特殊四边形的证明经典必考题

合集下载

几何证明题:特殊平行四边形精编版

几何证明题:特殊平行四边形精编版

特殊平行四边形之证明题题型一:菱形的证明1、如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )A. DE 是△ABC 的中位线B. AA '是BC 边上的中线C. AA '是BC 边上的高D. AA '是△ABC 的角平分线2.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.4.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD .(1)求证:AD =CE ;(2)填空:四边形ADCE 的形状是 .5.两个完全相同的矩形纸片ABCD 、BFDE 如图7放置,AB BF =,求证:四边形BNDM 为菱形.ABD EA ' D A ENM O A D G CB F E6.如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE.(1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.8.在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.点D 作DE AC ∥交BC 的延长线于点E .(1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.10.如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心;(2)求证:四边形DECF 为菱形. C D EM AB FN A QDE BP C O11、12、如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.13、如图,四边形ABCD 中,AB CD ∥,AC 平分BAD ∠,CE AD ∥交AB 于E .(1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断ABC △的形状,并说明理由.14、如图8,在ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,.(1)求证:ADE CBF △≌△.(2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论.FDOC B E A15、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。

特殊平行四边形专题含答案

特殊平行四边形专题含答案

特殊平行四边形专题一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=______;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=_______;(2)求证:∠ADF=∠EDF;(3)求DE的长.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.特殊平行四边形专题参考答案与试题解析一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.解:∵四边形形ABCD是正方形,∴AB=AD=DC,∠BAD=∠D=90°,又∵DE=CF,∴AE=DF,∴在△BAE和△ADF中,,∴△BAE≌△ADF(SAS).∴∠ABE=∠DAF,∵∠DAF+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AGB=90°,∴BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=DF,∴AF=BE,∴四边形ABEF是平行四边形,又∵AE⊥BF,∴四边形ABEF是菱形;(2)解:∵菱形ABEF的周长为16,∴AB=BE=4,AB∥EF,∴∠ABE=180°﹣∠BEF=180°﹣120°=60°,∴△ABE是等边三角形,∴AE=AB=4.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FEB=∠FGD,∠FBE=∠FDG,∵F是BD的中点,∴BF=DF,在△BEF和△DGF中,,∴△BEF≌△DGF(AAS);(2)由(1)得:△BEF≌△DGF,∴BE=DG,∵BE∥DG,∴四边形DEBG是平行四边形,∵∠ADB=90°,E是AB的中点,∴DE=AB=BE,∴四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.解:(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.解:(1)证明:∵正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BF A=90°=∠AED,∴△ABF≌△DAE(AAS),∴AF=DE,AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形不能是平行四边形.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO 的面积.(1)证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD为矩形;(2)解:∵四边形ABCD为矩形,∴∠BAC=90°,∵AB=3,AD=4,∴BD=5,∵S△ABD=AB•AD=BD•AE,∴3×4=5AE,∴AE=,∵AC=BD=5,∴AO=AC=,∵AE⊥BD,∴OE===,∴△AEO的面积==.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=1,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=1,∴△OEC的面积=•EC•OF=.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,DO=BO,∴∠EDO=∠FBO,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵BO=DO,EF⊥BD,∴ED=EB,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥DC,∠ABC=90°,∵BC=BE,∴CE=BC,∵AB=BC,∴CD=CE,∴∠CDE=∠CED,∵AB∥CD,∴∠CDE=∠AED,∴∠AED=∠DEC,∴DE平分∠AEC;(2)∵BC=BE,∠CBE=90°,∴∠BCE=∠BEC=45°,∵CD∥AB,∴∠DCE=∠BEC=45°,∵DF⊥CE,∴∠CDF=45°,∴DF=CF,∴CD=DF,∵AB=CD,AB=,BC=BE,∴BE=DF=CF=BC,∵∠ADC=90°,∴∠FDG=45°,∴∠BEF=∠EDF,∵BC=CF,∠BCF=45°,∴∠CBF=∠CFB=67.5°,∴∠EBF=90°﹣67.5°=22.5°,∠DFG=180°﹣67.5°﹣90°=22.5°,∴∠EBF=∠DFG,在△DFG和△EBF中,∴△DFG≌△EBF(ASA),∴DG=EF,∵EF=CE﹣CF=AB﹣BC=,∴DG=2.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=5;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG===5;故答案为:5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG==;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG==,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+=,综上,DE的长是或.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.(1)证明:∵△ADE为等边三角形,∴AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠AEB=(180°﹣150°)=15°.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.解:(1)∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵DE=CD,∴DE=AB,∴四边形ABDE是平行四边形.(2)∵AD=DE=4,∠ADE=90°,∴AE=4,∴BD=AE=4.在Rt△BAD中,O为BD中点,∴AO=BD=2.∵AD=CD,∴矩形ABCD是正方形,∴∠EAO=∠OAD+∠DAE=45°+45°=90°,∴OE=2.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=3;(2)求证:∠ADF=∠EDF;(3)求DE的长.解:(1)∵AE⊥BC,∴∠AEB=90°,∵AD=6,F为AB边中点,∴EF=AB=AD=3.故答案为:3;(2)延长EF交DA于G,∵AD∥BC,∴∠G=∠FEB,∠GAB=∠B,∵AF=BF,∴△AGF≌△BEF(AAS),∴GF=EF,∵DF⊥EF,∴DG=DE,∴∠ADF=∠EDF;(3)设BE=x,则AG=x,则DE=DG=6+x,∵AE2=AB2﹣BE2=62﹣x2,AE2=DE2﹣AD2=(x+6)2﹣62,∴62﹣x2=(x+6)2﹣62,解得x=﹣3±3,∴BE=﹣3+3,∴DE═﹣3+3+6═3+3.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、点F分别是OB、OD的中点,∴OE=OB,OF=OD,∴OE=OF,∴四边形AECF是平行四边形,∵AC⊥AB,∠AOB=60°,∴∠ABO=30°,∴OA=OB=OE,∴AC=EF,∴四边形AECF为矩形;(2)解:由(1)得:OA=OE=OC=OF,∠AOB=60°,∠ABO=30°,∴△OAE是等边三角形,∠OF A=∠OAF=30°=∠ABO,∴AE=OA,AF=AB=3,∵AC⊥AB,∴∠OAB=90°,∴AE=OA=AB=,∴矩形AECF的面积=AF×AE=3.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.(1)证明:∵BD⊥AC于点D,CE⊥AB于点E,∴∠BDC=∠BEC=90°,∵BF=CF,∴DF=EF=BC.(2)解:∵FE=FB=FC=FD,∴∠FBE=∠FEB,∠FCD=∠FDC,∵∠A=60°,∴∠ABC+∠ACB=120°,∴∠BFE+∠DFC=180°﹣2∠ABC+180°﹣2∠ACB=120°,∴∠EFD=60°,∵EF=DF,∴△EFD是等边三角形,∵EF=BC=3,∴△DEF使得周长为9.(3)∵EC=BF,BF=CF,∴EC=BC,∴cos∠BCE=,∴∠ECB=45°,∵BC=6,∴EB=EC=3,∵∠A=60°,∠AEC=90°,∴AE=×3=,∴AB=BE+AE=3+,在Rt△ADB中,∵∠ABD=30°,∴AD=AB=,∴S四边形EFDA=S△EDF+S△ADE=×32+×××=3+.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.解:在正方形ABCD中,AB=CD=CD=AD,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.。

特殊平行四边形的经典题型

特殊平行四边形的经典题型

特殊平行四边形的经典题型特殊平行四边形包括矩形、菱形和正方形,那这几种图形在各种经典题型里可是各有各的“戏码”呢。

矩形嘛,经常会在面积和对角线相关的题目里出现。

比如说,已知一个矩形的长是8,对角线长是10,让你求宽是多少。

这时候就可以用到勾股定理啦,因为矩形的对角线把矩形分成了两个直角三角形,对角线就是斜边,长和宽就是两条直角边。

根据勾股定理a² + b² = c²(这里的a和b就是长和宽,c就是对角线),已知a = 8,c = 10,那宽b就等于6。

这类型的题目就像是给你一把钥匙,只要你知道用勾股定理这个“开锁方法”,就能轻松解决。

菱形呢,它的对角线互相垂直且平分这个性质可是出题的热门点。

像有一道题说菱形的对角线分别是6和8,问菱形的面积是多少。

很多人可能会先求边长再用底乘高来算面积,其实完全不用这么麻烦,直接根据菱形面积等于对角线乘积的一半这个公式,就能得出面积是24啦。

还有就是菱形四边相等这个性质,有时候会在证明题里出现,比如证明四个点构成的四边形是菱形,就需要通过证明四条边相等来得出结论。

正方形就更有趣了,它是集矩形和菱形的性质于一身的特殊平行四边形。

有这样一道题,正方形ABCD中,E是AB的中点,连接CE,CE的垂直平分线交AD于F,让你证明AF = 1/4 AD。

这题就要用到正方形的性质,它的角是直角,边相等,再结合一些三角形全等的知识。

首先设正方形边长为a,通过相似三角形或者勾股定理求出AF的长度,最后就能得出AF = 1/4 AD的结论。

在做特殊平行四边形的经典题型时,还有一些小技巧。

如果是证明题,一定要仔细分析已知条件,看这些条件能推出什么性质或者结论,然后再往要证明的结论上靠。

如果是计算面积或者边长的题目,一定要牢记各种图形的面积公式和特殊性质。

而且啊,多画图绝对是个好办法,有时候看着图形,思路一下子就清晰了呢。

不要觉得这些题型很难,只要多做几道,就会发现其实它们都是有规律可循的。

特殊四边形的计算与证明问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

特殊四边形的计算与证明问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

专题14特殊四边形的计算与证明问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率十年8考特殊四边形的计算与证明(大题)2013.2014.2015.2016.2017.2020.2021.2022以四边形为载体的计算与证明是北京市中考数学常考的一类解答题,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;,求BF和AD的长.(2)若AE平分∠BAC,BE=5,cosB=45【例2】(2022·北京·中考真题)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【真题再现】必刷真题,关注素养,把握核心1.(2014·北京·中考真题)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.2.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.3.(2017·北京·中考真题)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.4.(2017·北京·中考真题)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(____________+____________).易知,S△ADC=S△ABC,_____________=______________,______________=_____________.可得S矩形NFGD= S矩形EBMF.5.(2013·北京·中考真题)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连结DE,2CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.6.(2015·北京·中考真题)在▱ABCD,过点D作DE∠AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.7.(2020·北京·中考真题)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF∠AB,OG∠EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.8.(2016·北京·中考真题)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京房山·二模)已知:如图,在四边形ABCD中,AB∥DC,AC⊥BD,垂足为M,过点A作AE⊥AC,交CD的延长线于点E.(1)求证:四边形ABDE是平行四边形;(2)若AC=8,sin∠ABD=4,求BD的长.52.(2022·北京西城·二模)如图,菱形ABCD的对角线AC,BD交于点O,点E,F分别在DA,BC的延长线上,且BE∠ED,CF=AE.(1)求证:四边形EBFD是矩形;(2)若AB=5,cos∠OBC=4,求BF的长.53.(2022·北京朝阳·二模)如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC 的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若AB=4,∠BAD=60∘,求AP的长.4.(2022·北京东城·二模)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=√10,tan∠DCB=3,求菱形AEBD的边长.5.(2022·北京平谷·二模)如图,在□ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作EG∥AF,交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若sin∠G=3,AC=10,BC=12,连接GF,求GF的长.56.(2022·北京北京·二模)如图,在等边△ABC中,D是BC的中点,过点A作AE∥BC,且AE=DC,连接CE.(1)求证:四边形ADCE是矩形;(2)连接BE交AD于点F,连接CF.若AB=4,求CF的长.7.(2022·北京丰台·二模)如图,在∠ABC中,∠BAC=90∘,AD∠BC,垂足为D,AE∠BC,CE∠DA.(1)求证:四边形AECD是矩形;(2)若AB=5,cosB=3,求AE的长.58.(2022·北京密云·二模)如图,在平行四边形ABCD中,AC平分∠BAD,点E为AD边中点,过点E作AC的垂线交AB于点M,交CB延长线于点F.(1)求证:平行四边形ABCD是菱形;(2)若FB=2,sinF=3,求AC的长.59.(2022·北京市十一学校模拟预测)如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,tan∠CED=3,求EF和AD的长.410.(2022·北京昌平·二模)如图,在矩形ABCD中,对角线AC,BD交于点O,分别过点C,D作BD,AC的平行线交于点E,连接OE交AD于点F.(1)求证:四边形OCED是菱形;(2)若AC=8,∠DOC=60°,求菱形OCED的面积.11.(2022·北京海淀·二模)如图,在Rt∠ABC中,∠A =90°,点D,E,F分别为AB,AC,BC的中点,连接DF,EF.(1)求证:四边形AEFD是矩形;(2)连接BE,若AB = 2,tan C =1,求BE的长.212.(2022·北京东城·一模)如图,在正方形ABCD中,E为对角线AC上一点(AE>CE),连接BE,DE.(1)求证:BE=DE;(2)过点E作EF⊥AC交BC于点F,延长BC至点G,使得CG=BF,连接DG.∠依题意补全图形;∠用等式表示BE与DG的数量关系,并证明.13.(2022·北京东城·一模)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,tan∠ABD=2,求BE的长.314.(2022·北京市十一学校二模)如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得AF=DE,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=6,CF=8,DF=10,求EF的长.15.(2022·北京石景山·一模)如图所示,△ABC中,∠ACB=90°,D,E分别为AB,BC的中点,连接DE 并延长到点F,使得EF=DE,连接CD,CF,BF.(1)求证:四边形BFCD是菱形;(2)若cos A=5,DE=5,求菱形BFCD的面积.1316.(2022·北京大兴·一模)如图,在平面四边形ABCD中,点E,F分别是AB,CD上的点,CF=BE.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.17.(2022·北京丰台·一模)如图,在四边形ABCD中,∠DCB=90°,AD∥BC,点E在BC上,AB∥DE,AE 平分∠BAD.(1)求证:四边形ABED为菱形;(2)连接BD,交AE于点O.若AE=6,sin∠DBE=3,求CD的长.518.(2022·北京市师达中学模拟预测)如图,四边形ABCD是平行四边形,AE∠BC,AF∠CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE =2,求EG的长.19.(2022·北京四中模拟预测)如图,在四边形ABCD中,AD=CD,BD∠AC于点O,点E是DB延长线上一点,OE=OD,BF∠AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,BE=5,求EF和AD的长.20.(2021·北京丰台·一模)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE∠BC于E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.21.(2022·北京市燕山教研中心一模)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD 交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求sin∠CDE的值.22.(2022·北京平谷·一模)如图,∠ABC中,∠ACB=90°,点D为AB边中点,过D点作AB的垂线交BC 于点E,在直线DE上截取DF,使DF=ED,连接AE、AF、BF.(1)求证:四边形AEBF是菱形;(2)若cos∠EBF=3,BF=5,连接CD,求CD的长.523.(2022·北京市第一六一中学分校一模)在矩形ABCD中,AC,BD相交于点O,过点C作CE∠BD交AD的延长线于点E.(1)求证:∠ACD=∠ECD;(2)连接OE,若AB=2,tan∠ACD=2,求OE的长.24.(2022·北京房山·一模)如图,在平行四边形ABCD中,过点B作BE∠CD交CD的延长线于点E,过点C作CF∥EB交AB的延长线于点F.(1)求证:四边形BFCE是矩形;(2)连接AC,若AB=BE=2,tan∠FBC=1,求AC的长225.(2022·北京朝阳·一模)如图,在矩形ABCD中,AC,BD相交于点O,AE//BD,BE//AC.(1)求证:四边形AEBO是菱形;(2)若AB=OB=2,求四边形AEBO的面积.26.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP 交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).BC,27.(2022·北京市三帆中学模拟预测)已知:△ABC中,AB=AC,AD⊥BC于点D,过点A作AE,且AE=12连结DE.(1)求证:四边形ABDE是平行四边形;(2)作FG⊥AB于点G,AG=4,cos∠GAF=4,求FG和FD的长.528.(2022·北京西城·一模)如图,在∠ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA∠AF,AD=4,BC=4√5,求BD和AE的长.29.(2022·北京顺义·一模)如图,在四边形ABCD中,AD∥BC,AC⊥BD,垂足为O,过点D作BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=4,AD=2,cos∠ACB=4,求BC的长.530.(2022·北京通州·一模)如图.在∠ABC中,AB=BC,BD平分∠ABC交AC于点D.点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.。

特殊四边形的证明题

特殊四边形的证明题

题型一:矩形1.如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连结BF 。

(1)求证:BD =CD ;(2)如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论。

2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证: PA =PQ .3.如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和∠BAC 和外角的平分线,BE ⊥AE .试判断AB 与DE 是否相等?并证明你的结论.4.如图,在矩形ABCD 中,AB=2BC ,E 在AB 延长线上,∠BCE=60°,求∠ADE.A BCDE F AC BD PQA B C DE5.已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.(第23题)6.如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .7.在矩形ABCD 中,AD =2AB ,E 是AD 的中点,一块三角板的直角顶点与点E 重合,将三角板绕点E 按顺时针方向旋转,当三角板的两直角边与AB 、BC分别相交于点M ,N 时,观察或测量BM 与CN 的长度,你能得到什么结论?并证明你的结论。

题型二:菱形8.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.B DE A B C DE F D ′9.如图,在菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB=a .(1)求∠ABC 的度数;(2)求对角线AC 的长;(3)求菱形ABCD 的面积。

特殊平行四边形证明题

特殊平行四边形证明题

特殊平行四边形之证明题题型一:菱形的证明1、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。

请你猜想DE 与DF 的大小有什么关系?并证明你的猜想2.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD . (1)求证:AD =CE ;(2)填空:四边形ADCE 的形状并证明.3、如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△; (2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.4、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.FDOBEADAENMO A DF D ′题型二:正方形的证明题5、把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.6、四边形ABCD 、DEFG 都是正方形,连接AE 、CG . (1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.7.如图 ,ABCD 是正方形.G 是 BC 上的一点,DE ⊥AG 于 E ,BF ⊥AG 于 F . (1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+.ADE F C G BDCABGHFE(第5题)题型三:矩形的证明题8.如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和∠BAC 和外角的平分线,BE ⊥AE . (1)求证:DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.9.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)PA =PQ .10、如图,在ABC △中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)如果AB AC =,试猜测四边形ADCF 的形状,并证明你的结论.A B CD EFACBDPQBA FCED11、已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.(第23题)12、如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .题型五:综合证明题13、如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.EECB A。

特殊四边形的证明经典必考题

特殊四边形的证明经典必考题

H GFEDCBAHG FEDCBA特殊的平行四边形复习探究一:中点四边形1、探究证明:(1)如图,四边形ABCD 的对角线为AC 、BD ,且AC=BD ,点E 、F 、G 、H 分别为边AB 、BC 、CD 、AD 边上的中点,猜想四边形EFGH 是什么样的图形,并证明;(2)如图,四边形ABCD 的对角线为AC 、BD ,且AC ⊥BD ,点E 、F 、G 、H 分别为边AB 、BC 、CD 、AD 边上的中点,猜想四边形EFGH 是什么的图形,并证明;探究二、矩形的折叠问题一、求角度例1、如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D ,的位置上,EC 交AD 于点G .已知58EFG °,那么BEG °.例2、将一长方形纸片按如图的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为().(A)60°(B)75°(C)90°(D)95°二、求线段长度例3、如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于()(A )34(B )33(C )24(D )8三、求图形面积例4、如图,将长为20cm ,宽为2cm 的长方形白纸条,折成右图并在其一面着色,则着色部分的面积为()A .234cmB .236cmC .238cmD .240cm【折叠问题练习】1.如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF 。

若CD=6,则AF=().A .B .C .D .8题1 题2ABCDEF2.如图,在矩形纸片ABCD 中,AB=8cm ,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若cm AF 425,则AD 的长为().A .4cmB .5cmC .6cmD .7cm3.如图,矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC上,则AC 的长是__________.题3题4 题54.如图,矩形纸片ABCD ,AB=8,BC=12,点M 在BC 边上,且CM=4,将矩形纸片折叠使点D 落在点M 处,折痕为EF ,则AE 的长为__________.5.在矩形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图的方式折叠,使点B 与点D 重合,折痕为EF ,则DE= ________.【经典练习】1、如图,在矩形ABCD 中,AC 、BD 相交于点O ,AB=6,BC=8,P 是AD 上一点,且PH ⊥AC ,PK ⊥BD ,求PH+PK 的值;KHPODCBAODCBADCBE A2、如图,梯形ABCD 中,AD ∥BC ,AB=CD ,AC ⊥BD 与点O ,∠BAC=60°,若BC=6,求此梯形的面积;3、如图,平行四边形ABCD 中,BE 平分∠ABC 交AD 与点E ,AB=8,BC=10,则ED=;EDC BAHODCBA4、如图,菱形对角线AC 、BD 交于点O ,且AC=8,BD=6,过O 做OH ⊥AB 与点H ,则OH= ;5、如图,在ABCD 中,AE 、DF 分别为∠BAD 和∠ADC 的平分线,AE 、DF 相交于点G ;(1)求证:AE ⊥DF(2)若AD=10,AB=6,AE=4,求DF 的长;6、如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 的中点;求证:四边形BCDE 是菱形GFABCDEEFDC BA7、在正方形ABCD 中,E 为对角线上一点,连接EB 、ED ,(1)求证:∠CDE=∠CBE(2)延长BE 交AD 与点F ,若∠DEB=140°,求∠AFE 的度数;8、已知等腰梯形的底边长分别为2㎝和8㎝,高为4㎝,则一腰长为㎝。

特殊平行四边形证明题

特殊平行四边形证明题

3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O, CE∥AB交MN于E,连结AE、CD. (1)求证:AD=CE; (2)填空:四边形ADCE的形状是 平行四边形 .
证明:∵ MN 的垂直平分AC ∴DA=DC,OA=OC, ∠ DAC=∠DCA 又∵ CE∥AB ∴ ∠DAC= ∠ECA, ∠AOD= ∠COE ∴ △AOD≌ △COE ∴ AD=CE
D
F
CLeabharlann A EB2、如图,四边形中,AB∥CD ,AC平分∠BAD, CE∥AD交AB于E. (1)求证:四边形AECD是菱形; (2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
证明:(1) ∵ AB∥CD , CE∥AD ∴四边形AECD是平行四边形 ∴∠EAC=∠DCA,∠ECA=∠DAC 又∵ AC平分∠BAD ∴∠EAC=∠DCA,∠ECA=∠DCA,AC公用 ∴ △AEC≌△ADC ∴AE=AD ∴四边形AECD是菱形 (2)若点E是AB的中点,△ABC是Rt △ 由(1)可知AE=EC, ∠EAC= ∠ECA ∵点E是AB的中点 ∴AE=EB=EC ∴∠BEC=∠ECB=600 又∵∠BEC=∠EAC+∠ECA ∴ ∠ECA=300 ∴ ∠BCA=900 ∴ △ABC是Rt △
B
A M D
O E
N
C
1、如图,在□ABCD中,E,F分别为边的中点,连接BE、DF、BD. (1)求证:△ADE≌△CBF (2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
证明(1):∵ 四边形ABCD是平行四边形 ∴AB∥CD,AB=CD ∴∠EBD=∠FDB 又∵ E,F分别为边的中点 ∴BE=DF 在△ADE和△CBF中,BD公用 ∴△ADE≌△CBF (2)若AD⊥BD,则四边形BFDE是菱形 由(1)可知BE ∥DF, BE=DF ∴四边形DEBF是平行四边形 ∵AD ⊥BD ∴△ADB是Rt△ 又∵ 点E是AB的中点 ∴DE=AE=EB ∴四边形DEBF是菱形

2025年新疆中考数学二轮复习重难题型攻关题型三 特殊四边形的证明与计算[18或19题必考]

2025年新疆中考数学二轮复习重难题型攻关题型三 特殊四边形的证明与计算[18或19题必考]
∴ 四边形是菱形.
第1题图
(2)当∠ = ∠时,求证:四边形为正方形.
证明:由(1)知,四边形是菱形.
∵ ∠ = ∠,∴ = ,
∴ = ,∴ 四边形是矩形.
∵ ⊥ ,
∴ 四边形是正方形.
第1题图
2.(2024新疆模拟)如图,为矩形的对角线, ⊥ 于点,
∴ ∠ = ∠,∴ ∠ = ∠.
又∵ //,∴ ∠ = ∠,
∴ ∠ = ∠,∴ = ,
∴ 四边形为菱形.
第4题解图
5.如图,平行四边形的对角线,交于点,为中点,过点
作//交的延长线于点,连接.
第4题图

(2)若

=

,求证:四边形为菱形.

证明:延长到点,使得 = ,连接,,
如解图所示,则∠ = ∠.



=

,∴Βιβλιοθήκη =
.

∵ ∠ = ∠,∴ △∽△,
第4题图
∴ ∠ = ∠,∴ //,
4.(2024滨州节选)如图,△中,点,,分别在三边,,
上,且满足//,//.
(1)求证:四边形为平行四边形;
证明:∵ //,//,点,,分别
在三边,,上,
∴ //,//,
∴ 四边形为平行四边形.
(1)求证:△≌△;
证明:∵ //,∴ ∠ = ∠.
∵ 是的中点,∴ = .
∠ = ∠
在△和△中,ቐ∠ = ∠,
=
∴ △≌△().
第5题图
(2)若 = ,当△满足什么条件时,四边形为正方形?
⊥ 于点.
(1)求证:△≌△;
证明:∵ 四边形是矩形,
∴ = ,//,∴ ∠ = ∠.

四边形几何证明题精选含解析

四边形几何证明题精选含解析

四边形几何证明精选一、解答题1.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAB绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.2.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.3.【问题情境】如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.【探究展示】(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.(2)如图2,若点E是BC边上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【拓展延伸】(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.4.如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.(1)求证:△PCE是等腰直角三角形;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.5.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.6.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;(2)将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并证明你的判断.7.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.8.如图所示,E、F分别为平行四边形ABCD边AB、CD的中点,AG//DB交CB的延长线于点G.(1)求证:DE//BF;(2)若∠G=90°,判断四边形DEBF的形状,并说明理由.9.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.10.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.11.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF//BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.14.如图1,四边形ABCD是正方形,点G是BC边上任意一点.DE⊥AG于点E,BF//DE且交AG于点F.(1)求证:AE=BF;(2)如图2,如果点G是BC延长线上一点,其余条件不变,则线段AF、BF、EF有什么数量关系?请证明出你的结论.15.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.18.如图,EF是平行四边ABCD的对角线BD的垂直平分线,EF与边AD,BC分别交于点E,F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.19.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当四边形AECF为菱形,M点为BC的中点时,求∠CBD的度数.20.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH//BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;答案和解析1.【答案】解:(1)BM +DN =MN 成立.证明:如图,把△ADN 绕点A 顺时针旋转90°,得到△ABE ,则可证得E 、B 、M 三点共线(图形画正确).∴∠EAM =90°−∠NAM =90°−45°=45°,又∵∠NAM =45°,∴在△AEM 与△ANM 中,{AE =AN ∠EAM =∠NAM AM =AM,∴△AEM≌△ANM(SAS),∴ME =MN ,∵ME =BE +BM =DN +BM ,∴DN +BM =MN ;(2)DN −BM =MN .在线段DN 上截取DQ =BM ,在△ADQ 与△ABM 中,∵{AD =AB∠ADQ =∠ABM DQ =MB,∴△ADQ≌△ABM(SAS),∴∠DAQ =∠BAM ,∴∠QAN =∠MAN .在△AMN 和△AQN 中,{AQ =AM ∠QAN =∠MAN AN =AN,∴△AMN≌△AQN(SAS),∴MN =QN ,∴DN −BM =MN .【解析】(1)结论:BM +DN =MN 成立,证得B 、E 、M 三点共线即可得到△AEM≌△ANM ,从而证得ME =MN .(2)结论:DN −BM =MN.首先证明△ADQ≌△ABM ,得DQ =BM ,再证明△AMN≌△AQN(SAS),得MN =QN ,本题考查正方形的性质、旋转变换等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.2.【答案】证明:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .由折叠的性质可得:BC =CE ,AB =AE ,∴AD =CE ,AE =CD .在△ADE 和△CED 中,{AD =CEAE =CD DE =ED,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【解析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD= CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.3.【答案】(1)证明:取AB的中点M,连结EM,如图1:∵M是AB的中点,E是BC的中点,∴在正方形ABCD中,AM=EC,∵CF是∠DCG的平分线,∴∠ECF=90°+45°=135°,∵BM=BE,∴∠BME=45°,∴∠AME=∠ECF=135°,∵∠BEA+∠CEF=90°,∠MAE+∠BEA=90°,∴∠MAE=∠CEF,在△AME与△ECF中,{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF(ASA),∴∠BAE+∠EFC=∠FCG=∠DCF;(2)证明:取AB上的任意一点M,使得AM=EC,连结EM,如图2:∵AE⊥EF,AB⊥BC,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠MAE=∠CEF,∵AM=EC,∴在正方形ABCD中,BM=BE,∴∠AME=∠ECF=135°,在△AME与△ECF中,{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF(ASA),∴∠BAE+∠EFC=∠FCG=∠DCF;(3)证明:取BA延长线上的一点N使得AN=CE,如图3:∵AN=CE,AB⊥BC,∴∠ANE=45°,∴∠ECF=∠ANE=45°,∵AD//BE,∴∠DAE=∠BEA,∵NA⊥AD,AE⊥EF,∴∠NAE=∠CEF,在△ANE与△ECF中,{∠NAE=∠CEFAN=CE∠ANE=∠ECF,∴△ANE≌△ECF(ASA),∴AE=EF.【解析】(1)取AB的中点M,连结EM,根据正方形的性质和全等三角形的判定证明即可;(2)在AB上取一点M,使AM=EC,连接EM,根据已知条件利用ASA判定△AME≌△ECF,利用全等三角形的性质证明即可.(3)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,利用全等三角形的性质证明即可.此题主要考查全等三角形的判定和性质,关键是熟练掌握正方形的性质,角平分线的性质及全等三角形的判定方法.4.【答案】(1)证明:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA和△PDC中,{PD=PD∠PDA=∠PDC DA=DC,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC,∴∠FPC=∠EDF=90°,∴△PEC是等腰直角三角形.(2)解:如图2中,结论:△PCE是等边三角形.理由:∵四边形ABCD是菱形,∴AD=DC,∠ADB=∠CDB,∠ADC=∠ABC=120°,在△PDA和△PDC中,{PD=PD∠PDA=∠PDC DA=DC,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,PA=PE=PC,∴∠1=∠2,∵∠DFE=∠PFC,∴∠EPC=∠EDC,∵∠ADC=120°,∴∠EDC=60°,∴∠EPC=60°,∵PE=PC,∴△PEC是等边三角形.【解析】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.(1)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC,推出∠FPC=∠EDF=90°,推出△PEC是等腰直角三角形;(2)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,PA=PE= PC,推出∠1=∠2,由∠DFE=∠PFC,推出∠EPC=∠EDC,由∠ADC=120°,推出∠EDC=60°,推出∠EPC=60°,由PE=PC,即可证明△PEC是等边三角形.5.【答案】(1)证明:∵四边形ABCD是正方形,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC−∠CBF=∠EBF−∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB∠ABF=∠CBE BF=BE,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°−∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB−∠FEB=135°−45°=90°,∴△CEF是直角三角形.【解析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB= 135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.6.【答案】解:(1)延长BG交DE于点H,在△BCG与△DCE中,{BC=DC∠BCG=∠DCECG=CE,∴△BCG≌△DCE(SAS),∴∠GBC=∠EDC,BG=DE,∵∠BGC=∠DGH,∴∠DHB=∠BCG=90°,∴BG⊥DE;(2)BG=DE,BG⊥DE仍然成立如图2,∠BCD+∠DCG=∠ECG+∠DCG,即∠BCG=∠DCE,在△BCG与△DCE中,{BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∵∠BHC=∠DHG,∴∠BCD=∠DOB=90°,即BG⊥DE【解析】(1)延长BG交DE于点H,易证△BCG≌△DCE,所以∠GBC=∠EDC,BG=DE,所以∠DHB=90°;(2)易证△BCG≌△DCE,所以∠GBC=∠EDC,BG=DE,所以∠BCD=90°.本题主要考查正方形,涉及正方形的性质,旋转的性质,全等三角形的判定与性质,综合程度较高,需要学生根据所学知识灵活解答.7.【答案】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,{AB=AD ∠BAF=∠DAF AF=AF ,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.【解析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE= 90°即可.本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、四边形内角和定理等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.8.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=12AB,DF=12CD.∴BE=DF,BE//DF,∴四边形DFBE是平行四边形,(2)解:四边形DEBF 是菱形;理由如下:∵∠G =90°,AG//BD ,AD//BG ,∴四边形AGBD 是矩形,∴∠ADB =90°,在Rt △ADB 中∵E 为AB 的中点,∴AE =BE =DE ,∵四边形DFBE 是平行四边形,∴四边形DEBF 是菱形.【解析】(1)根据已知条件证明BE =DF ,BE//DF ,从而得出四边形DFBE 是平行四边形,即可证明DE//BF ,(2)先证明DE =BE ,再根据邻边相等的平行四边形是菱形,从而得出结论.本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中.9.【答案】证明:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠A′DE =90°,根据旋转的方法可得:∠EA′D =45°,∴∠A′ED =45°,∴A′D =ED ,在△AA′D 和△CED 中{AD =CD∠ADA′=∠CDE A′D =ED,∴△ADA′≌△CDE(SAS);(2)由正方形的性质及旋转,得CD =CB′,∠CB′E =∠CDE =90°,又CE =CE ,∴Rt △CEB′≌Rt △CED∴∠B′CE =∠DCE ,∵AC =A′C∴直线CE 是线段AA′的垂直平分线.【解析】(1)根据正方形的性质可得AD =CD ,∠ADC =90°,∠EA′D =45°,则∠A′DE =90°,再计算出∠A′ED =45°,根据等角对等边可得A′D =ED ,即可利用SAS 证明△ADA′≌△CDE ;(2)首先由AC =A′C ,可得点C 在AA′的垂直平分线上;再证明△AEB′≌△A′ED ,可得AE =A′E ,进而得到点E 也在AA′的垂直平分线上,再根据两点确定一条直线可得直线CE 是线段AA′的垂直平分线.此题主要考查了正方形的性质,以及旋转的性质,关键是熟练掌握正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;找准旋转后相等的线段.10.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB//DF ,∴∠BAF =∠CFA .∵E 为BC 的中点,在△AEB和△FEC中,{∠BAE=∠CFA ∠AEB=∠FEC BE=EC,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【解析】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC(AAS)是解题关键.(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.11.【答案】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.12.【答案】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF//BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=12∠BCD,∠DCF=12∠DCG,,即∠ECF=90°,∴四边形DECF是矩形.【解析】本题利用了角平分线的定义、平行线的性质、等角对等边、等量代换、平行四边形的判定、矩形的判定.(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF//BC,于是∠FEC=∠BCE,等量代换∠FEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.13.【答案】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE//AC,AC=2DE,∵EF=2DE,∴EF//AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【解析】(1)由三角形中位线定理得出DE//AC,AC=2DE,求出EF//AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=12AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.14.【答案】(1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG,∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,{∠BAF=∠ADE∠AFB=∠DEA=90°DA=AB,∴△ABF≌△DAE(AAS),∴BF=AE,(2)AF+EF=BF;∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,{∠BAF=∠ADE∠AFB=∠DEA=90°DA=AB,∴△ABF≌△DAE(AAS),∴BF=AE,AF=DE,∴AF+EF=BF.【解析】(1)根据正方形的四条边都相等可得DA=AB,再根据同角的余角相等求出∠BAF=∠ADE,然后利用“角角边”证明△ABF和△DAE全等,再根据全等三角形对应边相等可得BF=AE,AF=DE,然后根据图形列式整理即可得证;(2)根据题意作出图形,然后根据(1)的结论可得BF=AE,AF=DE,然后结合图形写出结论即可.本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟记正方形的四条边都相等,每一个角都是直角,然后求出三角形全等是解题的关键.15.【答案】(1)证明:∵AG//BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=12AC,∴四边形BDFG是菱形;(2)解:∵四边形BDFG是菱形,∠ABC=90°,点D为AC的中点,∴GF=DF=12AC=5,∵CF⊥AG,∴AF=√AC2−CF2=√102−62=8,∴AG=AF+GF=8+5=13.【解析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BDFG是菱形;(2)由菱形的性质求得GF=DF=12AC=5,由勾股定理得AF的长,继而求得AG的长.本题主要考查了菱形的判定与性质、直角三角形斜边的中线的性质以及勾股定理,注意掌握数形结合思想是解答此题的关键.16.【答案】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,{∠BOE=∠AOF OB=OA ∠OBE=∠OAF ,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,{∠BOE=∠AOF OB=OA ∠OBE=∠OAF ,∴△BOE≌△AOF(ASA),∴OE=OF.【解析】本题考查了正方形的性质、全等三角形的判定与性质有关知识.①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.17.【答案】证明:(1)∵四边形ABCD是矩形,∴AB//DC、AD//BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBD=∠FDB,∴BE//DF,又∵AD//BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°−∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,∴四边形BEDF是菱形.【解析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE//DF,根据AD//BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.18.【答案】(1)证明:∵EF垂直平分BD,∴OB=OD,∵四边形ABCD为平行四边形,∴AD//BC,∴∠EDO=∠FBO,∠DOE=∠BOF,∴△DOE≌△BOF(ASA),∴OE=OF,∴四边形AFCE为菱形;(2)解:∵BD=8,∴OD=4且ED=5,∴EO=3,∴S菱形BFDE =12BD×EF=EO·BD=3×8=24.【解析】本题主要考查平行四边形的性质、垂直平分线的性质,全等三角形的判定与性质以及菱形的判定与性质.(1)先证明△DOE≌△BOF,得出OE=OF,再根据EF垂直平分BD,可得出四边形BFDE 为菱形;(2)根据勾股定理可得出OE的长,根据菱形的面积求解即可.19.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC//AD(平行四边形的对边相互平行),∴∠ADE=∠CBD,AD=BC又∵AM丄BC(已知),∴AM⊥AD;∵CN丄AD(已知),∴AM//CN,∴AE//CF;在△ADE和△CBF中,{∠DAE=∠BCF AD=CB∠ADF=∠CBE∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等),∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形);(2)如图,连接AC交BF于点0,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD(平行四边形的对角线相互平分),∴AC与BD互相垂直平分,∴▱ABCD是菱形(对角线相互垂直平分的平行四边形是菱形),∴AB=BC(菱形的邻边相等);∵M是BC的中点,AM丄BC(已知),∴AB=AC(等腰三角形的性质),∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°.【解析】(1)根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE//CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,所以一组对边平行且相等的四边形是平行四边形;(2)根据M是BC的中点,AM丄BC(已知),可证明△ABC为等边三角形,然后根据三线合一定理即可求解.本题综合考查了全等三角形的判定与性质、菱形的判定与性质以及等边三角形的判定与性质等知识点.20.【答案】解:(1)∵四边形ABCD是矩形,∴AB//CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=12EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,{BF=CF∠ABF=∠DCF AB=DC,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4√7.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH//BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴GFEF =EFAF,即EF2=AF⋅GF,∵AF⋅GF=28,∴EF=2√7,∴CE=2EF=4√7.【解析】(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF=12EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得AF⊥BF;(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AF⋅GF=28,求得EF=2√7,即可得到CE=2EF= 4√7.本题属于四边形综合题,主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质的综合应用,解决问题的关键是作辅助线,构造全等三角形.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。

多边形证明 --特殊四边形证明(解析版)-中考数学重难点题型专题汇总

多边形证明 --特殊四边形证明(解析版)-中考数学重难点题型专题汇总

多边形证明-中考数学重难点题型特殊四边形证明(专题训练)1.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.【分析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.【解答】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,AB=AD∠B=∠DBE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.2.如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.【分析】四边形ABCD是菱形,可得AB=BC=CD=DA,∠DCA=∠BCA,∠DAC=∠BAC,可以证明△CDF≌△CBF,△DAE≌△BFC,△DCF≌△BEA,进而证明平行四边形BEDF是菱形.【解答】证明:∵四边形ABCD是菱形,∴BC=CD,∠DCA=∠BCA,∴∠DCF=∠BCF,∵CF=CF,∴△CDF≌△CBF(SAS),∴DF=BF,∵AD∥BC,∴∠DAE=∠BCF,∵AE=CF,DA=AB,∴△DAE≌△BFC(SAS),∴DE=BF,同理可证:△DCF≌△BEA(SAS),∴DF=BE,∴四边形BEDF是平行四边形,∵DF=BF,∴平行四边形BEDF是菱形.3.如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE,AB∥CD,故四边形DEBF是平行四边形,即可得到答案.【详解】∵四边形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE=BF.考点:1.矩形的性质;2.全等三角形的判定.4.已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.【分析】只要证明△AOD≌△EOC(ASA)即可解决问题;【解答】证明:∵O 是CD 的中点,∴OD=CO,∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO 和△ECO 中,∠D =∠OCE OD =OC ∠AOD =∠EOC ,∴△AOD≌△EOC(ASA),∴AD=CE.5.如图,在▱ABCD 中,点E 在AB F 在CD 的延长线上,满足BE=DF.连接EF,分别与BC,AD 交于点G,H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB∥CD,∠ABC=∠FDH,在△BEG 与△DFH 中,∠E =∠F BE =DF ∠EBG =∠FDH ,∴△BEG≌△DFH(ASA),∴EG=FH.6.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=32,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.7.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【解析】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.8.如图,四边形ABCD 是菱形,点E 、F 分别在边AB 、AD 的延长线上,且BE DF =.连接CE 、CF .求证:CE CF =.【答案】见解析【分析】根据菱形的性质得到BC=CD,∠ADC=∠ABC,根据SAS 证明△BEC≌△DFC,可得CE=CF.【详解】解:∵四边形ABCD 是菱形,∴BC=CD,∠ADC=∠ABC,∴∠CDF=∠CBE,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△DFC(SAS),∴CE=CF.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.9.如图,在ABC 中,BAC ∠的角平分线交BC 于点D,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE 是正方形,根据对角线AD 求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE 是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE 是平行四边形,∵AD 平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE 是菱形;(2)∵∠BAC=90°,∴四边形AFDE 是正方形,∵AD=,=2,∴四边形AFDE 的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.10.如图,矩形ABCD 的对角线AC、BD 相交于点O,//BE AC ,//AE BD .(1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,4AC =,求菱形AOBE 的面积.【答案】(1)证明过程见解答;(2)【分析】(1)根据BE∥AC,AE∥BD,可以得到四边形AOBE 是平行四边形,然后根据矩形的性质,可以得到OA=OB,由菱形的定义可以得到结论成立;(2)根据∠AOB=60°,AC=4,可以求得菱形AOBE 边OA 上的高,然后根据菱形的面积=底×高,代入数据计算即可.【解析】解:(1)证明:∵BE∥AC,AE∥BD,∴四边形AOBE 是平行四边形,∵四边形ABCD 是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∴四边形AOBE 是菱形;(2)解:作BF⊥OA 于点F,∵四边形ABCD 是矩形,AC=4,∴AC=BD=4,OA=OC=12AC,OB=OD=12BD,∴OA=OB=2,∵∠AOB=60°,∴BF=OB•sin∠AOB=2=∴菱形AOBE的面积是:OA•BF=2【点睛】本题考查菱形的判定、矩形的性质,解答本题的关键是明确菱形的判定方法,知道菱形的面积=底×高或者是对角线乘积的一半.11.如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE=,求证:四边形ACED是矩形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED 是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED 是平行四边形,∴四边形ACED 是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.12.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O,过点O 的直线EF 与BA、DC 的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF⊥BD 或EB=ED,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF;(2)连接BF,DE,由AOE COF V V ≌,得到OE=OF,又AO=CO,所以四边形AECF 是平行四边形,则根据EF⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA=OC,BE∥DF∴∠E=∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE=CF(2)当EF⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF,DE∵四边形ABCD 是平行四边形∴OB=OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF⊥BD,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.13.如图,在▱ABCD 中,对角线AC 与BD 相交于点O,点E,F 分别在BD 和DB 的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD 平分∠ABC 时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,∠ADC=∠CBA,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC ⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,∠ADC=∠CBA,∴∠ADE=∠CBF,在△ADE和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.14.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF ⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.【分析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.【解答】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD∥BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.15.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD=180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解析】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=12∠BAD,∠DCF=12∠BCD,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.16.如图,点E 是▱ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F.(1)若AD 的长为2,求CF 的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F 的度数.【分析】(1)由平行四边形的性质得出AD∥CF,则∠DAE=∠CFE,∠ADE=∠FCE,由点E 是CD 的中点,得出DE=CE,由AAS 证得△ADE≌△FCE,即可得出结果;(2)添加一个条件当∠B=60°时,由直角三角形的性质即可得出结果(答案不唯一).【解析】(1)∵四边形ABCD 是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E 是CD 的中点,∴DE=CE,在△ADE 和△FCE 中,∠DAE =∠CFE ∠ADE =∠FCE DE =CE ,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).17.如图,四边形ABCD 是平行四边形,DE∥BF,且分别交对角线AC 于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD 为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF 全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,∠DAE=∠BCF∠AED=∠CFBAD=CB,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.18.如图,点E,F在▱ABCD的边BC,AD上,BE=13BC,FD=13AD,连接BF,DE.求证:四边形BEDF是平行四边形.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,进而得出DF=BE,利用平行四边形的判定解答即可.【解析】∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=13BC,FD=13AD,∴BE=DF,∵DF∥BE,∴四边形BEDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=12BD=12,OM=12MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD 和△NOB 中,∠DMO =∠BNO ∠MOD =∠NOB OD =OB ,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM 是平行四边形,∵MN⊥BD,∴四边形BNDM 是菱形;(2)解:∵四边形BNDM 是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB =12BD=12,OM =12MN=5,在Rt△BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13,∴菱形BNDM 的周长=4BM=4×13=52.。

2023年九年级中考数学备考打基础系列 特殊平行四边形的计算与证明

2023年九年级中考数学备考打基础系列 特殊平行四边形的计算与证明

2023年中考数学备考打基础系列(特殊平行四边形的计算与证明)一、选择题。

1. 下列命题为假命题的是( )A.对角线相等的平行四边形是矩形B.对角线互相垂直的平行四边形是菱形C.有一个内角是直角的平行四边形是正方形D.有一组邻边相等的矩形是正方形2. 在下列条件中,能够判定▱ABCD为矩形的是( )A. AB=ACB. AC⊥BDC. AB=ADD. AC=BD3.如图,在矩形ABCD中,已知AB=6,∠DBC=30°,则AC的长为( )3 B. 10 C. 12 D. 12 34.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为( )A. 6B. 12C. 24D. 485.如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处.若CD=3BF,BE=4,则AD的长为( )A.9 B.12 C.15 D.186.如图,在正方形ABCD中,点O是△BCD的内心,连接BO并延长交CD于点F,则∠BFC的度数是( )A. 45°B. 60°C. 67.5°D. 75°7. 如图,菱形纸片ABCD中,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C的对应点C′落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC=( )A. 60°B. 65°C. 75°D. 80°8. 如图,将矩形ABCD沿EF折叠,使点B落在边AD上的点M处,点C落在点N处,已知∠DMN =36°,连接BM,则∠AMB的度数为( )A. 68°B. 72°C. 76°D. 85°9.如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF.若AF=BE,则下列结论错误的是( )A.DF=CE B.∠BGC=120°C.AF2=EG·EC D.AG的最小值为22 310. 正方形ABCD的对角线相交于点O(如图①),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB,BC相交于点E,F(如图②),连接EF,那么在点E由B到A的过程中,线段EF 的中点G经过的路线是( )A. 线段B. 圆弧C. 折线D. 波浪线二、填空题。

特殊四边形证明题(正方形)

特殊四边形证明题(正方形)

特殊四边形证明题〔正方形〕1.如图,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F . 求证:DE -BF = EF .2.如图 ,ABCD 是正方形.G 是 BC 上的一点,DE ⊥AG 于 E ,BF ⊥AG 于 F . 〔1〕求证:ABF DAE △≌△; (2〕求证:DE EF FB =+.3.如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF 的长.4.正方形ABCD 中,MN ⊥GH ,求证:MN=HG 。

5.在正方形ABCD 的边CD 上任取一点E ,延长BC 到F ,使CF=CE , 求证:BE ⊥DF6.在正方形ABCD 的CD 边上取一点G ,在CG 上向原正方形外作正方形GCEF , 求证:DE ⊥BG ,DE=BG 。

FCBE A_ C_ B_ A_ M_ G_ HA DE F CB_ C_ D_ A _ B_ F_ E_ F_ G_ C _ D_ A_ B _ E_ H7.已知如图,四边形ABCD 是正方形,F 、E 分别为BC 、CD 上的点,且EF=BF+DE ,AM ⊥EF ,垂足为M ,求证:(1)AM=AB ;(2)连AF ,连AE ,求∠FAE .8.正方形ABCD 中,∠EAF=45︒.求证:BE+DF=EF 。

9.若分别以三角形ABC 的边AB 、AC为边,在三角形外作正方形ABDE 、ACFG , 求证:BG=EC ,BG ⊥EC 。

10.若以三角形ABC 的边AB 、AC 为边 向三角形外作正方形ABDE 、ACFG , 求证:S AEG ∆=S ABC ∆。

11.若以三角形ABC 的边AB 、BC 为边向 三角形外作正方形ABDE 、BCFG ,N 为AC 中点,求证:DG=2BN ,BM ⊥DG 。

12.正方形ABCD 的边AD 上有一点E ,满足BE=ED+DC ,如果M 是AD 的中点, 求证:∠EBC=2∠ABM ,E C D_ B_ C_ B_ C_A _ C_ N _ B_ E_ F_ C_B13.正方形ABCD 中,E 是边CD 的中点,F 是线段CE 的中点求证:∠DAE=21∠BAF 。

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC中, ∠ACB=90°, BC的垂直平分线DE交BC于D, 交AB于E, F在DE上, 并且AF=CE.(1)求证: 四边形ACEF是平行四边形;(2)当∠B满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论.2.(2019•福建模拟)已知: 如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.求证: 四边形BCFE是菱形.3.(2019•深圳一模)如图, 四边形ABCD中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形AECD是菱形;(2)若点E是AB的中点, 试判断△ABC的形状, 并说明理由.4.(2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证: EB=EC.5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α, 且cosα= , AB=4, 则AC的长为多少?6. (2019春•宿城区校级月考)如图, 四边形ABCD是矩形, 对角线AC、BD相交于点O, BE ∥AC交DC的延长线于点E. 求证:BD=BE.7.(2019•雅安)如图:在▱ABCD中, AC为其对角线, 过点D作AC的平行线及BC的延长线交于E.(1)求证: △ABC≌△DCE;(2)若AC=BC, 求证: 四边形ACED为菱形.8.(2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)若BC=8, AC=6, 求四边形ABCF的周长.9.(2019•遂宁)已知:如图, 在矩形ABCD中, 对角线AC、BD相交于点O, E是CD中点, 连结OE.过点C作CF∥BD交线段OE的延长线于点F, 连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10. (2019•宁德)如图, 在梯形ABCD中, AD∥BC, 点E是BC的中点, 连接AC, DE, AC=AB, DE∥AB. 求证: 四边形AECD是矩形.11. (2019•钦州)如图, 在正方形ABCD中, E、F分别是AB、BC上的点, 且AE=BF. 求证:CE=DF.12.(2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E 作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;(2)当AB=2时, 求BE2的值.13.(2019•吴中区一模)已知:如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF;(2)若AE垂直平分BC, AF垂直平分CD, 求证: △AEF为等边三角形.14. (2019•新乡一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形, 点C在AF上, 点E, G分别在BC, CD上, 若∠BAD=135°, ∠EAG=75°, AE=100cm, 求菱形ABCD的边长.15. (2019•槐荫区三模)如图, 菱形ABCD的边长为1, ∠D=120°. 求对角线AC的长.16. (2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm, AE ⊥BC于点E, 求AE的长.17.(2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC、FC(1)求证: EC=FC;(2)若AE=2, ∠A=60°, 求△AEF的周长.18.(2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证: 四边形ADEF是菱形.19. (2019春•防城区期末)如图, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是为E, F, 并且DE=DF. 求证:四边形ABCD是菱形.20.(2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH的面积.21.(2019•顺义区二模)如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 过点C 作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若CE=4, ∠BCF=120°, 求菱形BCFE的面积.22.(2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE∥AC, CE∥BD.(1)求证: 四边形OCED是菱形.(2)若AB=6, BC=8, 求四边形OCED的周长.23. (2019•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连结BE交CD于点O, 求证:△AOD≌△BOC.24.(2019•东海县二模)已知:如图, 在正方形ABCD中, 点E、F在对角线BD上, 且BF=DE, (1)求证: 四边形AECF是菱形;(2)若AB=2, BF=1, 求四边形AECF的面积.25.(2019•玉溪模拟)如图, 正方形ABCD的边CD在正方形ECGF的边CE上, 连接BE、DG.求证: BE=DG.26.(2019•工业园区一模)已知:如图正方形ABCD中, E为CD边上一点, F为BC延长线上一点, 且CE=CF(1)求证: △BCE≌△DCF;(2)若∠FDC=30°, 求∠BEF的度数.27.(2019•深圳模拟)四边形ABCD是正方形, E、F分别是DC和CB的延长线上的点, 且DE=BF, 连接AE、AF、EF.(1)求证: △ADE≌△ABF;(2)若BC=8, DE=6, 求△AEF的面积.28. (2019•碑林区校级模拟)在正方形ABCD中, AC为对角线, E为AC上一点, 连接EB、ED. 求证:∠BEC=∠DEC.29.(2019•温州一模)如图, AB是CD的垂直平分线, 交CD于点M, 过点M作ME⊥A C, MF ⊥AD, 垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°, 求证: 四边形AEMF是正方形.30.(2019•湖里区模拟)已知:如图, △ABC 中, ∠ABC=90°, BD 是∠ABC 的平分线, DE⊥AB 于点E, DF ⊥BC 于点F .求证:四边形DEBF 是正方形.初中数学 特殊平行四边形的证明参考答案及试题解析一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC 中, ∠ACB=90°, BC 的垂直平分线DE 交BC 于D, 交AB 于E, F 在DE 上, 并且AF=CE .(1)求证: 四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF是菱形?请回答并证明你的菱形的判定;线段垂直平分线的性质;平行四边形的判定. 菁优网版权所有结论.考点:考点:专题:证明题.(1)ED是BC的垂直平分线, 根据中垂线的性质: 中垂线上的分析:点线段两个端点的距离相等, 则EB=EC, 故有∠3=∠4, 在直角三角形ACB中, ∠2及∠4互余, ∠1及∠3互余, 则可得到AE=CE, 从而证得△ACE和△EFA都是等腰三角形, 又因为FD⊥BC, AC⊥BC, 所以AC∥FE, 再根据内错角相等得到AF∥CE, 故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形, 当∠1=60°时△ACE是等边三角形, 有AC=EC, 有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解: (1)∵ED是BC的垂直平分线解答:∴EB=EC, ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2及∠4互余, ∠1及∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时, 四边形ACEF是菱形. 证明如下: ∵∠B=30°, ∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解, 有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2. (2019•福建模拟)已知: 如图, 在△ABC中, D.E分别是AB.AC 的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.菱形的判定. 菁优网版权所有求证:四边形BCFE是菱形.考点:考点:专题:证明题.分析:由题意易得, EF 及BC 平行且相等, ∴四边形BCFE 是平行四边形.又EF=BE, ∴四边形BCFE 是菱形.解答: 解: ∵BE=2DE, EF=BE,∴EF=2DE. (1分)∵D.E 分别是AB.AC 的中点,∴BC=2DE 且DE ∥BC. (2分)∴EF=BC. (3分)又EF ∥BC,∴四边形BCFE 是平行四边形. (4分)又EF=BE,∴四边形BCFE 是菱形. (5分)∴四边形BCFE 是菱形.(5分)点评: 此题主要考查菱形的判定, 综合利用了平行四边形的性质和判定.3. (2019•深圳一模)如图, 四边形ABCD 中, AB ∥CD, AC 平分∠BAD, CE ∥AD 交AB 于E.(1)求证: 四边形AECD 是菱形;菱形的判定及性质. 菁优网版权所有(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:考点:几何图形问题.专题:(1)利用两组对边平行可得该四边形是平行四边形, 进而证明分析:一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等, 进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解: (1)∵AB∥CD, CE∥AD,解答:∴四边形AECD为平行四边形, ∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由: ∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定及性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4. (2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证:矩形的性质;全等三角形的判定及性质. 菁优网版权所有EB=EC.考点:考点:专题: 证明题.分析: 利用矩形的性质结合全等三角形的判定及性质得出△ABE ≌△DCE(SAS), 即可得出答案.解答: 证明: ∵四边形ABCD是矩形,∴AB=DC, ∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.∴EB=EC.点评: 此题主要考查了全等三角形的判定及性质以及矩形的性质, 得出△ABE≌△DCE是解题关键.矩形的性质. 菁优网版权所有5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α,且cosα= ,AB=4, 则AC的长为多少?考点:分析: 根据等角的余角相等, 得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答: 解: ∵四边形ABCD是矩形,∴∠ABC=90°, AD∥BC,∴∠EAD=∠ACB,∵在△ABC及△AED中,∵DE⊥AC于E, ∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα= ,∴AC= = .∴AC==.点评: 此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.矩形的性质;平行四边形的判定及性质. 菁优网版权所有6.(2019春•宿城区校级月图, 四边形ABCD是矩形, 对角线AC.BD相交于点O,BE∥AC交DC的延长线于点E. 求证:BD=BE.考点:考点:专题: 证明题.分析: 根据矩形的对角线相等可得AC=BD, 对边平行可得AB∥CD,再求出四边形ABEC 是平行四边形, 根据平行四边形的对边相等可得AC=BE, 从而得证.解答: 证明: ∵四边形ABCD 是矩形,∴AC=BD, AB ∥CD,又∵BE ∥AC,∴四边形ABEC 是平行四边形,∴AC=BE,∴BD=BE.∴BD=BE.点评: 本题考查了矩形的性质, 平行四边形的判定及性质, 熟记各性质并求出四边形ABEC 是平行四边形是解题的关键.7. (2019•雅安)如图: 在▱ABCD 中, AC 为其对角线, 过点D 作AC 的平行线及BC 的延长线交于E.(1)求证: △ABC ≌△DCE ;(2)若AC=BC, 求证:四边形ACED为菱菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形.考点:考点:专题: 证明题.分析: (1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形, 然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答: 证明: (1)∵四边形ABCD为平行四边形,∴AB∥CD, AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC及△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评: 本题考查了菱形的判定等知识, 解题的关键是熟练掌握菱形的判定定理, 难度不大.8. (2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)菱形的判定及性质;旋转的性质. 菁优网版权所有若BC=8,AC=6,求四边形ABCF的周长.考点:考点:几何综合题.专题:(1)根据旋转可得AE=CE, DE=EF, 可判定四边形ADCF是平行分析:四边形, 然后证明DF⊥AC, 可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长, 再根据中点定义可得AD=5, 根据菱形的性质可得AF=FC=AD=5, 进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(1)证明: ∵将△ADE绕点E旋转180°得到△CFE,解答:∴AE=CE, DE=EF,∴四边形ADCF是平行四边形,∵D.E分别为AB, AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解: 在Rt△ABC中, BC=8, AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.∴四边形ABCF的周长为8+10+5+5=28.此题主要考查了菱形的判定及性质, 关键是掌握菱形四边相点评:等, 对角线互相垂直的平行四边形是菱形.9. (2019•遂宁)已知: 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, E是CD中点, 连结OE. 过点C作CF∥BD交线段OE的延长线于点F, 连结DF. 求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形. 考点: 考点:矩形的性质;全等三角形的判定及性质;菱形的判定. 菁优网版权所有专题: 证明题.分析: (1)根据两直线平行, 内错角相等可得∠ODE=∠FCE, 根据线段中点的定义可得CE=DE, 然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC, 再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形, 根据矩形的对角线互相平分且相等可得OC=OD, 然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答: 证明: (1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中, OC=OD,∴四边形ODFC是菱形.∴四边形ODFC是菱形.点评: 本题考查了矩形的性质, 全等三角形的判定及性质, 菱形的判定, 熟记各性质及平行四边形和菱形的判定方法是解题的关键.10.矩形的判定. 菁优网版权所有(2019•宁德)如图, 在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:考点:专题: 证明题.分析: 先判断四边形AECD为平行四边形, 然后由∠AEC=90°即可判断出四边形AECD是矩形.解答: 证明: ∵AD∥BC, DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC, 点E是BC的中点,∴AE⊥BC, 即∠AEC=90°.∴▱AECD是矩形.∴▱AECD是矩形.点评: 本题考查了梯形和矩形的判定, 难度适中, 解题关键是掌握平行四边形和矩形的判定定理.正方形的性质;全等三角形的判定及性质. 菁优网版权所有11.(2019•钦州)如图,在正方形ABCD中, E、F分别是AB.BC上的点, 且AE=BF.求证:CE=DF.考点:考点:专题: 证明题.分析: 根据正方形的性质可得AB=BC=CD, ∠B=∠BCD=90°, 然后求出BE=CF, 再利用“边角边”证明△BCE和△CDF全等, 根据全等三角形对应边相等证明即可.解答: 证明: 在正方形ABCD中, AB=BC=CD, ∠B=∠BCD=90°, ∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.∴CE=DF.点评: 本题考查了正方形的性质, 全等三角形的判定及性质, 熟记性质并确定出三角形全等的条件是解题的关键.12. (2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;正方形的性质;角平分线的性质;勾股定理. 菁优网版权所有(2)当AB=2时,求BE2的值.考点:考点:(1)连接CF, 根据“HL”证明Rt△CDF和Rt△CEF全等, 根分析:据全等三角形对应边相等可得DF=EF, 根据正方形的对角线平分一组对角可得∠EAF=45°, 求出△AEF是等腰直角三角形, 再根据等腰直角三角形的性质可得AE=EF, 然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC, 然后求出AE, 过点E作EH⊥AB于H, 判断出△AEH是等腰直角三角形, 然后求出EH=AH= AE, 再求出BH, 然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.(1)证明: 如图, 连接CF,解答:在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解: ∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH= AE= ×(2 ﹣2)=2﹣,∴BH=2﹣(2﹣)= ,在Rt△BEH中, BE2=BH2+EH2=()2+(2﹣)2=8﹣4 .本题考查了正方形的性质, 全等三角形的判定及性质, 等腰直点评:角三角形的判定及性质, 勾股定理的应用, 作辅助线构造出全等三角形和直角三角形是解题的关键.13. (2019•吴中区一模)已知: 如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF ;(2)若AE 垂直平分BC, AF 垂直平分CD, 求证:△AEF 为等边三角形.考点:考点:菱形的性质;全等三角形的判定及性质;等边三角形的判定. 菁优网版权所有专题:证明题. 分析:(1)首先利用菱形的性质得出AB=AD, ∠B=∠D, 进而得出△ABE ≌△ADF (ASA ), 即可得出答案;(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形, 进而得出∠EAF=∠CAE+∠CAF=60°, 求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.解答: (1)证明: ∵四边形ABCD 是菱形,∴AB=AD, ∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解: 连接AC,∵AE垂直平分BC, AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°, ∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评: 此题主要考查了等边三角形的判定及性质以及全等三角形的判定及性质等知识, 熟练掌握全等三角形的判定方法是解题关键.14. (2019•新乡菱形的性质. 菁优网版权所有一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形,点C在AF上, 点E, G分别在BC,CD上, 若∠BAD=135°, ∠EAG=75°,AE=100cm, 求菱形ABCD的边长.考点:考点:分析: 根据菱形的性质可得出∠BAE=30°, ∠B=45°, 过点E作EM⊥AB于点M, 设EM=x, 则可得出AB、AE的长度, 继而可得出的值, 求出AB即可.解答: 解: ∵∠BAD=135°, ∠EAG=75°, 四边形ABCD及四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°, ∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M, 设EM=x,在Rt△AEM中, AE=2EM=2x, AM= x,在Rt△BEM中, BM=x,则= = ,∵AE=100cm, ∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评: 本题考查了菱形的性质及解直角三角形的知识, 属于基础题, 关键是掌握菱形的对角线平分一组对角.15. (2019菱形的性质. 菁优网版权所有•槐荫区三模)如图,菱形ABCD的边长为1, ∠D=120°.求对角线AC的长.考点:考点:分析: 连接BD及AC交于点O, 根据菱形的性质可得AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD, 然后判断出△ABD是等边三角形, 根据等边三角形的性质求出AO, 再根据AC=2AO计算即可得解.解答: 解: 如图, 连接BD及AC交于点O,∵四边形ABCD是菱形,∴AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB= ,∴AC=2AO= .点评: 本题考查了菱形的性质, 等边三角形的判定及性质, 熟记性质并作辅助线构造出等边三角形是解题的关键.16.菱形的性质;勾股定理. 菁优网版权所有(2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E, 求AE的长.考点:分析: 根据菱形的对角线互相垂直平分求出CO、BO, 再利用勾股定理列式求出BC, 然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答: 解: ∵四边形ABCD是菱形,∴CO= AC=3cm, BO= BD=4cm, AO⊥BO,∴BC= = =5cm,∴S菱形ABCD= =BC•AE,即×6×8=5•AE,解得AE= cm.答:AE的长是cm.答: AE的长是cm.答:AE 的长是cm.点评: 本题考查了菱形的性质, 勾股定理, 熟记菱形的对角线互相垂直平分是解题的关键, 难点在于利用菱形的面积列出方程.17. (2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC.FC(1)求证: EC=FC;(2)若菱形的性质;全等三角形的判定及性质. 菁优网版权所有∠A=60°,求△AEF的周长.考点:考点:分析: (1)连接AC, 根据菱形的对角线平分一组对角可得∠CAE=∠CAF, 然后利用“边角边”证明△ACE和△ACF全等, 根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形, 然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答: (1)证明: 如图, 连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解: 连接EF,∵AE=AF, ∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评: 本题考查了菱形的性质, 全等三角形的判定及性质, 等边三角形的判定及性质, 熟记各性质并作出辅助线是解题的关键.18. (2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证:菱形的判定;三角形中位线定理. 菁优网版权所有四边形ADEF是菱形.考点:专题: 证明题.分析: 利用三角形中位线的性质得出DE AC, EF AB, 进而得出四边形ADEF 为平行四边形., 再利用DE=EF 即可得出答案.解答: 证明: ∵D.E 、F 分别是△ABC 三边的中点,∴DE AC, EF AB,∴四边形ADEF 为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF 为菱形.∴四边形ADEF 为菱形.点评: 此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识, 熟练掌握菱形判定定理是解题关键.19. (2019春•防城区期末)如图, 已菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形ABCD是平行四边形, DE⊥AB,DF⊥BC, 垂足分别是为E, F,并且DE=DF.求证:四边形ABCD是菱形.考点:考点:专题: 证明题.分析: 首先利用已知条件和平行四边形的性质判定△ADE≌△CDF, 再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答: 证明: 在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB, DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.∴平行四边形ABCD是菱形.点评: 本题考查了平行四边形的性质, 全等三角形的判定和性质以及菱形的判定方法, 解题的关键是熟练掌握各种图形的判定和性质.20. (2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH 的面积.考点:考点:菱形的判定及性质;正方形的判定及性质;中点四边形. 菁优网版权所有分析: (1)利用三角形的中位线定理可以证得四边形EGFH 的四边相等, 即可证得;(2)根据平行线的性质可以证得∠GFH=90°, 得到菱形EGFH 是正方形, 利用三角形的中位线定理求得GE 的长, 则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.解答: (1)证明: ∵四边形ABCD中, E、F、G、H分别是AD.BC.BD.AC 的中点,∴FG= CD, HE= CD, FH= AB, GE= AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解: ∵四边形ABCD中, G、F、H分别是BD.BC.AC的中点,∴GF∥DC, HF∥AB.∴∠GFB=∠DCB, ∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG= AB= .∴正方形EGFH的面积=()2= .点评: 本题考查了三角形的中位线定理, 菱形的判定以及正方形的判定, 理解三角形的中位线定理是关键.21. (2019•顺义区二模)如图, 在△ABC中, D.E分别是AB.AC的中点, BE=2DE, 过点C作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若菱形的判定及性质. 菁优网版权所有CE=4, ∠BCF=120°,求菱形BCFE的面积.考点:考点:分析: (1)由题意易得, EF及BC平行且相等, 故四边形BCFE 是平行四边形. 又麟边EF=BE, 则四边形BCFE是菱形;(2)连结BF, 交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度, 则BF=2BO.利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O. 利用菱形的性质和等边三角形的判定推知△BCE是等边三角形. 通过解直角△BOC求得BO的长度,则BF=2BO. 利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答: (1)证明: ∵D.E分别是AB.AC的中点,∴DE∥BC, BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE, BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解: 连结BF, 交CE于点O.∵四边形BCFE是菱形, ∠BCF=120°,∴∠BCE=∠FCE=60°, BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评: 此题主要考查菱形的性质和判定以及面积的计算, 使学生能够灵活运用菱形知识解决有关问题.22. (2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE ∥AC, CE∥BD.矩形的性质;菱形的判定. 菁优网版权所有(1)求证: 四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:考点:分析: (1)根据矩形性质求出OC=OD, 根据平行四边形的判定得出四边形OCED是平行四边形, 根据菱形判定推出即可;(2)根据勾股定理求出AC, 求出OC, 得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答: (1)证明: ∵四边形ABCD是矩形,∴AC=2OC, BD=2OD, AC=BD,∴OD=OC,∵DE∥AC, CE∥BD,∴四边形OCED是菱形.(2)解: ∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6, BC=8,∴在Rt△ABC中, 由勾股定理得: AC=10,即OC= AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.∴四边形OCED的周长是5+5+5+5=20.。

在特殊四边形中的证明题(精选)

在特殊四边形中的证明题(精选)

1、如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠D=∠EAF,∵AF=AB,BE=AD,∴AF=CD,AD-AF=BE-AB,即DF=AE,在△AEF和△DFC中,AE=DF ∠EAF=∠D AF=DC ,∴△AEF≌△DFC(SAS).2、在平行四边形ABCD中,AE,CF分别平分∠BAD和∠BCD,(1)AC与EF互相平分吗?;(2)若∠B=60°,BE=2CE,AB=4,则四边形AECF的周长为,面积为.解:(1)AC,EF互相平分.证明如下:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,AD∥BC,∴∠DAE=∠BEA.又∵AE,CF分别平分∠BAD,∠BCD.∴∠BAE=∠DAE=1 2 ∠BAD,∠BCF=∠DCF=1 2 ∠BCD,∵∠BAD=∠BCD,∴∠DAE=∠BCF.又∵∠DAE=∠BEA,∴∠BEA=∠BCF,∴AE∥CF.又∵AF∥CE,∴四边形AECF为平行四边形,∴AC与EF互相平分;(2)∵∠BAE=∠DAE,∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE.又∠B=60°,∴△ABE为等边三角形,∴AB=BE=AE=4.又BE=2CE,∴CE=2,∴平行四边形AECF周长为:(2+4)×2=12.过点A作AH⊥BE于H,则BH=1 2 BE=2,∴AH= AB2-BH2 = 42-22 = 12 =2 3 ,∴S平行四边形AECF=CE•AH=2×2 3 =4 3 .3、已知:如图,BD为ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.求证:DE=DF证明:在平行四边形ABCD中,AD∥BC,∴∠OBF=∠ODE∵O为BD的中点∴OB=OD在△BOF和△DOE中,∠OBF=∠ODE OB=OE ∠BOF=∠DOE ∴△BOF≌△DOE∴OF=OE∵EF⊥BD于点O∴DE=DF.4、已知:如图,点O为▱ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠E=∠F,∠EBO=∠FDO.又∵OB=OD,∴△EBO≌△FDO.∴BE=DF.又∵AB=CD,∴BE-AB=DF-CD.即AE=CF.5、如图,已知E为平行四边形ABCD中DC边的延长线的一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.证明:∵四边形ABCD是平行四边形,∴AB=CD,OA=OC.∴∠BAF=∠CEF,∠ABF=∠ECF.∵CE=DC,在平行四边形ABCD中,CD=AB,∴AB=CE.∴在△ABF和△ECF中,∠BAF=∠CEF AB=CE ∠ABF=∠ECF ,∴△ABF≌△ECF,∴BF=CF.∵OA=OC,∴OF是△ABC的中位线,∴AB=2OF.。

特殊平行四边形证明题

特殊平行四边形证明题

特殊平行四边形之证明题题型一:菱形的证明 1、如图,在三角形ABC 中, AB > AC , D 、 E 分别是 AB 、 AC 上的点, △ ADE 沿线段 DE 翻折,使点 A 落在边 BC 上,记为 A .假设四边形 ADA E 是菱形,那么以下说法正确的选项是 ( )A. DE 是△ ABC 的中位线B. AA 是 BC 边上的中线C. AA 是 BC 边上的高D. AA 是△ ABC 的角平分线2.:如图,在Y ABCD 中, AE 是 BC 边上的高,将 △ ABE 沿 BC 方向平移,使点E 与点 C 重合,得 △GFC .〔 1〕求证: BEDG ;ABFG〔 2〕假设 B 60°是菱形?证明你的结论.,当 AB 与 BC 满足什么数量关系时,四边形A GD3、将平行四边形纸片 ABCD 按如图方式折叠, 使点 C 与 A 重合,点 D 落到 D ′处,BEFC折痕为 EF .( 1〕求证:△ ABE ≌△ AD ′F ;( 2〕连接 CF ,判断四边形 AECF 是什么特殊四边形?证明你的结论.D ′AFDB E C4.如图,△ ABC 中, AC 的垂直平分线 MN 交 AB 于点 D ,交 AC 于点 O , CE ∥AB 交 MN 于 E ,连结 AE 、 CD .〔 1〕求证: AD =CE ;〔 2〕填空:四边形 ADCE 的形状是.ADMOENBC5. 两个完全相同的矩形纸片ABCD 、 BFDE 如图 7 放置, AB BF ,求证:四边形 BNDM 为菱形.ABMEFNDC6. 如图,在△中,= , 是的中点,连结,在的延长线上取一点,ABCABAC DBCADADE连结 BE ,CE .( 1〕求证:△ ABE ≌△ ACE〔 2〕当 AE 与 AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由 .7.如图,将矩形ABCD 沿对角线 AC 剪开,再把 △ ACD 沿 CA 方向平移得到 △ A C D .( 1〕证明 △ A AD ≌△CC B ;〔 2〕假设 ACB 30°C 在线段 AC 上的什么位置时,四边形 ABC D是菱形,并请,试问当点说明理由.DDAACCB〔第 19 8.在菱形 ABCD中,对角线 AC与 BD相交于点 O AB 5,AC 6.点 D作 DE ∥AC交 BC,的延长线于点E .〔 1〕求 △ BDE 的周长;〔 2〕点 P 为线段 BC 上的点,连接PO 并延长交 AD 于点 Q .求证: BP DQ .A Q DOBPCE9.如图,在△ ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与 DB 交于点 M .〔1〕求证:△ ABC ≌△ DCB ;〔2〕过点 C 作 CN ∥ BD ,过点 B 作 BN ∥AC ,CN 与 BN 交于点 N ,试判断线段 BN 与 CN 的数量关系,并AD证明你的结论.M10. 如图,在△中,∠ 、∠ B 的平分线交于点, ∥ 交于点 ,∥ 交于点 .ABC AD DE ACBCE DF BCACF( 1〕点 D 是△ ABC 的________心;( 2〕求证:四边形 DECF 为菱形.11、如图 , : 在四边形 ABFC 中,ACB =90 , BC 的垂直平分线 EF 交 BC 于点 D, 交 AB 于点 E, 且 CF=AE(1) 试探究 , 四边形 BECF 是什么特殊的四边形 ; (2) 当A 的大小满足什么条件时, 四边形 BECF 是正方形 ?请答复并证明你的结论 .( 特别提醒 : 表示角最好用数字)12、如图,矩形 ABCD 中, O 是 AC 与 BD 的交点,过 O 点的直线 EF 与 AB , CD 的延长线分别交于E ,F .( 1〕求证: △BOE ≌△ DOF ; 〔2〕当 EF 与 AC 满足什么关系时,以A ,E ,C ,F 为顶点的四边形是菱形?证明你的结论.FADOBCE13、如图,四边形ABCD 中, AB ∥ CD , AC 平分 BAD , CE ∥ AD 交 AB 于 E .( 1〕求证:四边形 AECD 是菱形;( 2〕假设点 E 是 AB 的中点,试判断 △ ABC 的形状,并说明理由.14、如图 8,在 YABCD 中, E ,F 分别为边AB , CD的中点,连接DE , BF , BD.( 1〕求证: △ ADE ≌△ CBF .〔2〕假设 ADBD ,那么四边形 BFDE 是什么特殊四边形?请证明你的结论.FD CA BE15、如图,四边形 ABCD是菱形, DE⊥AB 交 BA 的延长线于 E, DF⊥ BC,交 BC 的延长线于 F。

特殊四边形证明必考题

特殊四边形证明必考题

特殊的平行四边形复习探究一:中点四边形(2)如图,四边形ABCD勺对角线为AC BD,且ACLBD,点E、F、H分别为边AB BC CD AD边上的中点,猜想四边形EFGH是什么的图形,并证明;探究二、矩形的折叠问题、求角度例1、如图,把一张矩形纸片ABCD沿EF折叠后,点C, D分别落在C,D的位置上,EC交AD于点G •已知EFG 58°,那么BEG ________________ ° .例2、将一长方形纸片按如图的方式折叠,BC BD为折痕,则/CBD 的度数为().(A)60 °侣)75 ° (C)90 °(D)95 °例3、如图,四边形ABCE为矩形纸片•把纸片ABCD折叠,使点B恰好落在CD边的中点E 处'折痕为AF•若CD= 6,则AF等于()A. 4cmB. 5cmC. 6cmD. 7cm BC 上,M AE=EC 若将三、求图形面积例4、如图,将长为20cm 宽为2cm 的长方形白纸条,折成右图并在其一面着色,则着色部分的面积为(折痕为AF 。

若CD=6则AF=(B . 3、口 C.「 D . 82. 如图,在矩形纸片ABCD 中,AB=8cm 把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE25交DC 于点F,若AF -%m ,则AD 的长为().42 A. 34cm ・36曲 C. 38曲 D 40cm【折叠问题练习】ABCD 为矩形纸片,把纸片ABCDff 叠,使点B 恰好落在CD 边的中点ICAB3 •如图,矩形纸片ABCD AB=2点E 在AE题3题54 •如图,矩形纸片ABCD AB=8 BC=12点M在BC边上,且CM=4将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为 ____________ .5 •在矩形纸片ABC〔中,AD=4cm AB=1 Ocm按如图的方式折叠,使点B与点D重合,折痕为EF,贝卩DE= _______【经典练习】1、如图,在矩形ABC〔中,AC BD相交于点0, AB=6 BC=8 P是AD上一点,且PHLAC,PKLB [求PH+PK 勺值;2、如图,梯形ABCD 中,AD// BC, AB=C [ ACLBD 与点0,Z BAC=60,若BC=/6、求此梯形的面积;3、________________________________________________________________________________ 如图,平行四边形A BCB中,G E平分/ ABC 5c AD E, AB=8 BC=10 J 贝lj ED= _________ ;4、如图,菱形对角线AC BD交于点0,且AC=8BD=6过0做OHLAB与点H,则OH ________ ;5、如图,在jABCD中,AE DF分别为/ BAD和/ADC的平分线,AE、DF相交于点G;D.对角线互相垂直的四边形是平行四边形12、平行四边形两个邻角的角平分线所成的角是()A •锐角B.直角C.钝角D.不能确定13、AABC中,AD是角平分线,DE//AC, DF〃AB求证:四边形AEDF是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H G
F
E
D
C
B
A
特殊的平行四边形复习
探究一:中点四边形
1、探究证明:
(1)如图,四边形ABCD 的对角线为AC 、BD ,且AC=BD ,点E 、F 、G 、H 分别为边AB 、BC 、CD 、AD 边上的中点,猜想四边形EFGH 是什么样的图形,并证明;
H
G F
E
D
C
B
A
(2)如图,四边形ABCD 的对角线为AC 、BD ,且AC ⊥BD ,点E 、F 、G 、H 分别为边AB 、BC 、CD 、AD 边上的中点,猜想四边形EFGH 是什么的图形,并证明;
探究二、矩形的折叠问题
一、求角度
例1、如图,把一矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.
例2、将一长方形纸片按如图的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( ).(A)60° (B)75° (C)90° (D)95°
二、求线段长度
例3、如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点
E 处,折痕为A
F .若CD =6,则AF 等于 ( )
(A )34(B )33(C )2
4 (D )8
三、求图形面积
例4、如图,将长为20cm ,宽为2cm 的长方形白纸条,折成右图并在其一面着色,则着色部分的面积为( )
A B
C
D
E
F
A.2
34cm B.2
36cm C.2
38cm D.2
40cm
【折叠问题练习】
1.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF。

若CD=6,则AF=().
A.B.C.D.8
题1 题2
2.如图,在矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若cm
AF
4
25
,则AD的长为().
A.4cm B.5cm C.6cm D.7cm
3.如图,矩形纸片ABCD,AB=2,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好落在AC 上,则AC的长

__________.
题3 题4 题5 4.如图,矩形纸片ABCD,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为__________.
5.在矩形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合,折痕为EF,则DE= ________.
O
D
C
B
A
【经典练习】
1、如图,在矩形ABCD 中,AC 、BD 相交于点O ,AB=6,BC=8,P 是AD 上一点,且PH ⊥AC ,PK ⊥BD ,求PH+PK 的值;
K
H
P O
D
C
B
A
2、如图,梯形ABCD 中,AD ∥BC ,AB=CD ,AC ⊥BD 与点O ,∠BAC=60°,若
,求此梯形的面积;
3、如图,平行四边形ABCD 中,BE 平分∠ABC 交AD 与点E ,AB=8,BC=10,则ED= ;
E
D
C
B
A H
O
D
C
B
A
4、如图,菱形对角线AC 、BD 交于点O ,且AC=8,BD=6,过O 做OH ⊥AB 与点H ,则OH= ;
5、如图,在ABCD 中,AE 、DF 分别为∠BAD 和∠ADC 的平分线,AE 、DF 相交于点G ; (1)求证:AE ⊥DF
(2)若AD=10,AB=6,AE=4,求DF 的长;
G
F
A
B
C
D
E
D C
B
E A
E
F
D
C B
A
6、如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 的中点; 求证:四边形BCDE 是菱形
7、在正方形ABCD 中,E 为对角线上一点,连接EB 、ED , (1)求证:∠CDE=∠CBE
(2)延长BE 交AD 与点F ,若∠DEB=140°,求∠AFE 的度数;
8、已知等腰梯形的底边长分别为2㎝和8㎝,高为4㎝,则一腰长为㎝。

9、已知菱形的两条对角线长分别为12㎝和6㎝,那么这个菱形的面积为㎝2。

10、矩形一个角的平分线分矩形一边为1㎝和3㎝两部分,则这个矩形的面积为。

11、下列说确的是()
A.一组对边相等的四边形是平行四边形
B.一组对边平行,另一组对边相等的四边形是平行四边形
C.一组对角相等,一组对边平行的四边形是平行四边形
D.对角线互相垂直的四边形是平行四边形
12、平行四边形两个邻角的角平分线所成的角是()
A . 锐角 B. 直角 C. 钝角 D. 不能确定
13、△ABC中,AD是角平分线,DE∥AC,DF∥AB。

求证:四边形AEDF
14、如图所示,将矩形ABCD沿着直线BD折叠,使点C落在C′,BC′交AD于E,
BED的面积。

15、如图,O为平行四边形ABCD对角线AC、BD的交点,EF经过点O,且与边
CD、AB分别交于点E、
F,则图中的全等三角形有( )
A. 2对
B. 3对
C. 5对
D. 6对
16、如图,在梯形ABCD中AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则AD+BC= ()
A. 20
B. 21
C. 15
D. 24。

相关文档
最新文档