拉曼光谱分析

合集下载

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是光谱学中重要的一个分支,主要研究物质中原子结构的组成和构型结构,利用拉曼散射原理分析物质对广谱激发源的散射反应。

拉曼光谱分析方法被广泛应用于分子的结构异质性研究、环境材料的测定、有机合成反应机理的研究、可见光和红外区域的分子性质的研究等方面。

拉曼光谱的分析方法包括多种,其中最常用的是红外-可见拉曼光谱(IR-vis Raman spectroscopy),这种技术在各种分析应用中都十分有效、稳定。

拉曼光谱分析可以在多种范围内提供良好的空间分辨率、时间分辨率和动态分析性能,且结果可靠。

拉曼光谱分析主要以拉曼光谱仪为仪器,以激发源、解调装置、光谱检测器、数据处理系统等组成,可进行对不同物质的定量分析。

拉曼光谱的研究方法有许多,其中最常用的是拉曼显微镜的应用,这种方法可以使显微样品中的全部结构特征得到清晰的绘制,拉曼显微镜可用来分析单分子及结构光谱学研究、微量物质成份及结构研究以及其他有机和无机分析等领域。

另外,还有拉曼聚焦显微镜,它是结合传统的拉曼光谱技术和显微成像技术的一种有效的组合,可以同时采集拉曼光谱和显微图像,这在分析特定位置的光谱特征方面有很大的用处,这类技术的系统也可以应用于生物样本的光谱探测分析,可以获得更为精确的结果。

拉曼光谱分析技术也在电化学领域发挥了重要作用,利用拉曼光谱技术可以快速准确地测定电化学反应物质中各种元素的含量,这种方法被用来研究聚合物材料及其电化学性质。

拉曼光谱分析在研究物质化学结构和性质的领域中发挥重要的作用,同时也在生物医学方面被广泛应用,可用来对细胞核基因组和细胞膜的化学特性进行研究,帮助科学家解释复杂的细胞过程。

总之,拉曼光谱分析是光谱学的一种重要技术,它可以提供准确的结果,在生物、物理等多个领域都有重要的应用,未来仍将有更大的发展前景。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是一种非侵入性的光谱技术,通过对物质分子的振动模式进行分析,可以快速、准确地确定样品的组成。

本文将对拉曼光谱分析的原理、应用和进展进行介绍。

拉曼光谱分析的原理基于拉曼散射效应,该效应是指当入射光与物质发生相互作用时,一部分光通过散射的方式改变了频率。

这种散射光称为拉曼散射光,其频率与样品分子的振动和转动状态有关。

通过对拉曼散射光的分析,我们可以得到所谓的拉曼光谱。

在拉曼光谱中,有两个重要的参数需要注意,即拉曼频移和拉曼强度。

拉曼频移是指散射光频率与入射光频率之差,而拉曼强度则反映了散射光的强弱。

拉曼光谱的应用非常广泛。

首先,它可以用于物质的结构鉴定和分析。

对于无机物质和有机分子,拉曼光谱可以提供它们的分子振动信息,从而确定其结构和成分。

此外,拉曼光谱还可以用于药物分析、食品安全检测、环境监测等领域。

在药物分析中,拉曼光谱可以用于快速鉴定药物的成分和纯度。

通过比较样品的拉曼光谱与已知药物的光谱数据库,我们可以确定样品中的主要成分。

这对于药品的质量控制和合理使用非常重要。

在食品安全检测中,拉曼光谱可以用于检测潜在的有害物质,如农药残留、食品添加剂、毒素等。

相比传统的检测方法,拉曼光谱不需要对样品进行破坏性处理,具有非侵入性和快速分析的优势。

在环境监测中,拉曼光谱可以用于检测水、空气、土壤等环境样品中的污染物。

由于拉曼光谱技术可以实时、无损地进行分析,它被广泛应用于环境监测、灾后评估等领域。

随着科技的进步,拉曼光谱分析技术也在不断发展和完善。

一方面,随着光学元件和光谱仪器的改进,现代拉曼光谱系统的灵敏度和分辨率不断提高。

另一方面,人们还在不断开发新的方法和算法,以提高拉曼光谱分析的准确性和效率。

目前,有许多研究正在进行中,以应对拉曼光谱分析中的挑战。

例如,一些研究人员正在探索使用表面增强拉曼光谱(SERS)技术,以提高低浓度样品的检测限。

另外,还有一些研究致力于利用人工智能算法对大量的拉曼光谱数据进行处理和分析,以实现自动化和高通量分析。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析简介拉曼光谱分析是一种非常重要的光谱分析技术,它通过测量物质产生的拉曼散射光谱,来获取样品的结构和化学特性信息。

拉曼光谱分析是一种非毁灭性的分析技术,具有快速、灵敏、无需样品处理等优点。

本文将介绍拉曼光谱分析的原理、仪器设备以及应用领域。

原理拉曼光谱是一种由分子振动引起的散射光谱,它是分子能级间跃迁导致的,这种能级间跃迁通常称为拉曼散射。

拉曼散射有两种类型:弹性散射和非弹性散射。

弹性散射不改变光子的能量,而非弹性散射改变光子的能量。

拉曼光谱分析主要关注非弹性散射。

拉曼光谱分析的原理可以用以下简单的公式表示:其中,ω0是激发激光的频率,ωR是散射光的频率。

Δω = ωR - ω0称为拉曼位移,它表示了散射光与激发激光的频率差异。

仪器设备进行拉曼光谱分析需要使用拉曼光谱仪。

典型的拉曼光谱仪由以下几个主要部分组成:1.激光源:用于提供激发激光。

激光源通常使用激光二极管或气体激光器。

2.光学系统:包括收集和聚焦激光光束的透镜、散射样品的光学系统和收集散射光的光学系统。

3.光谱仪:用于分析收集到的散射光谱。

光谱仪通常包括光栅或狭缝,用于分离不同频率的散射光。

4.光敏探测器:用于测量分离后的散射光强度。

光敏探测器常用的包括光电二极管和光电倍增管。

5.数据处理系统:用于控制仪器设备,获取和分析光谱数据。

应用拉曼光谱分析在很多领域都有广泛的应用,以下列举了一些常见的应用领域:化学分析拉曼光谱可以用于分析和鉴定化学物质。

由于每种化学物质具有独特的拉曼光谱特征,因此可以通过比对样品的拉曼光谱与标准库中的光谱,来确定样品的成分和浓度。

生物医学研究拉曼光谱分析在生物医学研究中有很多应用。

例如,可以使用拉曼光谱分析来研究细胞的组成和结构,从而了解生物体内部的变化和疾病发展。

材料科学拉曼光谱分析在材料科学中也有广泛应用。

它可以用于表征和鉴定材料的结构、纯度和晶格缺陷等特性。

同时,拉曼光谱还可以研究材料的相变和相互作用等过程。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是20世纪80年代发展起来的一种无损检测技术,由于它能够直接检测出样品中微量元素的特征波长,因此这种方法可用于任何类型材料的定性、定量检测。

拉曼光谱通常是使用电子轰击被检物品,从而引起其内部结构的变化,形成以拉曼位移为特征的吸收光谱。

由于人体组织会发生多种物理和化学反应,因此拉曼光谱也可以对其进行定性、定量分析。

拉曼光谱既适用于各种样品的定性、定量检测,也适用于原材料的鉴别。

拉曼光谱是利用多层次样品对光的选择吸收,如同黑暗中的电灯泡,辐射光源照射在物质上,物质对不同频率的电磁波产生的选择吸收不同。

样品在拉曼光谱仪器里所受到的辐射强度正比于样品浓度的平方,光的强度越大,吸收就越强,被吸收的辐射功率就越弱,这个信号就是拉曼位移信号,它有一个峰值。

把光谱分成若干个区间,每一个区间代表一个样品,这样就得到了被分析样品的拉曼光谱图。

对于拉曼光谱法,由于需要专业的设备,操作也较为复杂,还有一些缺点,因此它只适合于某些特殊的场合,例如:科研机构研究单一样品;某些工艺流程中的产品或某一特殊阶段产品等。

例如,金属铜中含有Cu,分析其含量,可以采用其他方法,但是由于该铜样品本身具有磁性,用传统的方法测试比较困难,此时可以采用拉曼光谱法,只要检测出Cu的拉曼光谱,即可以测定铜中的含量,又如钢铁中碳的含量测定,在工业生产过程中会加入微量元素,当碳含量达到0。

1%时就不能排除其他杂质,此时就可以采用拉曼光谱分析法,找到碳含量小于0。

1%的碳,那么此批钢铁的合格率就能达到100%。

再如食品和药品等也可以通过拉曼光谱法进行检测。

目前我国的日用化学品已经全部列入强制性检验范围,凡是进口的产品都必须进行拉曼光谱分析。

以下介绍拉曼光谱的工作原理:被检测样品与入射电子之间存在着相互作用,引起样品中特征拉曼位移的强度称为拉曼增强。

拉曼位移的强度与样品浓度呈线性关系,可用拉曼增强的拉曼位移来确定样品的浓度。

拉曼增强的位移与样品的种类和浓度有关,并且随样品浓度增加而增大。

拉曼光谱解析教程

拉曼光谱解析教程

拉曼光谱解析教程拉曼光谱是一种非常有效的光谱分析技术,可用于分析分子和材料的结构、组成和状态。

以下是拉曼光谱解析的教程:1. 原理:拉曼效应是指分子或材料在受激光照射时,部分光子与分子或晶体格子内原子发生相互作用,导致光的散射现象。

拉曼光谱通过测量样品散射光的频率差异,从而提供有关样品成分、结构和状态的信息。

2. 实验设备:进行拉曼光谱分析需要一台拉曼光谱仪,通常包括一个激光器、一个样品台、一个光学系统和一个光学探测器。

激光器会产生单色的激光光束,样品台用于支撑和定位待测样品,光学系统用于收集和分析散射光,光学探测器将光信号转换成电信号。

3. 样品准备:将待测样品放置在样品台上,确保样品表面光洁,没有表面污染或杂质。

拉曼光谱可以对几乎所有类型的样品进行分析,包括液体、固体和气体。

4. 数据采集:使用拉曼光谱仪进行光谱采集,通过调整激光功率、扫描范围和积分时间等参数进行实验优化。

通常会采集多个波数点的拉曼光谱数据,越多的数据点可以提供更多信息,但也需要更长的采集时间。

5. 数据分析:通过对采集到的拉曼光谱数据进行分析,可以获得样品的结构、组成和状态信息。

常见的数据处理方法包括光谱峰拟合、数据平滑和峰位校准等。

6. 数据解释:根据拉曼光谱的特征峰位和峰形,结合已知的拉曼光谱库,可以对样品进行定性和定量分析。

可以通过比较待测样品和标准品的拉曼光谱,或者使用化学计量学方法进行定量分析。

7. 应用领域:拉曼光谱广泛应用于材料科学、生物医学、环境监测和药物研发等领域。

例如,可以用于分析化学反应中的中间产物和催化剂,检测食品和药品中的污染物,研究生物分子的结构和功能等。

希望以上的教程可以帮助您了解拉曼光谱解析的基本知识和步骤。

开展拉曼光谱实验前,请确保已熟悉仪器的操作和数据处理方法,以获得可靠的结果。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析
拉曼光谱分析是一种用来研究物质的结构和化学成分的非破坏性分析技术。

它基于拉曼散射现象,当光线与物质相互作用时,部分光子会散射,并且传播方向和频率发生变化。

这种散射光的频率变化可以揭示出物质的分子振动模式和结构信息。

在拉曼光谱分析过程中,通过激光器发射的单色光源照射到样品上,样品表面会产生散射光。

收集和分析散射光的频率和强度变化,可以确定物质的成分、结构以及其他化学信息。

拉曼光谱分析具有许多优点,例如:它是一种非破坏性的方法,对样品的处理和准备要求较低;它可以在常温下进行,不需要复杂的实验条件;它可以针对不同类型的物质进行分析,包括有机物、无机物和生物物质等;同时,拉曼光谱也是一个定性和定量分析的方法,可以提供关于物质成分和浓度的信息。

因此,拉曼光谱在材料科学、化学、生物学、医学等领域得到了广泛的应用,例如用于鉴定和鉴别物质、监测化学反应的进展、研究纳米材料的性质等。

拉曼光谱分析技术

拉曼光谱分析技术

拉曼光谱分析技术一、原理拉曼光谱是一种光散射过程,它与样品分子的振动、转动、晶格等能级转变有关。

当激光通过样品时,部分激光光子会与样品中的分子相互作用,光子能量的改变即为拉曼散射光,其频率差等于与样品分子能级差的振动频率。

通过收集和分析拉曼散射光的强度和频率,就可以得到样品的拉曼光谱,从而得到样品的分子结构信息。

二、仪器拉曼光谱仪主要由三部分组成:光源、光学系统和光谱仪系统。

1.光源:常用的光源有连续性或脉冲激光器,如气体激光器、液体激光器、固体激光器等。

激光器发出的单色、高亮度光源是拉曼光谱分析的关键。

2.光学系统:光学系统主要由透镜、滤光片、光纤耦合器等组成,主要用于对激光进行准直、聚焦和收集样品的反散射光。

3.光谱仪系统:光谱仪系统由光栅、光电倍增管(PMT)、光谱仪等组成。

它用于分离和检测样品散射光的强度和频率。

三、应用1.材料科学领域:拉曼光谱分析技术可以用来研究材料的结构、组成、相变、晶格缺陷等。

例如,可以通过拉曼光谱分析研究材料中不同相的相对含量、晶格缺陷的种类和分布情况,从而为材料的合成和改性提供参考。

2.生命科学领域:拉曼光谱分析技术也可以用来研究生物分子的结构和功能。

例如,可以通过拉曼光谱分析研究蛋白质、核酸、多肽等生物分子的二级结构、药物与生物分子的相互作用等。

3.环境监测领域:拉曼光谱分析技术可以用于环境样品的分析和监测。

例如,可以通过拉曼光谱分析来快速检测土壤、水体、空气中的有机物、无机物等,同时还可以用于检测环境中的微量毒害物质。

4.法医学应用:拉曼光谱分析技术在法医学中也有广泛的应用。

例如,可以通过对酒精、毒品、爆炸物等样品的拉曼光谱分析来鉴定和识别这些毒性物质。

5.药物分析领域:拉曼光谱分析技术可用于药物的结构鉴定、质量控制等。

例如,可以通过拉曼光谱分析来鉴定药物中存在的杂质和假药,也可用于药物的溶解度研究和纯度检测。

综上所述,拉曼光谱分析技术具有无损、快速、无需或少需样品处理等优点,广泛应用于科学研究、材料分析、工业生产和环境监测等领域。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是一种基于光谱仪技术的分析方法,通常用于分析分子结构,研究物质的组成成分,识别有机和无机化合物。

拉曼光谱是物质中分子键的动力学反应的结果。

当分子键之间的应力改变时,分子中的电子会从一种能量状态转变到另一种能量状态,这时会有光谱信号产生。

通过对拉曼光谱的研究,可以了解分子的结构及分子内的化学键的特性,从而完成分子结构鉴定等实验。

拉曼光谱分析的主要原理是,当物质由较低能级到较高能级时,由于能量平衡要求,物质发出拉曼谱线,用以表示分子结构的特征。

由于当物质进入较低能级时,物质发出的拉曼谱线比较弱,因此,传统的拉曼光谱分析需要用特殊的仪器,如电子光谱仪和质谱仪,来获取分子结构的特异性信号,然后用统计学方法对信号进行处理以获取拉曼光谱。

拉曼光谱分析具有一些独特的优点,如灵敏度高、量程可调,可以用于检测微量样品中的化合物。

它可以用于检测复杂结构物质,如生物分子等,可以检测分子内部的结构特征和定量分析分子中的各种元素含量。

此外,拉曼光谱分析可用于检测吸收形式的化学反应。

因此,拉曼光谱分析是不可缺少的实验技术,在分析有机化合物结构、研究物质组成成分、鉴定有机物等方面被广泛应用。

拉曼光谱分析是一种非常重要的分析技术,它可用于研究分子结构、分析有机化合物的组成成分和鉴定有机物,在分子结构的研究中发挥着重要作用。

它的灵敏度高、量程可调,可用于检测微量样品中的化合物,可以检测分子内部的结构特征和定量分析分子中的各种元素含量,并且可用于研究复杂结构物质,因此得到了更广泛的应用。

总之,拉曼光谱分析是一种重要的实验技术,它是一种既高灵敏又量程可调的分析技术,可以用来分析物质的组成成分、识别有机物和无机物,也可以用来研究分子的结构特征,并定量分析分子中的各种元素含量,是研究分子结构和检测化合物定量分析的重要工具。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是一种测量物质的光谱分析技术,它可以研究物体表面或内部的结构,从而确定它们的组成成分。

拉曼光谱分析是分析物质结构与物理性质之间关系的一种重要方式,其应用已遍及分子生物学、纳米材料学、材料科学、纳米电子学、化学物理学等领域。

拉曼光谱分析是使用拉曼光谱仪记录目标物质拉曼散射光谱的一种分析方法。

拉曼散射是一种光学现象,当电子在物质中移动时,它们试图抵抗外界的能量的冲击,从而产生量子振荡,这就是拉曼光谱。

拉曼光谱分析主要通过对拉曼光谱的分析,来研究给定物质的结构和性质之间的关系,也可以分析物质中的激发态,从而识别物质的组成及其结构特征。

拉曼光谱分析基本原理可以归结为外界的光谱刺激与物质的拉曼散射之间的相互作用。

拉曼散射的发生被定义为由物质激发而产生的能量损失,外界刺激的光谱能量消耗是有限的,因此其在拉曼散射的物质上的散射可以失去一部分能量,由此,可以计算出物质中激发态的能量损失。

从而根据光谱散射的一般规律,可以计算出物质中激发态的能量分布,从而确定物质组成成分。

拉曼光谱分析有很多优点:首先,它只需要一个小而简单的拉曼光谱仪,就能大量的分析物质结构,可以清晰的了解到物质的结构信息;其次,拉曼光谱分析与其他分析方法相比,分析周期较短,耗费较少;最后,拉曼光谱分析可以准确无误地测量物质的结构组成及其相关性质。

然而,拉曼光谱分析并不是完美的,它也存在一些缺点:首先,拉曼光谱仪较为昂贵,是一种典型的大型仪器,增加了实验成本;其次,拉曼光谱分析也受不同物质的表面形态的限制,无法清晰的获取低比表面状态的信息;最后,拉曼光谱分析中的仪器稳定性较差,需要经常的校正和维护。

虽然拉曼光谱分析存在一定的局限性,但是它仍然是一种非常有效的物质结构分析技术,应用广泛,有助于我们进一步深入理解物质的结构性质,找到有效的分析方法。

因此拉曼光谱分析在这些领域有着重要的地位,对未来研究者起到重大的作用,有助于促进物质领域的发展。

拉曼光谱分析实验报告

拉曼光谱分析实验报告

拉曼光谱分析实验报告引言拉曼光谱分析是一种非侵入性的光谱分析技术,可用于物质的结构分析、化学性质表征等领域。

本实验旨在通过拉曼光谱仪对不同样品进行测试,探究拉曼光谱分析的基本原理和应用。

实验材料和设备•拉曼光谱仪:用于测量和记录拉曼光谱•样品:选择不同类型的样品,如有机物、无机物等•液氮:用于冷却拉曼光谱仪实验步骤1.准备样品:选择所需的不同类型的样品,并制备成适合拉曼光谱分析的形式,如固体、液体或气体。

2.打开拉曼光谱仪:确保拉曼光谱仪已连接电源,并打开仪器。

3.校准:根据拉曼光谱仪的使用说明书,进行仪器的校准步骤,以确保测量结果的准确性。

4.设置实验参数:根据样品的性质和实验需求,设置拉曼光谱仪的参数,如激光功率、积分时间等。

5.冷却拉曼光谱仪:对于某些样品,特别是液体样品,可能需要使用液氮冷却拉曼光谱仪,以避免样品的热解或挥发。

6.放置样品:将样品放置在拉曼光谱仪的样品台上,并确保样品与激光光束对准。

7.开始测量:点击拉曼光谱仪软件中的“开始测量”按钮,开始记录拉曼光谱。

8.记录数据:拉曼光谱仪会自动记录和保存测量数据,包括波数和对应的强度值。

9.分析数据:使用适当的软件或方法,对测量得到的拉曼光谱数据进行分析,如峰值识别、谱图对比等。

10.结果和讨论:根据实验数据和分析结果,结合样品的性质和实验目的,得出相应的结论和讨论。

结论通过本实验,我们成功地使用拉曼光谱仪对不同类型的样品进行了分析和测试。

拉曼光谱分析技术具有非破坏性、高灵敏度和高分辨率等优点,在材料科学、化学、生物医学等领域有着广泛的应用前景。

通过进一步的研究和实验,我们可以深入了解拉曼光谱分析的原理和方法,并应用于更广泛的实验和研究中。

参考文献(这部分需要依据实际参考文献情况进行填写)注意:为了保证实验的准确性和安全性,请在进行实验前详细阅读拉曼光谱仪的使用说明书,并遵循实验室安全规范。

拉曼光谱拉曼光谱分析

拉曼光谱拉曼光谱分析

引言概述:拉曼光谱是一种非侵入性的光谱分析技术,可以用来研究物质的化学成分、结构和分子间相互作用等信息。

通过测量样品与激发光相互作用后反散射光的频移,可以得到样品的拉曼光谱图谱。

拉曼光谱具有快速、灵敏和无需样品处理等优势,因此在化学、材料科学、生物医学和环境科学等领域被广泛应用。

正文内容:一、理论基础1. 拉曼散射原理:介绍拉曼光谱的基本原理,包括应力引起的拉曼散射和分子振动引起的拉曼散射。

2. 基本理论模型:介绍拉曼光谱的基本理论模型,包括简谐振动模型和谐振子模型等。

二、仪器设备1. 激发光源:介绍常用的激发光源,如激光器和光纤激光器等,以及它们的特点和选择。

2. 光谱仪:介绍常用的拉曼光谱仪,包括激光外差光谱仪和光纤光谱仪等,以及它们的原理和优缺点。

3. 采样系统:介绍拉曼光谱的采样系统,包括反射式、透射式和光纤探头等,以及它们的适用范围和操作注意事项。

三、数据处理与分析1. 光谱预处理:介绍光谱预处理的方法,包括光谱平滑、噪声抑制和基线校正等,以提高数据质量和减少干扰。

2. 谱图解析:介绍拉曼光谱谱图的解析方法,包括峰拟合、峰识别和谱图比较等,以确定样品的化学成分和结构信息。

3. 定量分析:介绍拉曼光谱的定量分析方法,包括多元线性回归和主成分分析等,以快速准确地测量样品的含量和浓度。

四、应用领域1. 化学分析:介绍拉曼光谱在化学分析中的应用,包括有机物和无机物的定性和定量分析,以及催化剂和原位反应研究等。

2. 材料科学:介绍拉曼光谱在材料科学中的应用,包括纳米材料、多晶材料和聚合物等的表征和结构分析。

3. 生物医学:介绍拉曼光谱在生物医学中的应用,包括体液中代谢产物和蛋白质的检测,以及癌症和药物代谢研究等。

4. 环境科学:介绍拉曼光谱在环境科学中的应用,包括土壤和水体中有机物和无机物的检测,以及大气污染和环境污染物的监测等。

五、发展前景与挑战1. 发展前景:介绍拉曼光谱在未来的发展前景,包括高灵敏度和高分辨率的光谱仪、纳米尺度的光学探针和超快激光技术等。

第5章拉曼光谱分析法

第5章拉曼光谱分析法

第5章拉曼光谱分析法拉曼光谱分析法是一种基于拉曼散射原理的光谱分析技术。

该技术利用物质分子产生的拉曼散射光谱,通过测定光谱的频移来分析样品的成分和结构信息。

相比于传统的红外光谱分析法,拉曼光谱分析法具有高分辨率、非破坏性等优点,因此在各个领域得到了广泛应用。

拉曼光谱的基本原理是:当物质受到入射光的作用后,部分光子的能量被物质分子吸收,并在分子的振动和转动过程中增加或减少了能量,此时吸收光谱已经发生了位移。

通过分析这种能量的位移,可以获取样品的结构和成分信息。

通过拉曼光谱分析法,可以对各种物质进行非破坏性的分析。

例如,在化学领域,可以利用拉曼光谱分析法来确定化学反应中的中间产物和催化剂,以及分析有机化合物的结构。

在生物领域,可以用来研究生物分子之间的相互作用和结构变化。

在材料科学领域,可以分析材料的晶格结构和缺陷情况。

在环境领域,可以用来分析水和空气中的污染物。

拉曼光谱分析法的实施一般需要一个拉曼光谱仪。

这种仪器由激光系统、照射样品的光学系统、通过光学系统收集和分析拉曼散射光的系统以及数据处理系统组成。

首先,激光器产生一个单色激光束,照射到样品上。

样品散射的光经过光学系统聚焦到检测器上,并通过光电倍增管转化为电信号。

最后,数据处理系统会对电信号进行处理,得到拉曼光谱图。

在拉曼光谱分析法中,有两种常用的技术:常规拉曼光谱和表面增强拉曼光谱(SERS)。

常规拉曼光谱的灵敏度较低,需要较高的浓度才能获得良好的信噪比。

而SERS可以通过将样品与金属表面接触来放大拉曼信号,因此可以在极低浓度下进行分析。

总之,拉曼光谱分析法是一种高分辨率且非破坏性的光谱分析技术。

它在不同领域中有着广泛的应用,能够为我们提供样品的结构和成分信息。

随着技术的不断进步,相信拉曼光谱分析法将会在更多的领域得到应用。

光谱分析3-拉曼

光谱分析3-拉曼

I 为与激光电矢量相垂直的谱线强度; I 为与激光电矢量相平行的谱线强度。
四、拉曼光谱与红外光谱的互补性
拉曼光谱和红外光谱有互补性: (1)都是振动转动光谱; (2)红外:固有偶极矩
拉曼:感生偶极矩 (3)活性互补
拉曼与红外的互补性

同属分子振(转)动光谱
异红:外红:适外用于分研子究对不同红原外子光的极的性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
§3-1-2 拉曼光谱方法原理
一、 拉曼位移(Raman shift)
Δν=| ν0 – νs |
即散射光频率与激发光频之差 Δv取决于分子振动能级的改变 因此是特征的
与入射光波长无关
适用于分子结构分析
二、 拉曼光谱与分子极化率的关系
分子在静电场E中,如光波交变电磁场


电子



p = αE
分子中产生了 感应偶极距p
异拉:曼拉:适曼用于分研子究对同原激子光的的非极散性射键振动 -N-强N度-由, 分-子C-极C化-率决定
拉曼与红外的互补性
O=C=O
对称伸缩
O=C=O
反对称伸缩
偶极矩不变无红外活性 偶极矩变有红外活性 极化率变有拉曼活性 极化率不变无拉曼活性
拉曼与红外的互补性
结构分析:H4C4N4
拉曼C=C 1623 cm-1 强 红外C=C 1621 cm-1 强
激光器作光源,常用如下:
Ar+
Kr + He/Ne 二极管激光器
488/514 531/647 633
782/830nm
488nm Ar +光源的拉曼线强度比He/Ne大约3倍
半导体激光器荧光干扰非常低

波谱学课件——拉曼光谱6Raman

波谱学课件——拉曼光谱6Raman

(3)从光的波动性分析拉曼散射的产生
光是电磁波,即它是沿某一方向传播的交变 电磁场。其交变电场可用下式描述:
E=E0cos(2πν′t)
E —在任意t时刻的电场强度; E0—入射光的交变电场强度; ν′为交变电场的频率
样品分子的电子云在交变电场的作用下会诱 导出电偶极矩:
μ=αE
式中 μ—样品分子诱导的偶极矩 E—入射光的交变电场强度 α—分子的极化率(polarizability)
例:
有较大偶极矩 变化的as (-NO2) IR吸收强, Raman谱带弱; 而苯环的骨架 (C=C)极性很 小,出现较强的 Raman谱带和很 弱的IR吸收。
有些谱峰在 两图谱中同时 出现,有些谱 峰只在某一图 谱中出现,两 谱互补,明显 增加了识别和 解释图谱的信 息来源。
Raman光谱适合于研究水溶液体系 水对于红外辐射几乎是完全不透明的,但却是 弱的散射体。这使得拉曼光谱最宜用于研究生 物样品。例:多肽的结构及在水溶液中的构象 测定, Raman光谱可提供重要的信息。
位移是分子振动的特征,是分子振动时极化率发生改 变所致。
(2)从光的粒子性分析Raman散射的产生
光子具有的能量 E=hv h—普朗克常数 v —频率
雷利散射:弹性碰撞,方向改变,能量未变, 散射光的频率也未变; 拉曼散射:非弹性碰撞,方向改变,能量也改 变,光的频率改变;
从分子能级的角度来讨论光子与物质分子的作用
对于结构的变化, Raman有可能比IR更敏感 例如海洛因、吗啡和可待因,三者的主体骨架相 同,仅是环上的取代基有差别。三者的Raman在 600-700cm-1的谱带有明显的不同,1600-1700cm-1 的峰也不同。
FT-Raman光谱也适合做差示光谱 例如要测定片剂中的有效药物成分

第四章拉曼光谱分析

第四章拉曼光谱分析

第四章拉曼光谱分析引言:拉曼光谱分析是一项重要的光谱技术,它可以通过测量物质与激光光源相互作用后的散射光谱,获取有关物质结构、化学成分和分子振动等信息。

拉曼光谱分析具有非破坏性、无需样品处理、高灵敏度和非常详细的结构信息等特点,广泛应用于化学、生物、材料和环境等领域。

一、拉曼光谱原理拉曼散射现象是由物质分子受激光激发后的非弹性散射引起的。

当激光光子与物质分子发生相互作用时,发生傅里叶散射和拉曼散射两个过程。

其中,傅里叶散射是由于分子的自由旋转和振动引起的,而拉曼散射则是由于分子振动模式和其它非颤振转模式引起的,具有更加丰富的结构信息。

拉曼散射谱分为拉曼位移和强度两个方面。

拉曼位移是指拉曼散射光子相对于激发光子的频率偏移,由于分子处于不同振动模式时能量差异不同而引起。

拉曼强度则依赖于分子的极化率改变程度,因此可以提供有关分子的结构和振动信息。

二、拉曼光谱分析仪器与实验方法拉曼光谱仪由激光光源、光谱系统和探测器等组成。

常用的激光光源有氦氖激光和固体激光等,光谱系统则包括单色器、样品室和一系列的滤光器和光栅等。

探测器一般采用光电二极管或光电倍增管等,用于测量拉曼散射光的强度。

拉曼光谱实验方法主要有常规拉曼光谱、共振拉曼光谱和表面增强拉曼光谱等。

常规拉曼光谱是最常用的方法,通过对物质直接进行激光照射和拉曼散射测量来获取光谱信息。

而共振拉曼光谱则需要根据所研究物质的能级结构设计合适的激光波长,以增强拉曼信号。

表面增强拉曼光谱则是通过在样品表面引入纳米级的增强剂,如金属纳米颗粒,以提高散射强度。

三、拉曼光谱在化学分析中的应用拉曼光谱在化学分析中具有广泛的应用。

它可以用于物质的鉴别和定性分析,通过对拉曼光谱的特征峰进行比较和匹配,可以确定物质的组成和结构。

此外,拉曼光谱还可用于定量分析,通过建立标定曲线,利用拉曼强度与浓度之间的线性关系,可以测定样品中的目标成分的含量。

同时,拉曼光谱也可以用于反应动力学和过程分析,通过观察拉曼峰的强度变化,可以研究物质的反应过程和动力学参数。

拉曼光谱分析

拉曼光谱分析
在各种分子振动方式中,强力吸收红外光的振动能产生 高强度的红外吸收峰,但只能产生强度较弱的拉曼谱峰;反之, 能产生强的拉曼谱峰的分子振动却产生较弱的红外吸收峰。因 此,拉曼光谱与红外光谱相互补充,才能得到分子振动光谱的 完整数据,更好地解决分子结构的分析问题。
进一步,由于拉曼光谱的一些特点,如水和玻璃的散射 光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用 具有突出的优点。
生物大分子的拉曼光谱研究
生物大分子中,蛋白质、核酸、磷脂等是重要额生命基础物质,研 究它们的结构、构像等化学问题以阐明生命的奥秘是当今极为重要的研 究课题。应用激光拉曼光谱除能获得有关组分的信息外,更主要的是它 能反映与正常生理条件(如水溶液、温度、酸碱度等)相似的情况下的 生物大分子分结构变化信息,同时还能比较在各相中的结构差异,这是 其他仪器难以得到的成果。
去偏振度) 表征分子对称性振动模式的高低。
I
I∥
(6-17)
式中I⊥和 I// ——分别代表与激光电矢量相垂直和相平行的谱线的强度。
<3/4的谱带称为偏振谱带,表示分子有较高的对称振动模式; =
3/4的谱带称为退偏振谱带,表示分子的对称振动模式较低,即分子是不对称 的。
激光拉曼散射光谱法
激光拉曼光谱与红外光谱比较
分子结构模型的对称因素决定了选择原则。比较理论结果与实际测量的 光谱,可以判别所提出的结构模型是否准确。这种方法在研究小分子的结构 及大分子的构象方面起着很重要的作用。
拉曼光谱在材料研究中的应用
高分子的红外二向色性及拉曼去偏振度
激光拉曼散射光谱法
NH 伸 缩 振 动 (3300cm-1)
垂直于拉伸方 向取向
CH2伸缩振动 (3000~ 2800cm-1),垂 直于拉伸方向 取向

第5章_拉曼光谱分析法

第5章_拉曼光谱分析法

第5章_拉曼光谱分析法拉曼光谱分析法是一种基于光散射现象的分析方法,利用样品与激光束相互作用产生的散射光谱进行定性和定量分析。

它具有非接触、无损、无需特殊处理样品等优点,可以广泛应用于材料科学、化学、生物学等领域。

拉曼光谱是一种特殊的光散射现象,它是指当光线通过样品时,与样品中的分子或晶体发生相互作用,产生了与入射光不同频率的光线。

这种频率差异所产生的光谱称为拉曼光谱。

拉曼光谱的频率差值与样品的化学成分和结构有关,因此可以通过分析拉曼光谱来确定样品的组成和结构信息。

拉曼光谱分析法的原理是基于拉曼散射的特点。

当激光束照射到样品上时,部分光会被样品吸收,其余部分则会发生拉曼散射。

拉曼散射有两个主要成分:斯托克斯散射和反斯托克斯散射。

斯托克斯散射是指散射光的频率低于入射光的情况,而反斯托克斯散射是指散射光的频率高于入射光的情况。

拉曼光谱分析主要包括拉曼散射光谱的测量和数据的处理与解析两个步骤。

在测量过程中,首先要选择合适的激光源和光谱仪器,激光的选择应该能够激发样品的拉曼散射,并且要避免与样品产生共振散射的情况。

光谱仪器则需要具备高分辨率和高灵敏度,以获取清晰的拉曼散射光谱。

数据的处理与解析是拉曼光谱分析的关键步骤。

首先需要对所得的拉曼光谱进行预处理,包括去除背景噪声、波峰的校正和峰的归一化等。

然后可以通过对光谱进行拟合和峰的分析来获得样品的组成和结构信息。

常用的数据处理方法包括主成分分析、偏最小二乘法和支持向量机等。

拉曼光谱分析法在材料科学领域有着广泛的应用。

例如,可以利用拉曼光谱分析法对纳米材料的大小、形状和晶格结构进行表征;可以通过拉曼光谱分析法对药物的纯度和杂质进行检测;可以利用拉曼光谱分析法对生物标志物进行快速识别和检测等。

此外,拉曼光谱也可以应用于环境监测、食品安全和法医学等领域。

综上所述,拉曼光谱分析法是一种非常有价值的分析手段,它通过测量样品的拉曼散射光谱来获得样品的组成和结构信息。

它具有非接触、无损、无需特殊处理样品等优点,可以应用于多个领域。

第八讲拉曼光谱分析

第八讲拉曼光谱分析
斯托克斯散射的强度通常要比反斯托克斯散射强度强得多, 在拉曼光谱分析中,通常测定斯托克斯散射光线。
拉曼位移取决于分子振动能级的变化,不同的化学键或基 态有不同的振动方式,决定了其能级间的能量变化,因此, 与之对应的拉曼位移是特征的。这是拉曼光谱进行分子结 构定性分析的理论依据。
6
拉曼原理
拉曼活性: 并不是所有的分子结构都具有拉曼活性的。分子振动
40
晶粒度影响
利 用 晶 粒 度 对 LRS 散 射 效应导致的位移效应, 还可以研究晶粒度的信 息
41
晶粒度的影响
8nm 152 85nm 147
42
新型碳物种的研究
有机碳 无机碳:无定型,石墨,石墨烯,类金刚石,金刚石,
C60,碳纳米管,无机碳化物等
43
新型碳物种研究
44
45
46
拉曼散射的产生与分子的极化率α有关系 α是衡量分子在电场作用下电荷分布发生改变的难易程度,或诱导偶极 距的大小,即单位电场强度诱导偶极距的大小。 散射光与入射光频率的差值即是分子的振动频率
5
拉曼原理
拉曼位移(Raman Shift) 斯托克斯与反斯托克斯散射光的频率与激发光源频率之差 Δν统称为拉曼位移。
Raman 峰宽
材料的组成
MoS2, MoO3
加压/拉伸状态
每1%的应变,Si产生 1 cm-1 Raman 位移
晶体的对称性和 取向
用CVD法得到金 刚石颗粒的取向
晶体的质量
塑性变形的量
26
FT拉曼光谱
采用Nd:YAG激光器,波长为1.064μm的近红外线激发, 其特点是激发源的能量低于荧光激发所需要的阈值,从而 避免了大部分荧光对拉曼光谱的干扰。扫描速度快,分辨 率高。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是一项重要的现代分析技术,它用于测定物质的有机组成和分子的结构,帮助科学家研究物质的组成和性质。

拉曼光谱是由实验室分析仪器生成的特殊光谱数据,它可以帮助我们确定物质中不同分子的各种结构和元素组成,从而了解物质的性质。

拉曼光谱分析的原理是拉曼散射(Raman scattering)。

将紫外线通过物质照射,有些分子会发生拉曼散射,使光的频率和强度发生变化,这就产生了一种特殊的拉曼光谱。

根据不同分子结构,拉曼光谱有不同的特征,能够有效地探测物质中不同分子结构和元素组成。

拉曼光谱分析的仪器是拉曼光谱仪,它能实现自动化测量,操作简单,能够准确测量拉曼光谱,准确识别物质结构和元素组成。

一般来说,拉曼光谱仪主要由安装样品的台面、光源和探测器等组成。

使用拉曼光谱仪,可以获得准确的数据,从而确定物质结构和元素组成。

拉曼光谱分析应用非常广泛,可以应用于医学分析、食品分析、石油精炼和勘探等领域。

在医学分析中,拉曼光谱可以用来识别致病菌和病毒、疾病的诊断以及血液检测等;在石油精炼和勘探中,拉曼光谱可以用来确定石油中不同物质的含量和组成;在食品分析中,拉曼光谱可以用来检测食品的质量和构成,从而确定食品的安全性和营养价值。

目前,拉曼光谱分析已经发展成一门重要的分析技术,可以广泛应用于多个领域。

它既可以得到准确的测量数据,又可以大大简化实验程序,大大提高研究和分析的效率。

因此,拉曼光谱分析日益受到人们的重视,不仅可以用于进行精确的分析,而且在发展新材料、研究新药物等方面也发挥着重要作用。

拉曼光谱分析是一项复杂的科学技术,需要科学家们具备相关的知识和专业技能,才能取得良好的研究成果。

近年来,随着社会的发展,拉曼光谱分析的科学研究已经取得了长足的进步,并在各个领域都发挥了重要作用。

未来,拉曼光谱分析将继续发展,供研究者在多个领域进行有效的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼效应产生于入射光子与分子振动能 级的能量交换 . 拉曼频率位移的程度正好相当于红外吸 收频率。因此红外测量能够得到的信息 同样也出现在拉曼光谱中.
红外光谱
红外光谱是入射光子引起分子中成键原子 振动能级的跃迁而产生的光谱。 互补
红外光谱解析中的定性三要素(即吸收频 红外光谱分析中的定性三要素(吸收频率、 率、强度和峰形)对拉曼光谱解析也适用。强度和峰形 但拉曼光谱中还有退偏振比。 非极性官能团的拉曼散射谱带较为强烈, 极性官能团的红外谱带较为强烈 , C=O的伸 因为非极性对称分子价电子振动时偶极 缩振动的红外谱带比相应的拉曼谱带更为 矩变化较小,例如,许多情况下C=C伸 显著。 缩振动的拉曼谱带比相应的红外谱带较 为强烈. 而碳链的振动用拉曼光谱表征更为方便 对于链状聚合物来说,碳链上的取代基用 红外光谱较易检测出来
在各种分子振动方式中,强力吸收红外光的振动能产生 高强度的红外吸收峰,但只能产生强度较弱的拉曼谱峰;反之, 能产生强的拉曼谱峰的分子振动却产生较弱的红外吸收峰。因 此,拉曼光谱与红外光谱相互补充,才能得到分子振动光谱的 完整数据,更好地解决分子结构的分析问题。 进一步,由于拉曼光谱的一些特点,如水和玻璃的散射 光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用 具有突出的优点。
1—反射镜 2—多通道池 3—锲型镜 4—液体
激光拉曼散射光谱法
拉曼光谱在材料研究中的应用
拉曼光谱的选择定则与高分子构象
由于拉曼与红外光谱具有互补性,因而二者结 合使用能够得到更丰富的信息。这种互补的特点, 是由它们的选择定则决定的。凡具有对称中心的分 子,它们的红外吸收光谱与拉曼散射光谱没有频率 相同的谱带,这就是所谓的“互相排斥定则”。例 如聚乙烯具有对称中心,所以它的红外光谱与拉曼 光谱没有一条谱带的频率是一样的。
拉曼散射光谱的基本概念
红外吸收要服从一定的选择定则,即分子振动 时只有伴随分子偶极矩发生变化的振动才能产生红 外吸收。同样,在拉曼光谱中,分子振动要产生位 移也要服从一定的选择定则,也就是说只有伴随分 子极化度 α 发生变化的分子振动模式才能具有拉曼 活性,产生拉曼散射。极化度是指分子在电场的作 用下,分子中电子云变形的难易程度,因此只有分 子极化度发生变化的振动才能与入射光的电场E相互 作用,产生诱导偶极矩:: (6-16)
I I∥
式中I⊥和 I//
(6-17)
——分别代表与激光电矢量相垂直和相平行的谱线的强度。
<3/4的谱带称为偏振谱带,表示分子有较高的对称振动模式; =
3/4的谱带称为退偏振谱带,表示分子的对称振动模式较低,即分子是不对称 的。
激光拉曼散射光谱法
激光拉曼光谱与红外光谱比较
激光拉曼光谱
(3)对于聚合物及其他分子,拉曼散射的选择定则的限制较 小,因而可得到更为丰富的谱带。S-S,C-C,C=C,N=N等 红外较弱的官能团,在拉曼光谱中信号较为强烈。
激光拉曼散射光谱法
试验设备和实验技术
激光光源
样品室 激光拉曼光谱仪
单色器 检测记录系统 计算机
激光拉曼散射光谱法
试验设备和实验技术
1. 激光光源 激光是原子或分子受激辐射产生的。激光和普通光 源相比,具有以下几个突出的优点: (1) 具有极好的单色性。激光是一种单色光,如氦氖激光器 发出的6328Å的红色光,频率宽度只有910-2Hz。
拉曼散射光谱的基本概念
图6-33 散射效应示意图 (a)瑞利和拉曼散射的能级图 (b)散射谱线
拉曼散射光谱的基本概念
处于基态的分子与光子发生非弹性碰撞,获得能量跃迁 到激发态可得到斯托克斯线,反之,如果分子处于激发态, 与光子发生非弹性碰撞就会释放能量而回到基态,得到反斯 托斯线。 拉曼位移:斯托克斯线或反斯托克斯线与入射光频率之 差称为拉曼位移。拉曼位移的大小和分子的跃迁能级差一样。 因此,对应于同一分子能级,斯托克斯线与反斯托克斯线的 拉曼位移应该相等,而且跃迁的几率也应相等。在正常情况 下,由于分子大多数是处于基态,测量到的斯托克斯线强度 比反斯托克斯线强得多,所以在一般拉曼光谱分析中,都采 用斯托克斯线研究拉曼位移。 拉曼位移的大小与入射光的频率无关,只与分子的能级 结构有关,其范围为25~4000cm-1。因此入射光的能量应大 于分子振动跃迁所需能量,小于电子能跃迁的能量。
激光拉曼散射光谱法
试验设备和实验技术
1. 激光光源
由于激光的这些特点,它是 拉曼散射光谱的理想光源,激 光拉曼谱仪比用汞弧灯作光源的经典拉曼光谱仪具有明显的 优点:
(1)被激发的拉曼谱线比较简单,易于解析; (2)灵敏度高,样品用量少,普通拉曼光谱液体样品需 50ml左右,而激光拉曼光谱只要1l即可,固体0.5 g,气体 只要1011个分子; (3)激光是偏振光,测量偏振度比较容易。
试验设备和实验技术
2. 制样技术及放置方式
激光拉曼散射光谱法
拉曼实验用的样品主要是溶液(以水溶液为主),固体(包括纤维)。
为了有效收集从小体积发 出的拉曼辐射,多采用一 个90度(较通常)或180 度的试样光学系统。
多重反射槽
图6-34 各种形态样品在拉曼光谱仪中放置方法
(a) 透明固体 (b) 半透明固体 (c) 粉末 (d) 极细粉末 (e) 液体 (f) 溶液
激光拉曼散射光谱法 拉曼效应是能量为hv0的光子同分子碰撞所产生的光散射效应, 也就是说,拉曼光谱是一种散射光谱。
拉曼效应很弱,同时它会受到高分子样品中或杂质中的 荧光干扰,只有在60年代引入激光光源和80年代后期引入FT技 术后,FT-Raman光谱才能检测80%以上的合成和天然大分子, 以及生物大分子的样品。
激光拉曼散射光谱法
拉曼光谱在材料研究中的应用
拉曼光谱的选择定则与高分子构象
Байду номын сангаас
上述原理可以帮助推测聚合物的构象。例如聚硫化乙烯(PES)的分子链的 重复单元为(CH2CH2SCH2CH2-S),假设C-C键是反式构象,C-S为旁式构象, 那它就具有对称中心,从理论上可以预测PES的红外及拉曼光谱中没有频率相 同的谱带。假如PES采取像聚氧化乙烯(PEO)那样的螺旋结构,那就不存在对 称中心,它们的红外及拉曼光谱中就有频率相同的谱带。实验测量结果发现, PE0的红外及拉曼光谱有20条频率相同的谱带。而PES的两种光谱中仅有二条 谱带的频率比较接近。因而,可以推论PES具有与PEO不同的构象:在PEO中, C-C键是旁式构象,C-O为反式构象;而在PES中,C-C键是反式构象,C-S为 旁式构象。 分子结构模型的对称因素决定了选择原则。比较理论结果与实际测量的 光谱,可以判别所提出的结构模型是否准确。这种方法在研究小分子的结构 及大分子的构象方面起着很重要的作用。
E
与红外吸收光谱相似,拉曼散射谱线的强度与诱 导偶极矩成正比。
拉曼散射光谱的基本概念
在多数的吸收光谱中,只具有二个基本参数(频率 和强度),但在激光拉曼光谱中还有一个重要的参数即退 偏振比(也可称为去偏振度)。 由于激光是线偏振光,而大多数的有机分子是各向 异性的,在不同方向上的分子被入射光电场极化程度是不 同的。在红外中只有单晶和取向的高聚物才能测量出偏振, 而在激光拉曼光谱中,完全自由取向的分子所散射的光也 可能是偏振的,因此一般在拉曼光谱中用退偏振比 ( 或称 去偏振度) 表征分子对称性振动模式的高低。
第5章 拉曼光谱分析法
激光拉曼散射光谱法
拉曼光谱与分子极化率的关系
二硫化碳的振动及其极化度的变化
拉曼散射光谱的基本概念
拉曼散射:拉曼光谱为散射光谱。当一束频率为 0的入射光 照 射到气体、液体或透明晶体样品上时,绝大部分可以透 过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞, 即在碰撞时有能量交换,这种光散射称为拉曼散射; 瑞利散射:若入射光与样品分子之间发生弹性碰撞,即两者之 间没有能量交换,这种光散射,称为瑞利散射。 斯托克斯(Stokes)线:在拉曼散射中,若光子把一部分能量给 样品分子,得到的散射光能量减少,在垂直方向测量到 的散射光中,可以检测频率为(0 – E/h)的线,称为斯托克斯 (Stokes)线,如图6-33所示。 反斯托克斯线:在拉曼散射中,若光子从样品分子中获得能量, 在大于入射光频率处接收到散射光线,则称为反斯托克斯线。
(2) 具有极好的方向性。激光几乎是一束平行光,例如,红 宝石激光器发射的光束,其发射角只有3分多。激光是非常 强的光源。由于激光的方向性好,所以能量能集中在一个 很窄的范围内,即激光在单位面积上的强度远远高于普通 光源。 拉曼光谱仪中最常用的是He-Ne气体激光器。
Ar+激光器是拉曼光谱仪中另一个常用的光源。
激光拉曼散射光谱法
拉曼光谱在材料研究中的应用
高分子的红外二向色性及拉曼去偏振度
C-C、C-N伸缩振 动平行于拉伸方 向取向。
1126cm-1谱带(C-C伸缩 振动)
1081cm-1谱带(CN伸缩振动)
图6-37 聚酰胺-6薄膜拉伸400%后的激光拉曼散射光谱 ∥表示偏振激光电场矢量与拉伸方向平行 ⊥表示偏振激光电场矢量与拉伸方向垂直
激光拉曼散射光谱法
激光拉曼光谱与红外光谱比较
红外与拉曼光谱在研究聚合物时的区别可以聚乙烯为例加以说明(图 6-34)。 聚乙烯分子中具有对称中心,红外与拉曼光谱呈现完全不同的振动模 式。在红外光谱中,CH2振动为最显著的谱带。而拉曼光谱中,C-C振动有 明显的吸收。
图6-34 线型聚 乙烯的红外(a) 及拉曼(b)光谱
激光拉曼光谱与红外光谱比较
与FTIR相比,Raman具有如下优点: (1)拉曼光谱是一个散射过程,因而任何尺寸、形状、透明 度的样品,只要能被激光照射到,就可直接用来测量。由 于激光束的直径较小,且可进一步聚焦,因而极微量样品 都可测量。
(2)水是极性很强的分子,因而其红外吸收非常强烈。但水 的拉曼散射却极微弱,因而水溶液样品可直接进行测量, 这对生物大分子的研究非常有利。此外,玻璃的拉曼散射 也较弱,因而玻璃可作为理想的窗口材料,例如液体或粉 末固体样品可放于玻璃毛细管中测量。
相关文档
最新文档