红外热像仪测温技术
电气设备红外热像测温技术应用
电气设备红外热像测温技术应用【摘要】在电力系统的各种电气设备中,导流回路部分存在大量接头或连接件,如果导流回路连接不紧或接触面处理不良,会引起接触电阻增大,当负荷电流通过时,必然导致局部过热,严重会烧毁电气设备,甚至造成火灾。
红外热像仪是电力生产人员的“火眼金睛”。
【关键词】红外热像;测温1.红外测温技术简介红外测温仪/热像仪可在远离目标的安全处测量物体的表面温度,成为电气设备维护必不可少的工具。
通过探测电气设备和线路的热缺陷,从而及时发现、处理、预防重大事故的发生。
在《带电设备红外诊断技术应用导则》中关于操作方法中指出:检测时一般先用热像仪对所有应测部位进行全面扫描,找出工况异常部位,然后对于异常部位和重点电气设备进行正确测温。
电气设备/线路的热缺陷通常是指由于其内在或外在原因所造成的的发热现象。
根据缺陷所产生的原因不同,可归纳3种:第一种是长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良,或由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。
如接头连接不良,螺栓,垫圈未压紧;长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低;负荷电流不稳或超标等。
第二种是由于电器内部本身故障,如内部连接部件接触不良导致的电阻过大;绝缘材料老化、开裂、脱落;内部元件受潮,元气件损耗增大;冷却介质管路阻塞等等。
第三种是因漏磁通产生的涡流损耗。
诊断范围:发电机的定子绕组线棒接头、铁心、电刷、端盖、冷却系统,旋转电机、变压器、套管、断路器、刀闸、互感器、阻波器、电力电容器、避雷器、电力电缆、母线、导线接头、组合电器、绝缘子串、低压电器以及具有电流、电压致热效应或其他致热效应的设备的二次回路等。
1.1判断方法(1)表面温度判断法;(2)相对温差判断法:对电流制热型设备应准确测温,计算相对温度,判断缺陷性质;(3)同类比较法:同一电气回路中,当三相电流对称和三相设备相同时比较对应部位的温升值,判断工况是否正常;同型号的电压制热型设备,可根据对应点温升差异判断设备是否正常;(4)热谱图分析;(5)档案分析法:根据不同时期的数据分析(温度,温升,相对温差和热谱图)。
红外成像测温方法介绍
红外成像测温方法介绍随着科技的进步,红外成像测温技术在各行各业中得到了广泛的应用。
该技术通过检测物体所发出的红外辐射来测量其表面温度,具有非接触、快速、准确的优点。
本文将介绍几种常见的红外成像测温方法。
一、红外测温原理红外成像测温的基本原理是物体受热后会发出热辐射,其中包括了红外辐射。
红外相机能够将红外辐射转化为热图像,通过分析热图像的颜色和亮度来确定物体表面的温度分布情况。
二、热像仪法热像仪法是最常见的红外成像测温方法之一。
它利用红外相机捕捉物体发出的红外辐射,将其转化为热图像。
热图像以不同的颜色来表示物体的温度,通常采用热色谱图来显示。
热像仪可以快速扫描大面积,适用于工业生产线上的温度检测以及建筑结构的热损失分析等。
三、红外测温仪法红外测温仪是一种手持式温度测量设备,可以单点或多点测温。
它通常包括一个红外探测器和一个显示屏。
其原理是通过接收物体表面所发出的红外辐射,转化为温度数值并显示出来。
红外测温仪可以实时测温,非常适用于工业领域中的温度监测,如电力设备、管道、锅炉等的故障诊断。
四、红外测温系统红外测温系统是一种集成了红外成像和温度测量功能的设备。
它通常由红外相机、控制器和显示屏组成。
红外相机负责捕捉物体的红外辐射,并转化为热图像。
控制器负责对热图像进行分析处理,计算出物体表面的温度。
显示屏则显示热图像和温度数值。
红外测温系统可以用于大范围的温度监测,如火灾报警系统、医疗诊断等。
五、红外测温的应用领域红外成像测温技术在各个行业中都有广泛的应用。
在工业领域,它可以用于故障诊断、设备运行状态监测等;在医疗领域,它可以用于体温检测、疾病诊断等;在建筑领域,它可以用于检测建筑结构的热损失情况等。
此外,红外测温技术还可以应用于夜视、安防等领域。
总结:红外成像测温技术以其非接触、快速、准确的特点,被广泛应用于各个行业中。
热像仪法、红外测温仪法以及红外测温系统等几种常见的测温方法,能够满足不同领域对温度测量的需求。
电气设备红外测温技术规范
电气设备红外测温技术规范篇一:电气车间红外测温仪使用规定电气车间红外测温规定为全面掌握高低压母线、电缆接线、各发配电柜、电抗器等电气设备发热状况,通过发热状况判断电气设备运行状态,及时发现隐患及异常,确保电气设备可靠运行,特制定红外成像测温规定。
1、应该用红外测温仪检测的配电室有:四个单元厂房高低压配电室、网控楼10KV配电室、所用变室、电抗器室、公用变室、循环水变室、化水配电室、供热站变室、加压站变室、综合水泵房配电室。
2、测量部位主要有:电抗器本体、电抗器出线封闭母线槽盒、各高低压开关柜外壳,各高低压配电室封闭母线槽盒。
3、测量时间:每周三前夜班接班后第一次巡检(16:00—17:00)4、测量人员:电气车间管理人员(运行技术员)及运行值班员5、巡检路线:一单元高低压配电四单元高低压配电室综合水泵房配电室循环泵变配电室供热站变加压站变6、测量位置:使用红外测温仪按照巡检路线在各配电室依次对各变压器、开关盘柜后壳、封闭母线、电抗器及较大负荷配电开关等部位进行温度测量。
7、进行红外测温需在红外测温记录本上做好详细记录,并由测温人员进行签字。
8、在使用红外检测出设备存在缺陷后,要及时汇报车间,车间根据缺陷处理程序对设备缺陷进行处理,并在处理过后加强针对性监视。
9、红外测温仪使用后应交回车间保管并做好使用记录。
电气车间2015年9月30日篇二:红外规范定稿华东电网500kV输变电设备红外检测现场应用规范(试行)1 总则本规范规定了电气设备红外检测和诊断工作的技术和管理方面的要求及过热缺陷的判别方法。
本规范适用于华东电网所属的500kV输变电设备的红外检测工作。
华东电网所属各电力公司、供电企业以及相关发电企业范围内的输变电设备红外检测可参照本规范执行。
2 适用范围本规范适用于各电压等级中具有电流、电压致热效应或其他致热效应的设备,包括变压器、断路器、刀闸、互感器、套管、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。
红外热成像测温技术及其应用ppt课件
科学实验研究
❖ 在科学实验研究方面,红外热像仪亦可显示其在测 试物体温度场方面的优势。例如, *利用红外热像仪测量火焰温度, *利用其精确测试物体的发射率。 在许多科学实验研究方面都取得了较好的效果。
.
热成像测量物体表面温度
探测器的制冷装置
目的:消除背景噪声和提高探测器的灵敏度 几种常用的微型制冷器: ⑴杜瓦瓶式制冷器 ⑵气体节流式制冷器 ⑶半导体制冷器
.
热成像测量物体表面温度
应用
⑴在电力行业中的应用
.
热成像测量物体表面温度
应用
⑵在微电子行业中的应用
.
热成像测量物体表面温度
应用
⑶ 机械故障诊断
.
热成像测量物体表面温度
应用
⑷野生动物
.
热成像测量物体表面温度应用⑸夜视监视.热成像测量物体表面温度
应用
⑹在军事上的应用
.
红外热成像人体快速测温系统
.
应用
❖ 红外热成像测温技术具有很多优点!因此在—— 医疗卫生、 航空航天、 无损探伤、 安全检查等领域
❖ ——得到了广泛的应用。
.
安全预测
❖ 安全预测就是早期发现设备的异常情况,并相应地 采取适当的补救措施,以保证设备安全,减少损失。 对于大型设备,利用红外热像仪在设备运行时对其 早期的温度异常变化进行在线监测,判断设备运行 状况具有重要意义。典型的应用情况有:对工业炉 窑和高温管道耐火材料侵蚀和剥落情况的监测,预 防烧穿事故的发生;对锅炉及加热炉炉壁和保温容 器壁的监测,寻找热能泄露点,实现节能;在带电 的情况下,对各种电气设备线路的监测,预防停电 和火灾等恶性事故的发生;等等。
.
热成像测量物体表面温度
测温影响因素
电力设备红外精确测温规范及图谱库的建立与应用(最新)
电力设备红外精确测温规范及图谱库的建立与应用(最新)一、引言电力系统作为现代社会的基石,其安全稳定运行至关重要。
电力设备在长期运行过程中,由于各种因素的影响,可能会出现局部过热现象,进而引发设备故障甚至事故。
红外精确测温技术作为一种非接触式检测手段,能够有效识别设备的热异常,提前预警潜在风险。
本文将详细探讨电力设备红外精确测温的规范、图谱库的建立及其应用,旨在为电力系统的安全运行提供有力保障。
二、电力设备红外精确测温技术概述1. 红外测温原理红外测温技术基于物体的热辐射原理,通过检测物体表面发射的红外辐射能量,计算出物体的表面温度。
其核心原理遵循斯特藩玻尔兹曼定律和维恩位移定律。
2. 红外测温设备常见的红外测温设备包括红外热像仪和红外点温仪。
红外热像仪能够提供被测物体的二维温度分布图像,而红外点温仪则主要用于测量单一点的温度。
3. 红外测温的优势非接触性:无需接触被测物体,安全性高。
实时性:能够实时监测设备温度变化。
直观性:通过热像图直观显示温度分布,便于分析和判断。
三、电力设备红外精确测温规范1. 设备选择与校准设备选择:根据被测设备的类型、尺寸和测温精度要求,选择合适的红外测温设备。
例如,对于大型变电站,建议使用高分辨率、高精度的红外热像仪。
设备校准:定期对红外测温设备进行校准,确保其测量精度。
校准应遵循国家相关标准和规程。
2. 测量环境要求环境温度:测量时应避免环境温度剧烈变化,最佳测量环境温度为20℃至50℃。
湿度:相对湿度应控制在85%以下,避免水汽对红外辐射的干扰。
风速:风速不宜超过3m/s,防止风速影响测量精度。
3. 测量距离与角度测量距离:根据设备的尺寸和红外测温设备的性能,选择合适的测量距离。
一般建议测量距离为设备直径的35倍。
测量角度:尽量保持红外测温设备与被测设备表面垂直,避免角度过大导致的测量误差。
4. 测量流程前期准备:检查设备状态,确保红外测温设备电量充足,校准无误。
红外热像仪的使用方法和技巧及工作原理
红外热像仪的使用方法和技巧及工作原理红外热像仪的使用方法和技巧通俗地讲热像仪就是将物体发出的不可见红外能量变化为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
一、红外热像仪的使用注意事项:1、确定测温范围:测温范围是热像仪比较紧要的一个性能指标。
每种型号的热像仪都有本身特定的测温范围。
因此,用户的被测温度范围确定要考虑精准、全面,既不要过窄,也不要过宽。
依据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,用户只需要购买在本身测量温度内的红外热像仪。
2、确定目标尺寸:红外热像仪依据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。
对于单色测温仪,在进行测温时,被测目标面积应充分热像仪视场。
建议被测目标尺寸超过视场大小的50%为好。
假如目标尺寸小于视场,背景辐射能量就会进入热像仪的视声符支干扰测温读数,造成误差。
相反,假如目标大于热像仪的视场,热像仪就不会受到测量区域外面的背景影响。
3、确定光学辨别率(距离系灵敏):光学辨别率由D与S之比确定,是热像仪到目标之间的距离D 与测量光斑直径S之比。
假如测温仪由于环境条件限制必需安装在阔别目标之处,而又要测量小的目标,就应选择高光学辨别率的热像仪。
光学辨别率越高,即增大D:S比值,热像仪的成本也越高。
确定波长范围:目标材料的发射率和表面特性决议热像仪的光谱响应或波长。
对于高反射率合金材料,有低的或变化的发射率。
在高温区,测量金属材料的较好波长是近红外,可选用0.18—1.0μm波长。
其他温区可选用1.6μm、2.2μm和3.9μm波长。
由于有些材料在确定波长是透亮的,红外能量会穿透这些材料,对这种材料应选择特别的波长。
如测量玻璃内部温度选用 1.0μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低温区选用8—14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚酯类选用4.3μm或7.9μm波长。
(完整版)红外测温算法——最终版
(完整版)红外测温算法——最终版红外热像仪测温算法红外热像测温原理⿊体辐射的基本规律是红外辐射理论研究和技术应⽤的基础。
所谓⿊体,就是在任何温度下能吸收任何波长辐射的物体。
斯蒂芬⼀波尔兹曼定律指出,⿊体的辐出度,即⿊体表⾯单位⾯积上所发射的各种波长的总辐射功率与其热⼒学温度T的四次⽅成正⽐:在相同温度下,实际物体在同⼀波长范围内辐射的功率总是⼩于⿊体辐射的功率。
也就是说,实际物体的单⾊辐出度⼩于⿊体的单⾊辐出度。
我们把与的⽐值称为物体的单⾊⿊度,它表⽰实际物体的辐射接近⿊体的程度:即(1)将式(1)两端积分(2)如果物体的单⾊⿊度是不随波长变化的常数,即,则称此类物体为灰体。
结合关系式:和可得所以(3)实际物体的热辐射在红外波长范围内,可以近似地看成灰体辐射。
被定义为物体的发射率。
表明该物体的辐射本领与同温度同测量条件下的⿊体辐射本领之⽐。
式(3)正是红外测温技术的理论依据。
作⽤于热像仪的辐射照度为(4)其中,为表⾯发射率,为表⾯吸收率,为⼤⽓的光谱透射率,为⼤⽓发射率,为被测物体表⾯温度,为环境温度,为⼤⽓温度,d 为该⽬标到测量仪器之间的距离,通常⼀定条件下,为⼀个常值,为热像仪最⼩空间张⾓所对应的⽬标的可视⾯积。
热像仪通常⼯作在某⼀个很窄的波段范围内,或之间,、、通常可认为与⽆关。
得到热像仪的响应电压为(5)其中,为热像仪透镜的⾯积,令,,则(5)式变为(6)红外热成像系统的探测器可以将接收到的红外波段的热辐射能量转换为电信号,经过放⼤、整型,模数转换后成为数字信号,在显⽰器上通过图像显⽰出来。
图像中的每⼀个点的灰度值与被测物体上该点发出并到达光电转换器件的辐射能量是对应的。
但直接从红外热成像系统显⽰的图像中读出的温度是物体表⾯的辐射温度,并不是真实温度,其值等于辐射出相同能量的⿊体的真实温度。
因此在实际测温时,要先⽤⾼精度⿊体对热像仪进⾏标定,找出⿊体温度与光电转换器件输出电压(在热图像上表现为灰度)的对应关系。
品检中的红外热像仪检测技术应用
品检中的红外热像仪检测技术应用红外热像仪是一种利用红外线辐射技术来探测和显示物体表面温度分布的仪器。
它具有非接触、快速、准确的特点,广泛应用于品检领域。
本文将介绍红外热像仪检测技术在品检中的应用。
红外热像仪在品检中的主要应用之一是检测电气设备的异常情况。
在生产工程中,电气设备的温度异常往往是故障的一个重要指标。
传统的温度检测方法需要在设备表面粘贴温度传感器,并通过有线连接到测温仪器。
而红外热像仪可以实现非接触式的温度检测,只需对准设备表面进行扫描即可获取全面的温度分布图像,从而准确判断设备是否存在温度异常,并及时采取措施避免故障的发生。
红外热像仪还可以用于检测建筑物中的能源损失情况。
在建筑物的运行过程中,能源的损耗是不可避免的。
然而,过多的能源损耗会导致额外的负担和资源浪费。
利用红外热像仪,可以对建筑物外墙、窗户、门等部位进行扫描,快速获得它们的热量分布情况。
通过分析这些图像,我们可以确定哪些部位存在能源损失,并及时采取维修或改进措施,提高能源利用效率,减少浪费,节约成本。
红外热像仪在制造业中的应用也非常广泛。
在制造过程中,产品的质量控制是至关重要的。
红外热像仪可以检测产品表面的温度分布,通过分析图像来评估产品的质量。
例如,在焊接过程中,红外热像仪可以检测焊缝的温度分布,以确保焊接质量;在注塑成型过程中,红外热像仪可以检测模具温度分布,以避免产品质量不良。
这些应用可以提高制造过程的稳定性和一致性,保证产品的品质。
红外热像仪在食品行业中也得到了广泛应用。
食品的质量和安全性是对食品行业的重要要求。
红外热像仪可以用于检测食品的温度分布,以确保食品的烹饪和贮存过程中的安全性。
例如,在烤肉或烘烤食品的过程中,红外热像仪可以检测食品的温度,并确保其达到适宜的烹饪温度;在食品冷藏和储存中,红外热像仪可以检测冷藏设备或存储场所的温度分布,以保证食品的质量和安全。
综上所述,红外热像仪在品检中的应用准确、高效、非接触,并且具有广泛的适用性。
使用红外热像仪进行热量测量的原理与技巧
使用红外热像仪进行热量测量的原理与技巧当我们谈到温度测量时,红外热像仪往往是一个非常有用的工具。
它可以通过检测目标物体辐射出的红外辐射来测量其表面温度。
这种测量方法无需接触目标物体,因此具有许多优势。
接下来,我们将了解红外热像仪的原理以及使用它进行热量测量的技巧。
红外热像仪的原理基于“热成像”技术。
它可以将目标物体辐射的红外辐射转换为电信号,并通过电子装置转换成图像。
这种红外辐射与物体表面的温度有关,因此我们可以通过分析图像来了解物体的表面温度分布。
红外热像仪的核心部件是红外探测器。
探测器中的红外感光元件可以吸收目标物体辐射出的红外辐射,并将其转化为对应的电信号。
这些电信号然后通过电路处理,最终形成热像仪所显示的红外图像。
在使用红外热像仪进行热量测量时,有一些技巧可以帮助我们获得准确的结果。
首先,我们需要使用热平衡板进行校准。
热平衡板通常是一个具有均匀温度分布的表面,它可以通过快速达到热平衡的特性来提供准确的参考温度。
通过将红外热像仪对准热平衡板并进行校准后,我们可以获得一个可靠的基准以进行后续的热量测量。
其次,我们需要注意测量距离对结果的影响。
红外热像仪的测量范围通常是有限的,过大或过小的测量距离都可能导致测量结果的误差。
在进行热量测量时,我们应该根据目标物体的尺寸和特点,选择合适的距离以获得准确的结果。
另外,应该注意到红外辐射的反射影响。
对于具有高反射率的表面,红外热像仪可能会检测到来自周围环境的反射辐射,从而产生不准确的测量结果。
因此,在进行热量测量时,我们应该尽量避免反射辐射的干扰,可以通过更换角度或使用遮光板等方法来实现。
此外,环境条件也会对红外热像仪的测量结果产生影响。
比如,气温、湿度等环境因素都会对红外辐射的传播和测量结果产生影响。
在使用红外热像仪进行热量测量时,我们应该尽量在稳定的环境条件下进行,或者对环境因素进行修正以得到准确的结果。
总结来说,红外热像仪作为一种非接触式的测温工具,拥有广泛的应用领域和许多优势。
如何利用热像仪对食物进行测温
如何利用热像仪对食物进行测温红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
简单的说红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况。
冬季会让吃货们想到了什么?是热气腾腾的火锅?还是滋滋作响的烤肉?冬季吃饭的时候,人们总是习惯性的趁热吃东西,那么你知道你吃进嘴的食物的温度究竟是多少吗?那么如何利用热像仪对食物进行测温呢?1、准备好要拍的菜品2、将菜上桌摆好3、拿出热像仪,选择合适角度,调整热像仪焦距,拍照,完成。
实验结论人的口腔和食道,正常的温度是36.5~37.2℃,其耐热温度为50~60℃。
如果进食的温度过高,口腔粘膜和食管壁会被烫伤。
人们感到很热很烫的食物,通常在70~80℃,经常食用这种食物,口腔和食管壁的粘膜就会不断受到损伤,并不断增生新的细胞。
小贴士一般热炒菜上桌时温度在70~80℃,油炸类的100℃左右,70~80°C的食物已经很烫、会损伤口腔和食道,更不要说油炸食品了。
因此吃货们大快朵颐的同时,也要注意等食物稍稍散热后再食用。
长期食用过烫的食物,对健康不利哦。
红外热像仪的特点:1、作用距离远一般的红外灯产品只有不到100米的成像距离。
热像仪对物体辐射的红外线进行成像,不受环境光和照明光的限制,一般长焦热成像仪能观测3千米以上的人员和6千米以上的车辆。
2、隐蔽性强它完全是被动地接收信号,不主动发射探测信号,这样就不容易被反侦察手段所发现。
3、穿透能力强红外热辐射比可见光具有更强的穿透雾、霾、雨、雪的能力,因而红外热成像系统在恶劣天气条件下的成像效果几乎不受影响。
特别是作用于8-14um的长波红外热像仪,具有更强的穿透雾能力。
4、全天候工作能力,抗强光干扰红外热成像仪成像不借助照明光和环境光,而是靠目标与背景的辐射产生景物图像,因此红外热成像系统能24小时全天候工作,并且也不会像其他夜视设备那样受可见光强光干扰。
红外热成像测温范围-概述说明以及解释
红外热成像测温范围-概述说明以及解释1.引言1.1 概述本文主要介绍了红外热成像测温范围的重要性。
随着科技的不断进步,红外热成像技术在温度测量领域得到了广泛应用。
红外热成像测温技术通过检测目标物体发出的红外辐射来获取其表面温度分布情况,具备非接触、快速、准确、远距离等优点,因此在军事、工业、医疗、建筑等领域得到了广泛的应用。
红外热成像测温的范围主要受到红外热像仪的工作波长和光谱响应范围的限制。
一般情况下,红外热像仪的工作波长范围为3μm到14μm,这也是目前常见红外热成像仪的工作波段。
在这个波长范围内,红外辐射能量较高,且受到大气吸收较小,因此红外热成像技术在这个范围内具有较高的分辨率和测温精度。
红外热成像测温范围的确定要根据具体的应用需求来确定。
一般来说,红外热成像技术可以测量的温度范围从低温到高温都可以覆盖,例如从-40到2000。
但是需要注意的是,在测量极端温度时,可能需要使用不同的红外热成像仪或进行特殊的设置。
在工业领域,红外热成像测温范围的确定非常重要。
不同的行业和应用场景对红外热成像仪的温度测量范围有不同的要求。
例如,在冶金行业需要测量高温炉内的温度,而在电子行业需要测量电子元器件的温度。
因此,了解和确定红外热成像测温范围对于合理选择和应用红外热成像技术具有重要意义。
总之,红外热成像测温范围对于红外热成像技术在各个领域的应用具有重要影响。
了解红外热成像测温范围的限制和确定方法,有助于选择和应用合适的红外热成像仪,并提高温度测量的准确性和可靠性。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构的目的是为读者提供对整篇文章的整体概览,使读者能够更好地理解和阅读文章的内容。
本文将按照以下顺序介绍红外热成像测温范围的相关内容。
首先,在引言部分,我们将对整篇文章进行概述,简单介绍红外热成像测温技术的背景和意义,并解释文章的目的。
接下来,在正文部分,我们将详细介绍红外热成像技术及其原理。
红外热成像人体快速测温系统的研究
红外热成像人体快速测温系统的研究摘要红外热成像测温仪,因其具有非接触、响应速度快、操作简便等特点,被作为机场、港口、车站等公共场所对密集人群的快速、方便、非接触测量的重要工具。
本文结合检验检疫工程项目,系统地介绍了红外测温仪对人体快速测温的应用,并对系统测试数据进行了统计分析。
关键词红外;测温;非接触传统的体温计主要有两种,水银式体温计和电子式体温计,是经口腔、腋窝、直肠等来测量人体的平均温度,这两种体温计不适合于大量人群的快速检测。
红外热成像技术是一门新兴的综合性高新技术,具有灵敏精确、成像直观、信息丰富、无创检测、简便经济等特性,受到国内外学者的普遍关注。
人体温度是通常以测量腋下温度或口腔温度,来估算人体温度。
基于红外辐射原理,以人体为辐射源,采用先进的红外扫描技术,探测人体红外辐射,经过一系列信号处理,把不可见的体表温度变化转变为可视性的和可定量的红外热图,通过对检测到的图像进行分析,就可以得到体温的测试结果。
这种方法不仅可以实现对大流动人群的快速、方便、非接触测量,还可以对流动人群进行扫描测量,搜索和探测那些密集流动人群中的个体发热情况,可快速识别出被测范围内那些超过温度设定限值的所有的发热体。
1 测温原理红外辐射是指波长范围介于可见光与微波之间的电磁辐射,在光谱图上位于红光之外,其本质与可见光相同,具有电磁波的一般属性。
红外辐射还具有与可见光不同的两个特性:一是红外辐射与热能的传递有关,有着明显的热效应;二是红外辐射与物质分子热运动的频率一致时,入射的红外辐射可被物体分子吸收,物体分子吸收红外辐射后自身的热运动得到加强,表现为物体温度升高。
人体红外辐射探测原理基于红外辐射的定律。
正常人体的辐射本领与绝对温度310°K 的黑体相似。
不论肤色,比辐射率约为0.99,说明人体具有很高的辐射本领。
斯蒂芬—波尔兹曼定律表明,黑体单位表面积向整个半球空间发射的辐射总功率与其自身绝对温度的四次方成正比。
红外热像仪测温技术
不同的物质和目标在红外波段范围内有不同的辐射特性,因 此选择合适的波段范围对于准确测量温度至关重要。常见的 波段范围包括短波、中波和长波,分别对应不同的应用场景 。
空间分辨率
总结词
空间分辨率决定了红外热像仪能够分 辨目标细节的能力。
详细描述
空间分辨率越高,热像仪能够捕捉到 的目标细节越丰富。这有助于在复杂 背景下准确识别目标,并对其温度分 布进行更精确的测量。
红外热像仪在安全监控、消防 救援和军事侦察等领域中具有
广泛的应用。
02 红外热像仪的组成与分类
红外探测器
探测器类型
探测器阵列
红外探测器分为热探测器和光子探测 器两类,其中热探测器根据工作原理 又可以分为热电堆、热电偶、热敏电 阻等。
红外探测器阵列分为一维线阵和二维 面阵,面阵又可以分为非制冷和制冷 两种类型。
康复理疗
红外热像仪还可用于康复理疗领域, 通过红外热像仪的监测,可以对康复 治疗效果进行量化评估,为康复治疗 方案提供科学依据。
安全监控领域的应用案例
消防安全
在消防安全领域,红外热像仪能够快速定位火源、检测高温区域和人员,为灭火救援提供重要信息,提高救援效 率。
夜间监控
在夜间或低光照条件下,红外热像仪能够清晰地捕捉到目标物体的温度分布,为安全监控提供有力支持。
测温范围
总结词
测温范围决定了红外热像仪能够测量的最高和最低温度。
详细描述
测温范围越宽,热像仪的应用场景就越广泛。了解测温范围对于选择适合应用的 红外热像仪至关重要,以确保能够准确测量目标温度。
04 红外热像仪测温技术的优 势与局限性
优势
非接触式测温
响应速度快
红外热像仪通过接收物体发射的红外辐射 进行测温,无需直接接触被测物体,可在 一定距离内进行快速测量。
热成像测温
热成像测温热成像测温是一种通过红外热像仪测量物体表面温度的技术。
它利用物体发射的红外辐射来获取温度信息,可以快速、非接触地测量物体的温度分布。
热成像测温广泛应用于工业、医疗、建筑、电力等领域,在提高工作效率和安全性方面起到了重要作用。
一、热成像测温的原理和技术热成像测温的原理基于物体发射的红外辐射与其表面温度成正比的关系。
物体的温度越高,发射的红外辐射能量越大。
红外热像仪通过接收物体发出的红外辐射,将其转化为图像显示出来。
图像中的每一个像素都对应着物体表面的一个温度值,从而形成了温度分布图。
热成像测温可以实现快速、非接触的测量。
相比传统的接触式温度测量方法,热成像测温可以避免物体受到破坏或污染。
同时,它也能够在远距离和复杂环境下进行测量,大大提高了测量的灵活性和便捷性。
1. 工业领域:热成像测温广泛应用于工业生产中的设备维护和故障排查。
通过对设备的热成像测温,可以及时发现设备的异常热点,预防设备故障,提高设备的可靠性和安全性。
2. 建筑领域:热成像测温可以用于建筑物的节能评估和隐蔽工程质量检测。
通过对建筑物外墙、窗户等部位进行热成像测温,可以发现隐蔽工程的质量问题,提高建筑物的节能性能。
3. 医疗领域:热成像测温在医疗诊断中有着重要应用。
例如,热成像测温可以用于检测人体的体温分布,及时发现体温异常,辅助医生进行疾病诊断和治疗。
4. 电力领域:热成像测温可以用于电力设备的温度监测和故障预警。
通过对电力设备进行热成像测温,可以实时监测设备的温度变化,发现设备的异常情况,预防设备故障和火灾事故的发生。
三、热成像测温的优势和局限性热成像测温具有以下优势:1. 快速:热成像测温可以实时获取物体的温度分布,快速判断物体的热状态。
2. 非接触:热成像测温无需与物体接触,避免了物体受到破坏或污染的问题。
3. 全局性:热成像测温可以同时获取物体表面的多个温度点,形成温度分布图,全面了解物体的热情况。
热成像测温也存在一些局限性:1. 测量精度:受到环境条件和设备本身的影响,热成像测温的测量精度相对较低,不能满足某些高精度测量的要求。
红外测温技术的含义
红外测温法是利用光学设备,将光聚焦于被测设备的某--触点,利用被测设备触点不同温度所产生的红外辐射照度不同的原理,通过采集该被测设备触点表面的热能量,经过运算,就可以从红外热像仪的图像上读出被测物体表面的每一个点的辐射温度值。
在测温时,如果物体的温度远高于环境温度时,则发射率的影响不容忽视:当物体温度低于或者和环境温度接近时,环境温度的影响将变大,则需要对测温结果进行修正。
由于电力设备在运行时,所产生的热效应,使电力设备,特别是缺陷部分的温度一般都远高于环境温度,所以环境温度对红外测温的结果影响不大,只需控制发射率即可。
因此红外测温技术较适用于电力设备测温。
红外测温技术概述1.1红外测温技术的含义红外测温技术的科技含量比较高,包括红外辐射的产生、传播和转换等技术。
红外辐射在电磁顿谱中占有重要的地位,不同种类的电波有着不同的属性,根据属性的不同可以把电波分为微波、无线电波、紫外线、可见光、R射线和X射线等。
红外线在可见光和无线电波的中间。
根据相关的规定,红外线可以分为远红外、中红外和近红外三种类型.1红外测温技术的含义红外测温技术是电力系统中对电力设备进行检测的一项技术,不仅简单,而且快捷,在变电站的日常巡视和维护中得到了广泛的应用。
世间的任何一一个物体都会发射出红外辐射能量,这种能量是人眼所不能看到的,红外辐射能量的强度随着物体温度的升高而增强。
我们这里所说的红外测温正是充分利用了电力设备的制热效应,通过接收电力设备辐射出的红外线能量,来测出电力设备的表面温度。
2.红外测温技术的特点红外测温技术与传统的测温技术相比较,具有以下几个特点。
首先,红外测温技术不需要电力系统的停电,在电力系统正常运行的过程中就能够测出电力设备的运行状态,保证电力设备的安全运行。
其次,红外测温技术能够有效实现大面积的扫描成,像,对于设备状态的显示不仅快捷、灵敏,而且形象、直观,同时检测的效率和质量高,具有非常低的劳动强度。
多光谱红外热像仪测温
多光谱红外热像仪测温
多光谱红外热像仪是一种能够测量物体表面温度的仪器,它利
用物体发射的红外辐射来确定物体的温度。
多光谱红外热像仪与普
通红外热像仪相比,能够在更广泛的波长范围内进行测量,从而提
供更为全面的温度信息。
它通常可以测量从近红外到远红外范围内
的辐射,这使得它能够更准确地测量物体表面的温度分布情况。
多光谱红外热像仪的测温原理是基于物体发射的红外辐射与其
温度成正比的基本规律。
它通过测量物体在不同波长下的红外辐射
强度,然后利用这些信息来计算物体表面的温度。
利用多光谱技术,可以更准确地补偿大气吸收和散射对红外辐射的影响,从而提高了
测温的准确性和可靠性。
在实际应用中,多光谱红外热像仪广泛用于工业领域的温度监
测和热成像。
例如,在电力行业,它可以用于检测输电线路和变压
器的热量分布,及时发现潜在的故障隐患;在机械制造中,它可以
用于监测设备运行时的热量分布,帮助工程师优化设备设计和维护
方案;在建筑工程中,可以用于检测建筑物表面的热桥和隔热性能等。
总的来说,多光谱红外热像仪在测温方面具有更高的精度和灵敏度,能够提供更全面的温度信息,因此在工业和科研领域有着广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外热像仪测温技术
辐射探测学
目录 1 2 3 4 5
概述 红外热像仪测温原理
红外热像仪辐射定标的基本原理 红外热像测温的影响因素 红外图像增强处理
红外热像仪测温技术
辐射探测学
4 测温的影响因素
0.76μ m~1000μ m 1~3μ m 3~5μ m 短波窗口 8~14μ m 长波窗口 “大气窗口”
红外热像仪测温技术
辐射探测学
4 测温的影响因素
4.1 发射率 发射率 是影响红外热像仪测温精度的最大不确定因素。发射率受表 面条件、形状、波长和温度等因素的影响。要想得到物体的真实温度,必 须精确的设定物体的发射率值。
1
不同材料性质的影响
2
表面状态的影响
不同的表面形态首先影响到反射率,从而影响到发射率。材料的种类 和粗糙的程度直接影响到发射率。表面粗糙度对金属材料的发射率影 响比较大。对非金属的电介质材料影响较小或根本无关。
红外热像仪测温技术
辐射探测学
3 标定原理
近距离扩展源法 在近距离扩展源法中,要求定标源的面积必须充满热像仪的整个视场 热像仪的光学系统入瞳上的辐亮度为:
L Lb
在波长 1 - 2 波段内的黑体辐亮度为:
Lb (1 2 )
Mb
1
2
1
5 e
c1
1
c2 / T
d
所以,红外热像仪的辐亮度响应度:
正比 红外辐射 电子视频信号 显示器
标定
物体绝对温度
红外热像仪测温技术
辐射探测学
目录 1 2 3 4 5
概述 红外热像仪测温原理
红外热像仪辐射定标的基本原理 红外热像测温的影响因素 红外图像增强处理
红外热像仪测温技术
辐射探测学
3 标定原理
对于红外热成像测温系统,要获得物体表面的绝对温度,需要利用 标准黑体对温度灰度关系进行标定,即建立灰度和温度之间一一对应的 关系,以便以后直接由灰度获得温度,这就是红外成像测温系统的标定。
Eb
c15 c2 / T e 1
式中, Eb 为黑体光谱辐射通量密度
红外热像仪测温技术
辐射探测学
2 测温原理
2.1 热像仪的组成和工作原理
热辐射原理图
接收到的有效辐射
1、目标自身辐射 2、环境反射辐射 3、大气辐射
红外热像仪测温技术
辐射探测学
2 测温原理
2.1 热像仪的组成和工作原理
红外热像仪测温技术
姓名:某某某 学号:1111111111
专业:某某某某某某
红外热像仪测温技术
辐射探测学
目录 1 2 3 4 5
概述
红外热像仪测温原理
红外热像仪辐射定标的基本原理 红外热像测温的影响因素 红外图像增强处理
红外热像仪测温技术
辐射探测学
1 概述
课题研究背景
红外热像测温技术是当今迅速发展的高新技术之一,已广泛地在军事、 准军事和民用等领域并发挥着其它产品难以替代的重要作用。 随着电子技术的迅猛发展,新半导体材料的不断出现,红外测温技术 在科学研究、现代工程技术和军事领域中的应用越发广泛。
RT V /[
1
2
1
5 e
c1
1
c2 / T
d ]
式中V根据定标的要求,可以是热像仪的输出电压、也可以是数字化输出 的图像灰度级等。
红外热像仪测温技术
辐射探测学
3 标定原理
远距离小源法 当被测目标在热像仪中的像未充满仪器视场时,通常使用远距离小
源法定标。
把定标黑体源置于离开热像仪足够远的距离上,使它处于热像仪的 视场范围之内,但并未充满视场,测量目标的辐照度。
红外热像仪测温技术
辐射探测学
1 概述
课题研究背景
与其他测温方法的优势: (1)温度分布不均匀的大面积目标的表面温度场的测量; (2)在有限的区域内快速确定过热点或过热区域的测量。 红外测温技术的优点: ①不会破坏被测物体的温度场,因为它无需与被测物体接触; ②灵敏度高; ③可在几毫秒内测出目标温度,反应速度快; ④测温范围宽,一般可达到-170℃~3200℃,甚至更大; ⑤不受检测距离限制,近远皆可;
红外热像仪测温技术
辐射探测学
目录 1 2
概述
红外热像仪测温原理 红外热像仪辐射定标的基本原理 红外热像测温的影响因素 红外图像增强处理
3 4 5
红外热像仪测温技术
辐射探测学
2 测温原理
2.1 辐射的基本定律
红外测温技术的理论基础是普朗克定律,该定律揭示了黑体辐射能量在 不同温度下按波长的分布规律,其数学表达式为:
红外热像仪测温技术
辐射探测学
4 测温的影响因素
大气吸收是影响测温精度的因素之一,热像仪特性、目标特性、测 量距离等因素也直接影响了测温的准确性。为了实现温度的精确测量和 便于操作,在热像系统中大多数热像仪实现的精度补偿有:
1
2 3
镜头视场外的辐射补偿 不同操作温度下的补偿 热像仪内部的漂移和增益补偿
温 射探测学
3 标定原理
黑体
标 定 原 理 图
发生率不低于 0.995
温场均匀性好
测温误差小
红外热像仪测温技术
辐射探测学
3 标定原理
在规定的温湿度条件的实验室中,选用黑体辐射源标定的红外热像仪测量黑体 源不同的温度值,具体有两种方法:
1
拟合曲线法
用最小二乘法拟合热像仪采集的灰度数据与标准黑体辐射源的温度示值, 得出辐射能量与温度关系的拟合曲线。
3
辐射探测学
温度的影响
红外热像仪测温技术
4 测温的影响因素
4.2 背景噪声
室内测量时,周围高温物体等的反射光也会影响待测物体温度的测量结果;
室外主要的背景噪声是阳光的直接辐射、折射和空间散射。因此在测温时必须 考虑各种影响因素 采取的基本对策如下: (1) 在待测物体附近设置屏蔽物,以减少外界环境的干扰。 (2) 准确对准焦距,防止非待测物体的辐射能进入测试角。 (3) 室外测量时,选择晚上或有云天气以排除日光的影响。 (4) 通过制作小孔或采用高发射率的涂料等方法使发射率提高,使之接近于1。
2
查找表法
查找表法对足够多的点进行标定,得到尽可能多的标定数据,建立数据 库,用表的形式来查找温度与灰度的对应关系。
红外热像仪测温技术
辐射探测学
3 标定原理
定标的方法有许多,根据测量要求,以及定标源是否充满仪器的视场, 以下介绍两种方法:近距离扩展源法和远距离小源法。
1 2
近距离扩展源法
远距离小源法
能在较宽的范围内提供最佳功能,
达到良好的测温要求
主要用于低温及远距离的测温
红外热像仪测温技术
辐射探测学
4 测温的影响因素
作为窄谱辐射成像测量设备的热像测温系统,由于受各种因素的影响, 直接影响了红外热像仪对温度的精确测量,也影响了热像仪在一些领域中的 应用。
主要影响因素有被测表面的发射率,反射率,大气温度,环境温度, 测量距离和大气衰减度等。