一元二次方程根与系数的关系(公开课)讲解
《一元二次方程根与系数的关系》ppt省公开课获奖课件说课比赛一等奖课件
(2)(α-2)(β-2).
24.3 一元二次方程根与系数旳关系
6.(3分)孔明同学在解一元二次方程x2-3x+c=0时,正确解得 x1=1,x2=2,则c旳值为____2____.
7.(3分)已知有关x旳方程x2+mx-6=0旳一种根为2,则这个方 程旳另一种根是___-__3___.
A.3 B.-3 C.13 D.-13 10.(8分)有关x旳一元二次方程x2+3x+m-1=0旳两个实数根 分别为x1,x2. (1)求m旳取值范围; (2)若2(x1+x2)+x1x2+10=0,求m旳值.
24.3 一元二次方程根与系数旳关系
24.3 一元二次方程根与系数旳关系
【易错盘点】
【例】已知x1,x2是有关x旳一元二次方程x2-(2m+3)x+m2=0旳
则xx2+x1x旳值为( A )
A.-3
B.3
C.-6
D.6
12.(5分)解某个一元二次方程时,甲看错了方程旳常数项,因而得
出旳两根为8和2;乙看错了方程旳一次项旳系数,因而得出两根为-
9或-1,那么正确旳方程为( A )
A.x2-10x+9=0 B.x2+10x+9=0
C.x2-10x-9=0 D.x2+10x-9=0
3.(3分)下列一元二次方程两实根和为-4旳是( D )
A.x2+2x-4=0 B.x2-4x+4=0
C.x2+4x+10=0 D.x2+4x-5=0
24.3 一元二次方程根与系数旳关系
4.(3分)已知x1,x2是方程x2-4x-5=0旳两个实数根,则(x1 -2)(x2-2)=___-__9___.
一元二次方程的根与系数的关系 ppt课件
把n=4m 代入代数式4m2-5mn+n2,
得4m2-5m×4m+(4m)2=0.
综上所述,代数式4m2-5mn+n2 的值为0 .
知1-练
(3)若关于x 的一元二次方程ax2+bx+c=0(a ≠ 0)是“倍根
方程”,求a,b,c 之间的关系.
解:由“倍根方程”的定义可设ax2x2=
=1.
知1-练
2-1.[中考·宜昌] 已知x1,x2 是方程2x2-3x+1=0 的两根,
则代数式
+
+
的值为 ______.
1
知1-练
例 3 已知关于x 的一元二次方程x2+(2m+1)x+m2-2=0.
(1)若该方程有两个实数根,求m 的最小整数值;
知1-练
3-1.[中考·襄阳] 关于x 的一元二次方程x2+2x+3-k=0 有
两个不相等的实数根.
(1)求k 的取值范围;
解:b2-4ac=22-4×1×(3-k)=-8+4k.
∵方程有两个不相等的实数根,
∴-8+4k>0,解得k>2.
知1-练
(2)若方程的两个根为α ,β , 且k2=αβ +3k,求k 的值.
8=0 就是“倍根方程”
解题秘方:紧扣“倍根方程”的定义及根与系数的
关系解题,理解“倍根方程”的概念是解题关键.
知1-练
(1)若关于x 的一元二次方程x2-3x+c=0 是“倍根方程”,
2
则c=________;
知1-练
(2)若(x- 2)(mx-n) =0(m ≠ 0)是“倍根方程”,求代数式
4m2-5mn+n2 的值;
解方程(x-2)(mx-n)= 0(m ≠
一元二次方程根与系数关系课件
学习目标
掌握一元二次方程根 与系数之间的关系。
培养逻辑推理和数学 思维能力。
学会利用根与系数的 关系解决实际问题。
02
一元二次方程的基本概念
一元二次方程的定义
定义
一元二次方程是只含有一个未知 数,且未知数的最高次数为2的 0$,$x^2 - 3x + 4 = 0$等。
一元二次方程根与系数的 关系
根的和与系数的关系
总结词
一元二次方程的根的和等于二次项系数除以一次项系数所得商的相反数。
详细描述
对于一元二次方程 ax^2 + bx + c = 0,其两个根x1和x2的和为 -b/a。这个性质在 解决一些数学问题时非常有用,例如在寻找两个数的和等于某个特定值的问题中。
数学中的一元二次方程问题
几何问题
例如,在直角三角形中,斜边长为c, 两直角边长分别为a和b,根据勾股定 理,我们可以得到一元二次方程 c^2=a^2+b^2。
代数问题
例如,在解一元二次方程时,我们常 常需要使用一元二次方程的根与系数 的关系来求解。
其他领域的一元二次方程问题
物理学中的问题
例如,在物理学中,当一个物体从静止开始下落时,其下落距离与时间的关系可以用一 元二次方程来表示。
自主学习
在学习的过程中,我积极 思考、自主探究,提高了 自主学习和解决问题的能 力。
对未来学习的展望和计划
深入学习
我计划深入学习一元二次 方程的更多性质和应用, 进一步拓展数学知识体系。
实践应用
我将尝试将所学知识应用 于更广泛的领域,提高解 决实际问题的能力。
自主学习
我将继续保持自主学习的 习惯,不断探索数学知识 的奥秘,提高数学素养。
《一元二次方程的根与系数的关系》课件精品 (公开课)2022年数学PPT
=0(a≠0)的两个根分别是x1、
x2 ,那么
b x1 x2 a
c x1 x2 a
x 1 2x2 2(x 1x2)2 2 x 1 x2
应用
(x 1 x 2)2 (x 1 x 2)2 4 x 1 x 2
1 1 x1 x2 x1 x2 x1 • x2
课后作业
见<>本课时练习
第|一章 有理数
2.一般地 ,a和 -a互为相反数.
代数意义
练一练
判断题:
〔1〕-5是5的相反数;〔 √〕
〔2〕-5是相反数;〔
×〕
〔3〕 2 1 与 互1 为相反数;〔 〔4〕-52 和5互为2相反数;〔
〕
×
〕
√
〔5〕 相反数等于它本身的数只有0; ﹙√ ﹚ 〔6〕 符号不同的两个数互为相反数.﹙ ×﹚
结合数轴考虑:
x1
x2
b a
c x1 x2 a
证一证:
x1x2 b2 b a 24ac b2 b a 24ac
b b24acb b24ac 2a
2b 2a
b . a
x1x2b2 b a 24acb2 b a 24ac
b2 b2 4ac
4a2
4ac 4a2
c. a
归纳总结
一元二次方程的根与系数的关系 〔韦达定理〕
第二十一章 一元二次方程
解一元二次方程
21.2.4 一元二次方程的根与系数的关系
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.探索一元二次方程的根与系数的关系.〔难点〕 2.不解方程利用一元二次方程的根与系数的关系解决 问题.〔重点〕
导入新课
复习引入
一元二次方程的根与系数的关系PPT免费课件下载
且0,
2
∴两根之和10, 1,且0
∴两根之积210, =
∴1时,方程的两根互为相反数.
∴ = 时,方程有一根为零.
②∵两根互为倒数 265,
∴两根之积211,1且0,
∴1时,方程的两根互为倒数.
1
2
课堂小结 分层作业
1.一元二次方程根与系数的关系是什么?
解: 根据根与系数的关系,可知:
1 + 2 = 4,
1 ⋅ 2 = 1
∴ 1 2 + 2 2 = (1 + 2 )2 − 21 2
= 42 − 2 × 1
= 14
1 + 2 = −
1 ∙ 2 =
课堂练习 巩固提升
试一试
1.口答下列方程的两根之和与两根之积.
1 2 − 8 + 4 = 0
− ,
1 ∙ 2 =
.
这就是一元二次方程根与系数的关系,也叫韦达定理.
学以致用 深化理解
例题1
不解方程,请直接写出方程的两根之和和与两根之积各是多少?
1 2 − 3 + 2 = 0
解:
1
1 + 2 = − = −
1 ∙ 2 =
2
2
−3
1
2 2 − 3 = 5
=3
2 2 − 2 − 12 = 0
3
2 − 7 = 0
4 3 2 = 8 + 4
5 2 2 + 3 − 5 = 0
课堂练习 巩固提升
试一试
2.已知一元二次方程的 2 + + = 0 两根分别为 和 − ,
《一元二次方程的根与系数的关系》一元二次方程PPT教学课件
解:(2)这里 a = 2,b = -3,c = -2.
Δ =b2-4ac = (-3)2-4×2×(-2)
= 9+16 = 25 > 0,
∴方程有两个实数根.
设方程的两个实数根是x1,x2,那么.
x1+x2=
3 2
, x1x2 = -1.
随堂练习
1.利用根与系数的关系,求下列方程的两根之和、两根之积:
2. 解下列方程: (1)12x2+7x+1=0;
(2)0.8x2+x=0.3;
解:(1)a=12,b=7,c=1.
∵b²-4ac=7²-4×12×1=1.
∴x=
7 1
.
24
∴x1=
1 4
,x2=
1 3
.
(2)原方程变形为8x²+10x-3=0.
这里a=8,b=10,c=-3.
∵b²-4ac=10²-4×8×(-3)=196,
(1) x2-3x-1=0;
(2) 3x2+2x-5=0.
解:(1)这里 a = 1,b = -3,c = -1. 解:(2)这里 a = 3,b = 2,c = -5.
Δ =b2-4ac = (-3)2-4×1×(-1)
Δ =b2-4ac = 22-4×3×(-5) = 4+60 = 64>0,
= 9+4 = 13>0,
新课引入 新课讲授 随堂练习 课堂小结
学习目标
01 探索一元二次方程的根与系数的关系. 02 不解方程利用一元二次方程的根与系数的关系解决问题.
经历观察、猜想、验证一元二次方程根与系数的关系的 03 过程,体会从特殊到一般的思想.
一元二次方程根与系数的关系 公开课课件
1. 一元二次方程ax2+bx+c=0(a≠0)的两个根x1,x2
和系数a,b,c的关系:
b
c
x1 x2 a , x1 x2 a .
2. 用一元二次方程根与系数的关系,求另一根及
未知系数的方法:
(1)当已知一个根和一次项系数时,先利用两根
的和求出另一根,再利用两根的积求出常数项
•
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
(来自《点拨》)
知1-练
1 一元二次方程x2+4x-3=0的两根为x1,x2,则
x1·x2的值是( )
A.4
B.-4
C.3
D.-3
2 已知x1、x2是方程x2+3x-1=0的两个实数根, 那么下列结论正确的是( )
A.x1+x2=-1 C.x1+x2=1
B.x1+x2=-3 D.x1+x2=3
(来自《典中点》)
知1-练
3 判别下列方程根的情况. 若有两个实数根,求出 两个根的和与积. (1) x2-4x+1 =0; (2) x2-2x+1 =0; (3) -x2+3x -2=0; (4)x2-4x=0.
一元二次方程的根与系数的关系说课讲稿doc
一元二次方程的根与系数的关系说课讲稿.doc一、教材分析本节课是高中数学一元二次方程的根与系数的关系的内容。
根据教材《高中数学》第二册,这一内容属于高中数学二次函数的章节。
在高中数学的课程中,二次函数是一个重要的内容,也是学生较难掌握的知识点之一。
本节课主要通过一元二次方程的根与系数的关系来帮助学生更好地理解和掌握二次函数的性质和特点。
二、教学目标1. 知识与能力目标:(1) 理解一元二次方程根与系数的关系;(2) 掌握求一元二次方程的根的方法;(3) 理解二次函数的顶点、对称轴等概念。
2. 过程与方法目标:(1) 通过示例引入,激发学生的学习兴趣;(2) 通过引导让学生独立思考,培养学生的解决问题的能力;(3) 通过讲解和实例演练,帮助学生掌握解一元二次方程的方法。
3. 情感态度与价值观目标:(1) 培养学生对数学的兴趣和自信心;(2) 培养学生解决问题的积极态度。
三、教学重点1. 理解一元二次方程根与系数的关系;2. 掌握求一元二次方程的根的方法。
四、教学难点1. 理解二次函数的顶点、对称轴等概念;2. 运用根与系数的关系解决问题。
五、教学过程1. 导入新课通过一个实际问题引入,如:小明想给自己的房间铺地板,他的房间是一个长方形,长是x+3米,宽是x米,地板的面积是(2x+5)平方米,如果地板上面积的长宽相等,求小明房间的长和宽各是多少米?让学生思考并给出答案。
2. 学习新课引入一元二次方程的概念,让学生回顾已学内容,并复习解一元二次方程的方法。
解释一元二次方程的根与系数的关系,介绍根与系数之间的关系式。
讲解二次函数的顶点、对称轴等概念,并通过实例演示如何求解。
3. 巩固练习让学生通过练习题独立解题,巩固所学内容。
4. 拓展延伸引导学生思考一元二次方程的根与系数的关系在实际问题中的应用,如物理问题、几何问题等。
六、板书设计一元二次方程的根与系数的关系一元二次方程的解法根与系数之间的关系式二次函数的顶点、对称轴七、教学反思通过本节课的教学,学生可以更好地理解和掌握一元二次方程的根与系数的关系。
沪科版公开课教案:一元二次方程的根与系数的关系
18.4 一元二次方程的根与系数的关系➢教学目标1.通过观察、归纳、探索和训练掌握和理解一元二次方程的根与系数的关系定理,能运用它判断两数是否为一个方程的根;能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2.经历对一元二次方程的根与系数的关系实例的认识过程,进一步培养学生分析、观察、猜想、归纳的能力和推理论证的能力。
➢教学重点、难点教学重点:根与系数的关系的发现及其推导。
教学难点:正确理解根与系数的关系,运用韦达定理解决问题。
➢教学过程问题1:请同学们解下列方程,并观察根与系数的关系:x2-3x+2=0 x2-2x-3=0 x2-5x +4=0第一个方程的一个根是2,另一个根是1.它们的和是多少?积是多少?第二个方程的一个根是3,另一个根是-1.它们的和是多少?积是多少?第三个方程的一个根是4,另一个根是1.它们的和是多少?积是多少?观察、思考:请问它们的和、积与系数之间有什么样的关系?如果方程x2+px+q=0有两个根是x1,x2那么有x1+x2=-p,x1·x2=q.问题2:请同学们解下列方程,并观察根与系数的关系:9x2-6x+1=0, 3x2-4x+1=0 3x2+7x+2=0这三个方程的两根之和,两根之积与各项系数之间有什么关系?请猜想?二.探索新知:对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征?推导一元二次方程两根和与两根积与系数的关系.设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.∴a acbbx2421-+-=,aacbbx2422---=.()042≥-acb由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理韦达(法国1540-1603)判断对错:1) 2x 2-11x+4=0两根之和11,两根之积为4。
( )2) 4x 2+3x=5两根之和-34 ,两根之积54。
24.3 一元二次方程根与系数的关系课件(共16张PPT)
还有其他的做法吗?
随堂演练
1. 若x1,x2 是方程x2-2mx+m2-m-1=0 的两个根,且x1+x2=1-x1x2,则m的值为( )A. -1 或2 B. 1 或-2 C. -2 D. 1
5
6
由求根公式可知
归纳
方程的两个根 x1,x2 和系数 a,b,c 有如下关系:
注意一元二次方程的根与系数的关系存在的前提是a ≠ 0,b2-4ac ≥ 0
例1
根据一元二次方程根与系数的关系,求下列方程两个根的和与积. (1) x2-3x-8=0 ; (2) 3x2+4x-7=0 .
解:(1)这里a=1,b=-3,c=-8,且b2-4ac=(-3)2-×1×(-8)=41>0,所以xΒιβλιοθήκη +x2=3, x1x2=-8.
(2)这里a=3,b=4,c=-7,且b2-4ac=42-4×3×(-7)=100>0,所以x1+x2= , x1x2= .
巩固练习
归纳
常见的关系:
3.
4.
课堂小结
根与系数的关系
内容
应用
求字母或代数式的值
同学们再见!
授课老师:
时间:2024年9月15日
2.一元二次方程的求根公式是什么?
ax2+bx+c=0(a≠0)
导入新知
知识点1
一元二次方程的根与系数的关系
①
探究
1.由因式分解法可知,方程(x-2)(x-3)=0的两根为x1=2,x2=3,而方程(x-2)(x-3)=0 可化为x2-5x+6=0的形式,则x1+x2= ,x1x2= . 2.设方程2x2+3x-9=0的两根分别为x1,x2,则x1+x2= ,x1x2= . 3.对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,设方程的两根分别为x1,x2,请你猜想x1+x2,x1x2与方程系数之间的关系,并利用求根公式验证你的结论.
人教版数学九年级上册 21.2.4 一元二次方程的根与系数的关系 课件(共19张PPT)
情感态度与价值观:
1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意
识。
教学重难点
掌握一元二次方程根与系数的关系。
利用一元二次方程根与系数的关系进行简单
计算。
复习引入:
1.一元二次方程的一般式:ax2+bx+c=0(a≠0).
b2-6b+4=0,且
A.
B.
a≠b,则 + 的值是( A )
−
C.
D.
−
解:∵ a2-6a+4=0 和 b2-6b+4=0 两个等式的
形式相同,且 a≠b,∴ a,b 可以看成是方
程 x2-6x+4=0 的两个根,∴ a+b=6,ab=4,
∴
+ =
+
=
+
巩固练习:
1.不解方程,求下列方程两个根的和与积.
(1) x2-3x=15;
(2) 3x2+2=1-4x;
(3) 5x2-1=4x2+x;
(4) 2x2-x+2=3x+1.
解:(1)方程化为 x2-3x-15=0,
x1+x2=-(-3)=3,x1x2=-15.
(2)方程化为 3x2+4x+1=0,
2.判断一元二次方程根的情况.
b2 - 4ac > 0 时,方程有两个不相等的实数根.
b2 - 4ac = 0 时,方程有两个相等的实数根.
b2 - 4ac < 0 时,方程无实数根.
《一元二次方程根与系数的关系》ppt课件PPT课件
24.3 一元二次方程根与系数的关系
【易错盘点】
【例】已知x1,x2是关于x的一元二次方程x2-(2m+3)x+m2=0的 两个不相等的实数根,且满足x1+x2=m2,则m的值是( )
A.-1 B.3
C.3或-1
D.-3或1
【错解】C
【错因分析】由根与系数关系求得方程中待定系数的值没有通过Δ
6.(3分)孔明同学在解一元二次方程x2-3x+c=0时,正确解得 x1=1,x2=2,则c的值为____2_ ___.
7.(3分)已知关于x的方程x2+mx-6=0的一个根为2,则这个方 程的另一个根是___-__3___.
8.(4分)如果关于x的一元二次方程x2+px+q=0的两根分别为x1 =2,x2=1,那么p,q的值分别是( A )
PPT素材:./sucai/
PPT背景:./beijing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
10.(8分)关于x的一元二次方程x2+3x+m-1=0的两个实数根 资料下载:./ziliao/
范文下载:./fanwen/
试卷下载:./shiti/
一元二次方程根与系数的关系
PPT教学课件
24.3 一元二次方程根与系数的关系
如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么 x1+x2=________,x1·x2=________. 在应用根与系数关系时应注意两个条件: (1)__方__程__二__次__项__系__数__不__为__0; (2)_____b_2__-__4_a_c_≥__0_____.
A.-3,2 B.3,-2 C.2,-3 D.2,3
21.2.4 一元二次方程根与系数的关系 课件(共17张PPT) 人教版数学九年级上册
求 a 的值及该方程的另一个根.
解:由方程有两个实数根,得 Δ = a2 - 4 ≥0,
即 a ≥ 2或a ≤ -2.
由根与系数的关系得 x1 + x2 = 2a,x1 x2 = 16.
∴
x1 x2
x1 x2
1
1
1
x1
x2
x1 x2
16
解得 a = 8
21.2.4 一元二次方程根与系数的关系
x1 x2 x12 x22 ( x1 x2 )2 2 x1 x2
3.
;
x2 x1
x1 x2
x1 x2
4.( x1 1)( x2 1) x1 x2 ( x1 x2 ) 1;
5. x1 x2 ( x1 x2 )2 ( x1 x2 )2 4 x1 x2 .
21.2.4 一元二次方程
的根与系数的关系
九年级上
学习目标
目
录
新课引入
新知学习
随堂练习
课堂小结
21.2.4 一元二次方程根与系数的关系
学习目标
1. 了解一元二次方程的根与系数的关系. (2022年版课标将*删除)
2. 会用一元二次方程的根与系数的关系解决简单问题.
21.2.4 一元二次方程Βιβλιοθήκη 与系数的关系7-9
(2) x1+x2=- ,x1 x2= =-3.
3
3
(3)方程化为 4x2-5x+1=0,∴
x1+x2=-
1
5 5
= , x1 x2= .
4
4 4
21.2.4 一元二次方程根与系数的关系
1
1
21.2.4《一元二次方程的根与系数的关系》ppt课件
x1x2=
k 3 2
当k=9或-3时,由于△≥0,∴k的值为9或-3。
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且 x12+x22=4,求k的值。
解:由方程有两个实数根,得
4(k 1) 2 4k 2 0
即-8k+4≥0
k
由根与系数的关系得x1+x2= 2(k-1) , x1x2=k2 ∴ X12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4 由X12+x22 =4,得2k2-8k+4=4
1 2
解得k1=0 , k2=4
经检验, k2=4不合题意,舍去。 ∴ k=0
b b 2 4ac x1 2a
X1+x2=
b b 2 4ac x2 2a
b b 2 4ac 2a
+
2b = = 2a
X 1 x 2=
b a
b b 2 4ac 2a
b b 2 4ac 2a
●
b b 2 4ac 2a
还可以把 x 2 代入方程的两边,求出
k
小结
一元二次方程根与系数的关系?
如果ax bx C 0(a 0)的两根分别是 b c x1 , x2 则有 x1 x2 a ; x1. x2 a
2
注:能用根与系数的关系的前提条件为 b2-4ac≥0
我能行4
例4、求运用根与系数的关系一个一元二次方程, 1 1 3 2 使它的两个根是: 3 , 2 解:所求的方程是:
1 9
x1+ x2,x1∙x2与系数有什么规律?
优质课 精品教案 (省一等奖)《一元二次方程的根与系数关系》公开课教案
21.2.4 一元二次方程的根与系数关系教学过程设计[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。
由于剪的方法不同,展开图的形状也可能是不同的。
学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。
通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。
24.1 圆 (第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决选做:补充作业:一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教 学 反 思O BAC一些实际问题. 重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入〔学生活动〕请同学们口答下面两个问题. 1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角.〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知问题:如下列图的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如下列图的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC 的一边BC 是⊙O 的直径,如下列图 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=12∠AOC 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程.老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明. 老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,OBACD而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD三、稳固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin cC=2R ,即sinA=2a R ,sinB=2b R ,sinC=2cR,因此,十清楚显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC =2R∴sin a A =sin b B =sin cC=2R五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业1.教材P95 综合运用9、10、[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
一元二次方程根与系数的关系优质课件
新方程的两根之积为 (x1) (x2 ) 5
三 已知两个数的和与积,求两数
题6 已知两个数的和是1,积是-2,则两
个数是 2和-1 。
解法(一):设两数分别为x,y则:
解得:{yx==-2 1 或 {xy==2 -1
{
x
x
y
y
求与方程的根有关的代数式的值时, 一般先将所求的代数式化成含两根之和, 两根之积的形式,再整体代入.
求一元二次方程的待定系数要验证判别式
4.已知方程 x2 kx k 2 0 的两个实数根
是 x1, x2
且 x12
x
2 2
4
, 求k的值.
解:由根与系数的关系得
x1+x2=-k, x1x2=k+2 又 x12+ x2 2 = 4 即(x1+ x2)2 -2x1x2=4 K2- 2(k+2)=4 K2-2k-8=0
6.(2013•荆州)已知:关于x的方程
kx2-(3k-1)x+2(k-1)=0
(1)求证:无论k为何实数,方程总有实数根; (2)若此方程有两个实数根x1,x2,
且│x1-x2│=2,求k的值.
小结:
1.一元二次方程根与系数的关系?
如果ax2 bx C 0(a 0)的两根分别是
求一元二次方程的待定系数要验证判别式
1、已知方程3x2-19x+m=0的一个根是1, 求它的另一个根及m的值。
解:设方程的另一个根为x2,
则x2+1=
19 3
,
∴
x2=
16 3
,
又x2●1=
一元二次方程的根与系数的关系:PPT课件
根与系数的基本关系
01
一元二次方程 ax^2 + bx + c = 0 (a ≠ 0) 的两个根 x1 和 x2 满足以 下关系
02
x1 + x2 = -b/a
03
x1 * x2 = c/a
04
这两个公式揭示了根与系数之间的基本关系,是求解一元二次方程的 关键。
根与系数的和与积的关系
01
根的和等于系数之比的 相反数:x1 + x2 = b/a
在不等式求解中的应用
利用一元二次方程的根与系数关系,可以将不等式转化为关于根的不等式,进而求 解。
当一元二次不等式的一个根已知时,可以利用根与系数的关系求出另一个根的范围, 从而确定不等式的解集。
对于一些特殊形式的一元二次不等式,可以直接利用根与系数的关系进行求解。
在函数图像中的应用
一元二次方程的根对应着函数图像的 顶点或交点,利用根与系数的关系可 以求出顶点的坐标或交点的坐标。
一元二次方程的根与系数的关系 ppt课件
contents
目录
• 引言 • 一元二次方程的根与系数的关系 • 一元二次方程的根的判别式 • 一元二次方程的根与系数关系的应用 • 典型例题解析 • 课程总结与回顾
01 引言
一元二次方程的定义
只含有一个未知数 (元)
是整式方程,即等号 两边都是整式
未知数的最高次数是 2(二次)
利用一元二次方程的根与系数关系, 可以求出函数图像的对称点、对称中 心等对称性质。
通过分析一元二次方程的根的性质, 可以判断函数图像的开口方向、对称 轴等性质。
05 典型例题解析
例题一:一元二次方程根与系数的关系
解析
根据一元二次方程的求根公式,我们有 x1 = [-b + sqrt(b^2 - 4ac)] / (2a) 和 x2 = [-b - sqrt(b^2 4ac)] / (2a)。将这两个表达式相加和相乘,即可得到 x1 + x2 = -b/a 和 x1 * x2 = c/a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学·
例4、方程x2(m1)x2m10求m满足什么条件时,方程的两 根互为相反数?方程的两根互为倒数?方程的一根为零? 解:(m1)24(2m1)m26m5 ①∵两根互为相反数 ∴两根之和m10,m1,且0 ∴m1时,方程的两根互为相反数. ②∵两根互为倒数 m26m5, ∴两根之积2m11 m1且0, ∴m1时,方程的两根互为倒数. ③∵方程一根为0, 1 m ∴两根之积 2m10 且0, 1 2 ∴ m 2 时,方程有一根为零.
2
3x 7 x 0
2
2x 5
2
数学·
例1、已知方程 5x 2 kx 6 0 的一个根
是2,求它的另一个根及k的值. 2 解:设方程 5x kx 6 0 的两个根 x1 2 。 分别是 x1 、x2 ,其中 6 x1 x2 2 x2 所以: 5 3 即: x 5 3 k 由于 x1 x2 2 ( 5 ) 5 得:k=-7 3 答:方程的另一个根是 5 ,k=-7
数学·
知识点回顾
1.一元二次方程的一般形式是什么?
ax bx c 0(a 0)
2
2.一元二次方程的求根公式是什么?
b b 2 4ac 2 x (b 4ac 0) 2a
3.一元二次方程的根的情况怎样确定?
0 两个不相等的实数根 0 两个相等的实数根 0 没有实数根
2 x 3x 1 0
2
两个根的;(1)平方和;(2)倒数和
解:设方程的两个根是x1 x2,那么
3 1 x1 x2 , x1 x2 2 2 2 1∵ x1 x2 x12 2 x1 x2 x22 3 1 13 2 2 2 4 1 1 x1 x2 3 1 2 3 x1 x2 x1 x2 2 2
b 4ac
2
数学·
方程
2
1 1
猜想:
数学·
证明:
已知:如果一元二次方程 ax bx c 0(a 0) 的两个根分别是 x1 、 x2 。
2
b 求证: x1 x2 a
ห้องสมุดไป่ตู้
c x1 x2 a
数学·
b b 4ac b b 4ac x1 x2 2a 2a
2 2
b b 4ac b b 4ac 2a
2 2
2b 2a
b a
数学·
b b 4ac b b 4ac x1 x2 2a 2a
2 2
b b 4ac 4a 2 4ac 2 4a
2 2
c a
数学·
如果一元二次方程 ax bx c 0(a 0)
+X2 )2 - 4X1X2 = ___ ( X1-X2)2 = ( X1___ 12 以2和-3为根的方程是X2-X-6=0 (× )
。
4、已知两个数的和是1,积是-2,则这两个数是_____ 2和-1
数学·
5、已知方程 x2=2x+1的两根为x1 , x2, 不解方程,求下列各式的值。
(1)(x1-x2)2
数学·
1、如果-1是方程2X2-X+m=0的一个根,则另 3 一个根是___ -3 。 2 ,m =____ 2、设 X1、X2是方程X2-4X+1=0的两个根,则 X1+X2 = ___ 4
,X1X2 =
___ 1 _,
X12+X22 = ( X1+X2)2 -2X___ 1X2
3、判断正误:
= ___ 14
2
的两个根分别是
x1
、 x2 ,那么:
这就是一元二次方程根与系数的关系,也叫韦达定理。
数学·
利用根与系数的关系,求下列方程的两根之和、两根之积
数学·
数学·
• 口答下列方程的两根之和与两根之积。
1.
2.
3. 4. 5.
x 2 x 15 0 2 x 6x 4 0
2
2 x 3x 5 0
( 3)
(2)x13x2+x1x23
x2 x1 x1 x2
数学·
6、若关于x的方程2x2+5x+n=0的一个根是-2,求它 的另一个根及n的值。
7、若关于x的方程x2+kx-6=0的一个根是-2,求它 的另一个根及k的值。
数学·
数学·
引申:1、若ax2bxc0 (a0 0) (1)若两根互为相反数,则b0; (2)若两根互为倒数,则ac; (3)若一根为0,则c0 ; (4)若一根为1,则abc0 ; (5)若一根为1,则abc0; (6)若a、c异号,方程一定有两个实数根.
数学·
1.一元二次方程根与系数的关系是什么? 2.应用一元二次方程的根与系数关系时, 首先要把已知方程化成一般形式. 3.应用一元二次方程的根与系数关系时, 要特别注意,方程有实根的条件,即在初 2 中代数里,当且仅当 b 4ac 时,才 0 能应用根与系数的关系.
2
数学·
例2、方程 x 3kx 2k 1 0 的两根互
2
为倒数,求k的值。
解:设方程的两根分别为 x1 和 x2 , x1 x2 2k 1 则: 而方程的两根互为倒数 即: x1 x2 1 所以: 2k 1 1 得: k 1
数学·
例3、利用根与系数的关系,求一元二次方程