故!.|21n n -反之,若n 不等于2的某个非负整数次幕,可设n=2s p ,其中p >1为奇数,这时总可以找出整数t ,使+++=<<--+ ]2[]2[)!(22!,222211p p n n p s s t s t 的方次数为中所含于是 ≤++- 0]2[p t s ].2[]22[])12(2[])222[(21p n p p p p t s t s s t t s t s s s -------+=-=-=+++由于12,2)!(22!,2]2[,221----≤-=-<<n t s ts n n n p 则的方次数中含故则n !.这与已知矛盾,故必要性得证. 2.解:因]212[]22[11+=+++k k n n 对一切k =0,1,…成立,因此, ].2[]22[]212[111+++-⋅=+k k k n n n又因为n 为固定数,当k 适当大时,.)]2[]2([,0]2[,1201n nn S n n K k k k k ==-==<∑∞=+ 故从而3.解:显然有:若.,,1][][][,1}{}{R y x y x y x y x ∈++=+=+则503是一个质数,因此,对n=1,2,…,502, 503305n 都不会是整数,但503305n +,305503)503(305=-n可见此式左端的两数的小数部分之和等于1,于是,[503305n ]+.304]503)503(305[=-n 故 ∑∑===⨯=-+==25115021.76304251304]),503)503(305[]503305([]503305[n n n n n S4.解:显然x =M 是一个解,下面考察在[1,M]中有少个解.设x 是方程的解.将222}{}{}{2][x x x x x +⋅+=代入原方程,化简得=}]{[2x x,1}{0].}{}]{[2[2<≤+x x x x 由于所以上式成立的充要条件是2[x ]{x }为一个整数..1)1(],1[,.)1())1(21(2),1[,11.2)1,[),12,,1,0(2}{,][个解中有原方程在因此个解中方程有可知在又由于个解中方程有即在则必有设+--⋅=-+++-≤≤+-==∈=M M M M M M M M m m m m m k mkx N m x5.解:.0][,1][][不是解又因<+<≤x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥>⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥<⎩⎨⎧≤-->--⎪⎩⎪⎨⎧≤+->+-+∴.217][,23][,211][;217][,23][,25][.07][2)(3][2(.0)11][2)(5][2(.051][4][4,051][40)1]([422x x x x x x x x x x x x x x 或 .2269,02694;2229,02294;2189,01894;229,0294:,876][2][2222==-==-==-==-==x x x x x x x x x x 分别代入方程得或或或解得经检验知,这四个值都是原方程的解.6.这道题的原解答要极为复杂,现用数学归纳法证明如下. 【证明】.,2,1,][2]2[][ =+++=k kkx x x A k 令 由于.,1],[1命题成立时则==n x A.,,,],[][][][][][][])[])1([(]))2[(]2([])1[(]([][]2[])2[(])1[(][])1[(]2[][][])1[(]2[][][])1[(]2[][)(:].[],2[22,],)1[()1()1(],[,][,][,].)1[(,],2[],[,1122112111221111121证毕均成立故原不等式对一切命题成立时即故相加得所以成立对一切即因为即有时命题成立设*---------∈=≤∴=+++≤++-++-++-+=+++-+-++-+++≤++++++-+++=+-+++=+++-==--=---=-=-=--≤≤≤-≤N n k n kx A kx k kx kx kx kx kx x x k x k x x k x x x x k x k kx x k x x A A A A kx x k x x kA kx x k x x A A A kA x A x A A x k A k A k kx kA kA k kx kA kA kkx A A x k A x A x A k n k k k k k k k k k k k k k k k7.解:M =|f(x)|max =max{|f ⑴|,|f(-1)|,|f(-2a)|}⑴若|-2a|≥1 (对称轴不在定义域内部) 则M =max{|f ⑴|,|f(-1)|} 而f ⑴=1+a +b f(-1)=1-a +b|f ⑴|+|f(-1)|≥|f ⑴+f(-1)|=2|a|≥4 则|f ⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2>21⑵|-2a|<1 M =max{|f ⑴|,|f(-1)|,|f(-2a)|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|}=max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|}≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|) ≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)] =)2a 2(412+≥21 综上所述,原命题正确.8.先找出3101010020000+的整数部分与分数部分.。
初等数论:不定方程与高斯函数[整理版]
初等数论:不定方程与高斯函数一、不定方程不定方程也称丢番图方程,是指未知数的个数多于方程个数,且未知数受到某些要求(如是有理数、整数或正整数等等)的方程或方程组。
不定方程是数论的重要分支学科,它的内容十分丰富,与代数数论、几何数论、集合数论等都有较为密切的联系。
其重要性在数学竞赛中也得到了充分的体现,是培养思维能力的好材料,它不仅要求对初等数论的一般理论、方法有一定了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个求解定理:(一)二元一次不定方程(组)定义.形如ax+by=c(a,b,c∈Z,a,b不同时为零)的方程称为二元一次不定方程定理1.方程ax+by=c有解的充要条件是(a,b)|c;定理2.若(a,b)=1,且x0,y0为ax+by=c的一个解,则方程全部解可以表示成(t为任意整数)。
定理2’..元一次不定方程a1x1+ a2x2+ …a n x n=c(a1,a2, …a n,c∈N)有解的充要条件是(a1,…,a n )|c.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求ax+by=0一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程a1x1+ a2x2+ …a n x n=c时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:00t , y=y tx x b a=+-求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
高斯函数在数学竞赛中的应用
第27卷 第4期 高 师 理 科 学 刊 Vol. 27 No.4 2007年 7 月 Journal of Science of Teachers′College and University Jul. 2007文章编号:1007-9831(2007)04-0080-03高斯函数在数学竞赛中的应用赵开明(重庆师范大学 数学与计算机科学学院,重庆 400047)摘要:高斯函数是一个非常重要的数论函数,其应用非常广泛.在数学竞赛中经常出现关于][x 的方程、等式、不等式、整除问题、格点问题、组合数问题以及二项式定理问题等,对高斯函数定理进行推论,并利用高斯函数对数学竞赛中的几道典型题目巧解,体现高斯函数的优越性. 关键词:高斯函数;数论函数;数学竞赛 中图分类号:O156.1 文献标识码:A][x 和}{x 是非常重要的数论函数,其他许多数学分支都要涉及到,在国内外的数学竞赛中也经常出现含有][x 和}{x 的问题,这类问题新颖独特,颇具启发性.定义1[1]8设∈x R ,不超过x 的最大整数称为高斯函数,记为][x ,称][x x −为小数部分或分数部分,记为}{x .定理1[1]63-65 设x ,y 是实数,有(1)若y x ≤,则][][y x ≤,即有][x y =是不减函数;(2)对于任意整数m ,m x m x ==+][][,}{}{x m x =+,}{x 是周期为1的周期函数; (3)1][][][][][++≤+≤+y x y x y x ,其中等号有且仅有一个成立;}{}{}{y x y x +≤+. 定理2[2]对正整数m 有]/[]/][[m x m x =,∈x R . 由定理2可推出结论:推论1 (1)][][][βαβα−=−或1][][][+−=−βαβα;(2)][][][]2[]2[ββααβα+++≥+. 证明(1)由于}]{}[{][][}]{}{][][[][βαβαβαβαβα−+−=−+−=−=⎩⎨⎧<−−≥−}{}{ 1][][}{}{ ][][βαβαβαβα,所以][][][βαβα−=−或1][][][+−=−βαβα.(2)由于}][{2}][{2][2][2]2[]2[βαβαβα+++=+,}][{2}][{][2][2][][][βαβαββαα+++=+++, 故只需要证明}]{}[{}]{2[}]{2[βαβα+≥+.若0}]{}[{=+βα.由0}{≥α,0}{≥β可得,}]{}[{}]{2[}]{2[βαβα+≥+;若1}]{}[{=+βα,则}{α和}{β中至少有一个不小于2/1,从而}{2α和}{2β中至少有一个不小于1,故}]{}[{}]{2[}]{2[βαβα+≥+. 定理3 ∈x R +,∈n N .则1至x 之间的整数中,有]/[n x 个是n 的倍数.证明 因1]/[/]/[+≤≤n x n x n x .即有n n x x n n x )1/]([]/[+≤≤,这说明不大于x 而且是n 的倍数的正整数只有下列]/[n x 个:n ,n 2,…,n n x ]/[.例 100~500中是11的倍数的数有36]11/100[]11/500[=−个.定理4[3] 在n !的标准分解式中质因式p (n p ≤)的指数∑∞==++=1][][][r r n/p n/p n/p h L .由定理4可得:收稿日期:2007-02-24作者简介:赵开明(1980-),男,重庆璧山人,在读研究生,从事数论方面研究.E-mail:zkm_1104@第4期 赵开明:高斯函数在数学竞赛中的应用 81推论2 设n 是任一正整数,且L +++=2210p a p a a n ,p 是质数且p a i <≤0,在n !的标准分解式中,质因式p 的指数是)1()(−−=p /S n h n ,其中L +++=210a a a S n .证明 由于1)1/()1()]1(/[)1(/)1(/)(01111110<+−≤−−=+++<+++≤+++++r r r r r r r r r p p p p p a p p p a p p a p a a L L其中} , , ,max{10r a a a a L =.于是有L L L ++++++++++==∑∞=p a a p a p a a p a p a p a a p n h r r 4324323423211]/[L L L ++++++++++=243342324433221p a p a p a p a p a p a p a p a p a hp=+++++++++=−)()(43214433221L L a a a a p a p a p a p a h hp=+++++−+++++)()(4321044332210L L a a a a a p a p a p a p a an S n − 证毕.用定理1~定理4及推论1~推论2对数学竞赛中的3个典型题目进行巧解.例1 求方程051][4042=+−x x 的全部实根.解 由51][4042−=x x 是奇数,可设1242+=k x (∈k Z +),于是4/)12(+±=k x (负根不合题意, 舍掉),故2/)12(+=k x .原方程化成20/)26(]2/)12([+=+k k ,由于左端是整数,则20/)26(+k 是整数,1420+=t k (0=t ,1,2,…),故120/)2(]2/)12([20/)20(++<+<+k k k .解此不等式可得244<≤k 或14484≤<k ,其中满足1420+=t k 的有14,94,114,134,对应的解分别是2/291=x ,2/1892=x ,2/2293=x ,2/2694=x .例1是对定理3的灵活应用.例2 求])2129[(000 2+的末2位数字.解 令2129+=α,2129−=β,则6092502+=α,6092502−=β,则10022=+βα,6422=βα,令2α=a ,2β=b ,则a ,b 是方程0641002=+−x x 的2个根.令2000=+=b a S ,111b a S +=,222b a S +=,…,n n n b a S +=,则064100012=+−S S S ,064100123=+−S S S ,…,2164100−−+−n n n S S S 0=,则)100(mod 366422−−≡−≡n n n S S S .当000 1=n 时,)100(mod 62)(36)(3649900499998998×≡+=+≡b a b a S n .即≡×≡+499000 2000 262βα)100(mod 32,所以000 2000 2)2129()2129(−++的末2位数是32.又121290<+<,121290<+<1)2129(0000 2<+<,故11])2129[(000 1000 2−=−=+S S n ,即])2129[(000 2+的末2位数是31.当遇到])[(n q b p a +形式时,往往与])[(n q b p a −同时考虑,由此可以化为整数.主要利用二项式定理和定理1.例3 设α,β为正无理数,并且1/1/1=+βα,则数列][αn a n =,][βn b n =(1=n ,2,…)都是严格递增的,并且1|{=n a n ,2,…1|{}=n b n I ,2,…φ=},1|{=n a n ,2,…1|{}=n b n U ,2,…=}N .证明 由1/1/1=+βα知1>α,1>β,因此}{n a ,}{n b 均为严格递增数列.任取∈c N .设在) ,1[c 内,}{n a ,}{n b 分别有k h ,项,则])1[(][αα+≤<h c h ,即αα)1(+<<h c h ,1/+<<h c h α.同理有1/+<<k c k β,故有2//++<+<+k h c c k h βα,2++<<+k h c k h ,故1++=k h c ,即有−=+c k h 1.又由c 的任意性,在)1 ,1[+c 中,}{n a ,}{n b 共有c 项.于是)1 ,[+c c 中,}{n a 和}{n b 共有一项即c ,这表明任一自然数数列} ,2 ,1|{} ,2 ,1|{L U L ==n b n a n n =N .同时c 也仅属于2个数列之一.命题得证. 满足φ===} ,2 ,1|{} ,2 ,1|{L I L n b n a n n 和===} ,2 ,1|{} ,2 ,1|{L U L n b n a n n N 的数列称为互补数列.该题也称为Beaty 定理,在有关][x 的竞赛题中经常出现.82 高 师 理 科 学 刊 第27卷参考文献:[1] 张君达.数论基础[M].北京:北京科学技术出版社,2002:8,63-65.[2] 闵嗣鹤,严士健.初等数论[M].2版.北京:高等教育出版社,1982:21.[3] 刘凯年.高中数学奥林匹克同步教材[M].北京:北京理工大学出版社,1992:76-77.[4] 吴康.奥赛金牌之路[M].桂林:广西师范大学出版社,2002:386.[5] 曾荣,王玉.基础数论典型题解300例[M].长沙:湖南科学技术出版社,1981:156.[6] 华罗庚.数论导引[M].北京:科学出版社,1957:222.Application of Gaussian function in the mathematics contestZHAO Kai-ming(School of Mathematics and Computer Science,Chongqing Normal University,Chongqing 400047,China)Abstract:Gaussian function is one of the important number theory function.It is applied very extensive.Usually appears in mathematics contest concerning of square distance,equation,inequality,divisible,lattice point,morse sequence,bonomial theorem.Mainly carried on to the Gaussian function axioms inference and made use of the Gaussian function logarithms to learn the contest in of a few typical models topic dexterity solution, reflected the better result of the Gaussian functionKey words:Gaussian function;number theory function;mathematics contest(上接第65页)参考文献:[1] 高岩,阴丽波,石桂玲.大豆油脚的主要成分及其综合利用[J].黑龙江粮油科技,2000(2):19-20.[2] 刘凯洋.高纯度大豆粉末磷脂的制取新工艺研究[J].中国油脂,2000,25(3):59-61.[3] 陈霞,赵贵兴,孙子重.大豆加工副产物——豆渣及油脚的利用[J].黑龙江农业科学,2006(6):57-60.[4] 王晓辉,司南,叶爱英.植物油脚的综合利用[J].现代化工,2006,26(11):21-24.[5] 刘玉兰.大豆油脚生产脂肪酸的工艺研究及经济效益评价[J].中国粮油学报,2000,15(2):32-36.[6] 卢艳杰,龚院生,张连富.油脂检测技术[M].北京:化学工业出版社,2004:134-135,156-157.[7] 何照范,张迪清.保健食品化学及其检测技术[M].北京:中国轻工业出版社,1998:95-98.Extracting method of soybean phospholipid in soybean oil sedimentsLIU Fu-di(Qiqihar Nanjiao Wastewater Treatment Company,Qiqihar 161055,China)Abstract:Soybean phospholipid was obtained by centrifuging,adding acetone to the center part,sucking filtration,and vacuum drying from the fresh soybean oil sediments.The results showed that the optimal parameters of a orthogonal optimize experiments are as fellows centrifuge speed is 5 000 r/ min,volume ratio of soybean phospholipid and acetone is 1∶6,the production was washed three times with acetone.The relative amount of lecithin had achieved 86.78%.Key words:soybean oil sediments;soybean phospholipid;extraction。
高一联赛班春季班第12讲初等数论——费马小定理与阶
数论中有很多重要的定理,其中我们最为熟悉的就是费尔马小定理与孙子定理了.根据联赛大纲,孙子定理只在冬令营中考到,因此本联赛班讲义不准备涉及到孙子定理.本讲将重点研究费马小定理.从费尔马小定理出发,我们还将研究与它有很大联系的一个数论中新的工具:阶.阶的概念在联赛大纲中并未明确提及,但是不论在联赛中还是冬令营乃至IMO 中,与阶相联系的问题都比比皆是.完系与最小非负完系:在m 个模m 的剩余类中各任取一个数作为代表,这样的m 个数称为模m 的一个完全剩余系,简称完系.例如:0,1,...,1m -是模m 的一个完系,这称作模m 的最小非负完系.缩系与欧拉函数:如果i 与m 互素,则同余类i M 中所有数都与m 互素,这样的同余类称为模m 的缩同余类. 模m 的缩同余类的个数记作()m ϕ,称为欧拉函数. 在()m ϕ个缩同余类中各取一数为代表,这样的()m ϕ个数称为模m 的一个缩剩余系,简称缩系.显然,(1)1ϕ=,而对1m >,()m ϕ为1,2,...,1m -中与m 互素的数的个数, 特别地,对素数p ,有()1p p ϕ=-.欧拉函数可以如下计算:第12讲 初等数论 费马小定理与阶12.1费马小定理设1212k k m p p p ααα=⋅⋅⋅为m 的标准分解形式,则111()(1)...(1)km m p p ϕ=-- 此定理的证明较复杂,且远远超出了联赛要求,故略去.有兴趣同学可自行参考相关书籍.显然,当(,)1m n =时,有()()()mn m n ϕϕϕ=.完系与缩系的几个重要性质: 当(,)1a m =,b 为任意整数时:⑴若12,,...,m c c c 是模m 的完系,那么12,,...,m ac b ac b ac b +++也是模m 的完系. ⑵若12(),,...,m r r r ϕ是模m 的缩系,那么12(),,...,m ar ar ar ϕ也是模m 的缩系.欧拉定理与费马小定理:欧拉定理:设(,)1a m =,则()1(mod )m a m ϕ≡.费马小定理:设p 是素数,p a Œ,则11(mod )p a p -≡.费马小定理的另一形式:设p 是素数,则对任意整数a ,有(mod )p a a p ≡. (|p a 时,上式两端同余0;p a Œ时,上式等价于费马小定理的上一形式) 阶:设1m >是一个固定的整数,(,)1a m =,可以证明,存在整数(1)k k m ≤<,使得1(mod )k a m ≡,我们将具有这一性质的最小正整数k 称为a 模m 的阶.它具有极其锐利的性质:⑴设(,)1a m =,k 是a 模m 的阶,,u v 是任意整数,则(mod )(mod )u v a a m u v k ≡⇔≡,特别地,1(mod )|u a m k u ≡⇔;⑵设(,)1a m =,k 是a 模m 的阶,则数列23,,,...a a a 模m 呈周期出现,且最小正周期为k . 数列前k 项模m 互不同余;⑶设(,)1a m =,k 是a 模m 的阶,则|()k m ϕ,特别地,a 模素数p 的阶整除1p -.事实上,我们在以前的很多题中都运用到了阶的思想,只不过是没有明确提出.但是,确定a 模m 的阶通常是极为困难的,逐一计算23,,,...a a a 模m 的余数可以求得阶,利用上述的性质(3),可以使这一过程稍微加快一些.【例1】 试证明上面给出的完系与缩系的两个性质:当(,)1a m =,b 为任意整数时,若12,,...,m c c c 是模m 的完系,那么12,,...,m ac b ac b ac b +++也是模m 的完系.若12(),,...,m r r r ϕ是模m 的缩系,那么12(),,...,m ar ar ar ϕ也是模m 的缩系.【例2】 试设法证明欧拉定理及费马小定理.【例3】 设1m >是一个固定的整数,(,)1a m =,证明:存在整数(1)k k m ≤<,使得1(mod )k a m ≡.【例4】 设a 和m 都是正整数,1a >.证明:(1)m m a ϕ-.【例5】 求证: 742|n n -【例6】 设p 是奇素数,证明:21p -的任一素因子具有形式21px +,其中x 是正整数.【例7】 设正整数a 与10互素,求20a (在十进制中)的末两位数码.【例8】 将顺序为1,2,,2n 的2n 张牌变成1,1,2,2,,1,2,n n n n n ++-,即原先的前n 张牌移至第2,4,,2n 张,这称为一次洗牌.试确定有哪些n ,从顺序1,2,,2n 开始,经过若干次洗牌可以恢复到原来状况.【例9】 设*,m n N ∈,且m 为奇数,(,21)1n m -=.证明:(12)n n n m m +++.【例10】 数列{}n a 定义如下:2361(1,2,3,...)n n n n a n =++-=.求与此数列的每一项都互质的所有正整数.【演练1】求证:任何数的末位数与该数的五次方的末位数字相同;实战演练【演练2】设p 是奇素数,证明:21p +的素因子或者是3,或者具有形式21px +(x 是正整数).【演练3】设n 为一个正奇数,证明:存在一个各数码都为奇数的正整数m ,使得n m .【演练4】设1,n n >∈*N ,证明:|(21)/n n -.【演练5】设a 和n 为整数,均不等于1±,且(,)1a n =,证明:至多有有限个k ,使得|(1)k k n a -.。
联赛新高一暑假第13讲(学生版)
同余是大数学家高斯的一个天才发明,这个符使得原来难以表述的很多数论问题表述起来简单清晰.利用同余符,可以方便地处理各种复杂的数字相对于另一数的余数这一类问题.本讲将着重讲述同余的基本性质,并利用这些性质来解决各类同余的典型问题.此外,基于同余,还给出了剩余系与完系的概念.尽管联赛大纲没有明确对这两个概念作要求,但是有了对剩余系的基本认识后对很多问题处理起来会更为方便.同余的定义:设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模m 同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不同余.(用≡符上面加一个斜线来表示,类似不等符).显然,(mod ),)|()a b m a km b k Z m a b ≡⇔=+∈⇔-(;剩余类与完全剩余系(简称完系):我们可以将所有的整数按模m 分类.例如:按模2分类,可将所有整数分成两类,模2余1的分成一类,即奇数;模2余0的一类,即偶数.按模3分类,可分成3k 、31k +、31k -三种类型;等等.剩余类的定义:设m 为一给定的正整数,则全体整数可以分为m 个集合0K ,1K ,…,1m K -,这里{|,(mod )},0,1,...,1r K x x Z x r m r m =∈≡=-.我们称0K ,1K ,…,1m K -为模m 的剩余类.在模m 的m 个剩余类中分别取一个数,共取出m 个,我们把这m 个数成为模m 的一组完全剩余系,简称完系.例如:0,1,2,…,1m -就是一组完系,显然,它们两两对模m 不同余.性质1:每个整数在且仅在模m 的一个剩余类中.性质2:若0a ,1a ,…,1m a -是模m 的一个完系,而(,)1a m =,b Z ∈,则0a a b +,1aa b +,…,1m aa b -+也是模m 的一个完系.(此性质可自行证明,联赛范围内一般不需要掌握)同余的性质非常之多,以下仅列举最常用的一些,(1)自反性:(mod )a a m ≡(a 为任意自然数)(2)对称性:若(mod )a b m ≡,则(mod )b a m ≡(3)传递性:若(mod )a b m ≡,(mod )b c m ≡,则(mod )a c m ≡本讲概述第13讲初等数论(2)同余(4)可加减性:若(mod )a b m ≡,(mod )c d m ≡,则(mod )a c b d m ±≡± (5)可乘性:若(mod )a b m ≡,(mod )c d m ≡,则(mod )ac bd m ≡(6)可乘方性:若(mod )a b m ≡,n N +∈,则(mod )nna b m ≡注意:一般地同余没有“可除性”,但是(7)如果(mod )ac bc m ≡且(,)1c m =,则(mod )a b m ≡如果(mod )ac bc m ≡且(,)c m d =,则(mod )m a b d≡ (8)如果(mod )a b m ≡,(mod )a b n ≡且[,]m n k =,则(mod )a b k ≡(9)设,2p N p +∈≥,则任何一个p 进制自然数与其数码和(p 进制下各数码之和)对模1p -同余;特别地,10p =时,是我们熟知的“弃九法”的理论依据:任一正整数与其十进制表示中各位数字之和对模9同余.【例1】 证明上述理论部分中的部分性质:(1) 同余的可除性:如果(mod )ac bc m ≡且(,)1c m =,则(mod )a b m ≡(2) 证明若0a ,1a ,…,1m a -是模m 的一个完系,而(,)1a m =,b Z ∈,则0aa b +,例题精讲1aa b +,…,1m aa b -+也是模m 的一个完系.(提示:只需证明任意两个模m 不同余即可)(3) 弃九法原理:任一正整数与其十进制表示中各位数字之和对模9同余【例2】 (1)用同余的写法证明:平方数除以4余数为0或1;(2)用同余的写法证明:奇数的平方除以8余1;(3)试证明19911991115534+不是平方数.【例3】 求证:对任意正整数n ,|32178/n n +⋅【例4】 (1)设m 为正整数,证明:必有一个正整数是m 的倍数,且它的各位数字均为0或1.(2)从任意m 个整数12,,...,m a a a 中,必可找到若干个数,它们的和(只有一个加数也行)被m 整除.【例5】 19911991的各位数字之和为a ,a 的各位数字之和为b ,b 的各位数字之和为c ,求c .【例6】 求证:三个连续整数的平方和不是立方数.【例7】 求出所有小于10的正整数m ,使得19895|1989m m .【例8】 已知数列{}n p 定义如下:1234n n n nn p =+++,求出所有的正整数n ,使得5|n p .【例9】 已知数列{}n a 递归定义如下:01210,1,8n n n a a a a a ++===- (0)n ≥,求证:数列{}n a 中没有形如35αβ(,αβ为正整数)的项.【例10】 设正整数x ,y ,z 满足222x y z +=,证明:60|xyz .1. 证明:数列11,111,1111,…中没有平方数2. 若质数5p ≥,且21p +也是质数,证明:41p +是合数大显身手3. 10003的各位数字之和为a ,a 的各位数字之和为b ,b 的各位数字之和为c ,求c .4. 对1,2,3,...,1990,i i x =可以取值1或者-1,证明199010kk kx=≠∑.5. 设x ,y ,z 为整数,且满足()()()x y y z z x x y z ---=++,证明:27|x y z ++6. (1)十进制数88...899...9x 可被7整除,那么数字x 等于多少?(其中有50个连续的8,50个连续的9)(2)求100 010被7除所得的余数.(其中指数中共有10个连续的0)(3)证明2152n n ++宯。
高一联赛班春季班第14讲初等数论——格点与高斯函数
本讲我们将研究全国数学联赛二试范围内初等数论所要求的最后一个专题:高斯函数][x y =. 实际上高斯函数就是取整函数,利用这个函数可以将以前很多需要大量描述才能说清楚的问题很简洁地描述和处理.我们想给出高斯函数的定义及若干性质:定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -==由][x 、}{x 的定义不难得到如下性质:⑴ ][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[ ⑵ 对任意实数x ,都有1}{0},{][<≤+=x x x x 且. ⑶ 对任意实数x ,都有x x x x x x ≤<-+<≤][1,1][][.⑷ ][x y =是不减函数,即若21x x ≤则][][21x x ≤;}{x y =是以1为周期的周期函数. ⑸ }{}{];[][x n x x n n x =++=+.其中*∈∈N n R x ,. ⑹ 11[][][];{}{}{};[][],n ni i i i i x y x y x y x y x x x R ==+≥++≥+≥∈∑∑;特别地,].[][ba nb na ≥⑺ ][][][y x xy ⋅≥,其中+∈R y x ,;一般有11[][],n niiii i x x x R+==≥∈∏∏;第14讲 格点与高斯函数14.1高斯函数特别地,[],,n x x R n N *+≤∈∈. ⑻ ]][[][nx n x =,其中,x R n N *+∈∈.以下给出高斯函数相关的几个重要定理:定理一:*∈+∈N n R x ,,且1至x 之间的整数中,有][nx 个是n 的倍数.定理二:在n !中,质数p 的最高方次数是.][][][)!(32 +++=pn p n p n n p定理三:(厄米特恒等式)][]1[]2[]1[][,,nx nn x n x n x x N n R x =-+++++++∈∈ 则【例1】 请给出34!的质因子分解形式;并求其最后9位数.【例2】证明厄米特恒等式:,,x R n N∈∈则121[][][][][]nx x x x nxn n n-+++++++=.【例3】求出2000010010103⎡⎤⎢⎥+⎣⎦的个位数字.【例4】 解方程:22[2]2[][]x x x x -+=.【例5】 求所有满足条件4[][[]]an n a an =+的实数a ,其中n 为任意正整数时皆成立.【例6】 当n 遍历全体正整数时,证明1()2f n n ⎡⎤=⎢⎥⎣⎦亦遍历全体正整数,但数列232n a n n =-中的项除外.【例7】 .][3]3[2]2[1][][:,,nnx x x x nx N n R x ++++≥∈+∈*证明【例8】 12γ=,证明:[][][(1)]()n n n n N γγγγ+++=∈高斯函数在格点(又叫整点)问题研究中有重要应用. 下面给出一个定理. 定理四:设函数],[)(b a x f y 在=上连续而且非负,那么和式∑≤<bt a b a t t f ],[)](([为内的整数)表示平面区域)(0,x f y b x a ≤<≤<内的格点个数.特别地,有⑴ 位于三角形:d x c b ax y ≤<>+=,0内的格点个数等于∑≤<+dx c x b ax 且]([为整数); ⑵ 奇数p,q 满足1),(=q p ,矩形域]2,0;2,0[pq 内的格点数等于 .2121][][2/02/0∑∑<<<<-⋅-=+q x p y q p y p q x q p ⑶ 0>n ,区域:n xy y x ≤>>,0,0内的格点个数等于∑<<-nx n x n02][][2.【例9】 求圆2210000x y +=内部(不含边界)的整点个数.14.2格点问题【例10】 对任意自然数n ,连接原点与点(,3)n A n n +.用()f n 表示线段n OA 上除端点以外的整点个数,试求和:(1)(2)(3)...(2015)f f f f ++++.【演练1】求整数⎥⎦⎤⎢⎣⎡+310103193的末两位数.实战演练【演练2】解方程:[]{}2015x x x ⋅=.【演练3】对任意整数(2)n n >,证明:(1)1424n n n n ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦.【演练4】证明:21()224n n n n N ⎡⎤+⎡⎤⎡⎤⋅=∈⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.将n 换为正实数x ,等式是否仍成立?【演练5】设三角形的三边长为正整数,,()a b c a b c <<,满足444{}{}{}101010a b c==,求其周长的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲我们将研究全国数学联赛二试范围内初等数论所要求的最后一个专题:高斯函数][x y =. 实际上高斯函数就是取整函数,利用这个函数可以将以前很多需要大量描述才能说清楚的问题很简洁地描述和处理.我们想给出高斯函数的定义及若干性质:
定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -==
由][x 、}{x 的定义不难得到如下性质:
⑴ ][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[ ⑵ 对任意实数x ,都有1}{0},{][<≤+=x x x x 且. ⑶ 对任意实数x ,都有x x x x x x ≤<-+<≤][1,1][][.
⑷ ][x y =是不减函数,即若21x x ≤则][][21x x ≤;}{x y =是以1为周期的周期函数. ⑸ }{}{];[][x n x x n n x =++=+.其中*
∈∈N n R x ,. ⑹ 1
1
[][][];{}{}{};[][],n n
i i i i i x y x y x y x y x x x R ==+≥++≥+≥∈∑∑;特别地,].[][
b
a n
b na ≥
⑺ ][][][y x xy ⋅≥,其中+∈R y x ,;一般有1
1
[
][],n n
i
i
i
i i x x x R
+
==≥∈∏∏;
第14讲 格点与
高斯函数
14.1高斯函数
特别地,[][],,n n x x x R n N *+≤∈∈. ⑻ ]]
[[][n
x n x =,其中,x R n N *+∈∈.
以下给出高斯函数相关的几个重要定理:
定理一:*
∈+∈N n R x ,,且1至x 之间的整数中,有][n
x 个是n 的倍数.
定理二:在n !中,质数p 的最高方次数是.][][][)!(3
2Λ+++=p n p n p n n p
定理三:(厄米特恒等式)][]1
[]2[]1
[][,,nx n
n x n x n x x N n R x =-+++++++∈∈Λ则
【例1】 请给出34!的质因子分解形式;并求其最后9位数.
【例2】证明厄米特恒等式:
,,
x R n N
∈∈则
121
[][][][][]
n
x x x x nx
n n n
-
+++++++=
L.
【例3】求出
20000
100
10
103
⎡⎤
⎢⎥
+
⎣⎦
的个位数字.
【例4】 解方程:22
[2]2[][]x x x x -+=.
【例5】 求所有满足条件4[][[]]an n a an =+的实数a ,其中n 为任意正整数时皆成立.
【例6】 当n 遍历全体正整数时,
证明1()2f n n ⎡⎤
=⎢⎥⎣⎦
亦遍历全体正整数,但数列232n a n n =-中的项除外.
【例7】 .][3]3[2]2[1][][:,,n
nx x x x nx N n R x ++++≥∈+∈*
Λ证明
【例8】 1
2
γ=,证明:[][][(1)]()n n n n N γγγγ+++=∈
高斯函数在格点(又叫整点)问题研究中有重要应用. 下面给出一个定理. 定理四:设函数],[)(b a x f y 在=上连续而且非负,那么和式∑≤<b
t a b a t t f ],[)](([为内的整数)表示
平面区域)(0,x f y b x a ≤<≤<内的格点个数.特别地,有
⑴ 位于三角形:d x c b ax y ≤<>+=,0内的格点个数等于∑≤<+d
x c x b ax 且]([为整数)
; ⑵ 奇数p,q 满足1),(=q p ,矩形域]2
,0;2,
0[p
q 内的格点数等于 .2121][][
2
/02
/0∑
∑<<<<-⋅-=+q x p y q p y p q x q p ⑶ 0>n ,区域:n xy y x ≤>>,0,0内的格点个数等于∑<<-n
x n x n
02][][2.
【例9】 求圆2
2
10000x y +=内部(不含边界)的整点个数.
14.2格点问题
【例10】 对任意自然数n ,连接原点与点(,3)n A n n +.用()f n 表示线段n OA 上除端点以外的整点个数,
试求和:(1)(2)(3)...(2015)f f f f ++++.
【演练1】求整数⎥⎦
⎤⎢⎣⎡+310103193
的末两位数.
实战演练
【演练2】解方程:[]{}2015x x x ⋅=.
【演练3】对任意整数(2)n n >,证明:(1)1424n n n n ++⎡⎤⎡⎤
=⎢⎥⎢⎥-⎣⎦⎣⎦
.
【演练4】证明:2
1()224n n n n N ⎡⎤
+⎡⎤⎡⎤⋅=∈⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
.将n 换为正实数x ,等式是否仍成立?
【演练5】设三角形的三边长为正整数,,()a b c a b c <<,
满足444{}{}{}101010
a b c
==,求其周长的最小值.。