2019福州时代中学第十九章一次函数单元试题
人教版八年级数学下册 第十九章 一次函数 单元测试卷(含答案)
![人教版八年级数学下册 第十九章 一次函数 单元测试卷(含答案)](https://img.taocdn.com/s3/m/b1ef9d033169a4517723a3dc.png)
2019年八年级数学下册一次函数单元测试卷一、选择题1、对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大2、巴西奥运会期间,童童从宾馆出发前往奥体中心观看中国女排决战塞尔维亚,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,她搭乘朋友的车顺利到家。
其中x表示童童从宾馆出发后所用时间,y表示童童离宾馆的距离.下图能反映y与x的函数关系式的大致图象是3、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A.B.C.D.4、若直线y=kx+b经过第二、三、四象限,则()A.k>0,b>0 B.k>0,b<0C.k<0,b>0D.k<0,b<05、在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B. C. D.7、若点A(m,n)在的图像上,且2m-3n>6,则b的取值范围为A. b>2B. b>-2C. b<2D. b<-28、如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x +b>ax﹣3的解集是( )A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣29、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,ma x{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( )A.0 B.2 C.3 D.410、已知直线y=34 x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是( )A.y=﹣x+8 B.y=﹣x+8 C.y=﹣x+3 D.y=﹣x+311、在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2C.3个D.4个12、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.二、填空题13、函数x32x1y-+-=的自变量x的取值范围是。
2019-2020学年度人教版数学八年级下册第十九章《一次函数》单元测试(解析版)
![2019-2020学年度人教版数学八年级下册第十九章《一次函数》单元测试(解析版)](https://img.taocdn.com/s3/m/9790fda82af90242a995e526.png)
第十九章一次函数单元测试班级:姓名:学号:成绩:一、选择题1.人的身高h随时间t的变化而变化,那么下列说法正确的是()A. h,t都是不变量B. t是自变量,h是因变量C. h,t都是自变量D. h是自变量,t是因变量2.长方形周长为30,设长为x,宽为y,则y关于x的函数表达式为()A. y=30−xB. y=30−2xC. y=15−xD. y=15−2x3.已知函数y=3x−1,当x=3时,y的值是()A. 6B. 7C. 8D. 94.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A. y=−3x+2B. y=2x+1C. y=2x2+1D. y=−1x5.如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A. MB. NC. PD. Q6.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大7.已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A. k<0B. k<−1C. k<1D. k>−18.已知函数y=(m−1)x|m|+5m是一次函数,则m的值为()A. 1B. −1C. 0或−1D. 1或−19.一次函数y=2x−1的图象经过()A. 第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限;D. 第二、三、四象限10.若一次函数y=kx+b的图象与直线y=−x+1平行,且过点(8,2),则此一次函数的解析式为()A. y=−x−2B. y=−x−6C. y=−x−1D. y=−x+1011.如图所示,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是().A.第3分时汽车的速度是40千米/时B. 第12分时汽车的速度是0千米/时C. 从第9分到第12分,汽车速度从60千米/时减少到0千米/时D. 从第3分到第6分,汽车行驶了120千米12.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.13.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A. (−3,0)B. (−6,0)C. (−32,0) D. (−52,0)14.已知y=(m+1)x m2,如果y是x的正比例函数,则m的值为()A. 1B. -1C. 1,-1D. 0二、填空题15.将直线y=−2x+3向下平移2个单位得到的直线为___________.16.已知正比例函数y=kx,当x=−2时,y=6,则k的值是.17.若一次函数y=−2x+b(b为常数)的图象经过二、三、四象限,则b的值可以是_____(写出一个即可).18.如图,直线y=kx+b分别交x轴和轴于点A(−2,0)、B(0,3),则关于x的方程kx+b=0的解为.19.一次函数y=(k+3)x+k2−9的图象经过原点,则k的值为.20.写出一个一次函数,满足下列条件:(1)y随x的增大而减少;(2)函数图像经过点(−1,4),这样的函数为____________(写一个即可)三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。
人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)
![人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)](https://img.taocdn.com/s3/m/d9810041cd1755270722192e453610661ed95a92.png)
人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。
(福建专版)2019春八年级数学下册 第十九章 一次函数 19.2 一次函数 19.2.3 一次
![(福建专版)2019春八年级数学下册 第十九章 一次函数 19.2 一次函数 19.2.3 一次](https://img.taocdn.com/s3/m/d98c3f148e9951e79a892764.png)
第3课时一次函数与二元一次方程(组)知能演练提升能力提升1.如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.2.若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.-3,-2,-1,0B.-2,-1,0,1C.-1,0,1,2D.0,1,2,33.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的解析式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-24.方程组没有解,因此直线y=-x+2和直线y=-x+在同一平面直角坐标系中的位置关系是()A.重合B.平行C.相交D.以上三种情况都有可能5.已知是关于x,y的方程ax+by+c=0的解,则直线y=-x-不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.已知关于x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图象的交点坐标为(1,-1),则a=,b=.7.下图所示直线y=-x,直线y=x+2与x轴围成图形的面积是.8.运用图象法解二元一次方程组9.如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶.图②为列车离乙地路程y(单位:km)与行驶时间x(单位:h)之间的函数关系图象.(1)甲、丙两地相距多少千米?(2)求高速列车离乙地的路程y与行驶时间x之间的函数解析式,并写出x的取值范围.创新应用★10.如图,直线l1的解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.参考答案能力提升1.C2.B3.B因为点B在y=-x的图象上,把x=-1代入y=-x中,得y=1,即B(-1,1).根据一次函数的图象过B(-1,1)和A(0,2),求出一次函数解析式.4.B5.D6.2 37.1围成的图形是一个三角形.由题图可知交点坐标为(-1,1),所以其面积为×2×1=1.8.解由3x-y=1,得y=3x-1,由2x+3y=8,得y=-x+.列表如下:x+描点、连线,如图:可估计二元一次方程组的解为9.解(1)由题图②可知:甲、乙两地相距900km,乙、丙两地相距150km,则甲、丙两地相距1050km.答:甲、丙两地相距1050km.(2)列车的速度为=300(km/h),则列车从乙地到丙地的时间为(h).①设从甲地到乙地的函数解析式为y=k1x+b1(k1≠0),它的图象过(0,900),(3,0)两点,则解得∴y=-300x+900.②设从乙地到丙地的函数解析式为y=k2x+b2(k2≠0),它的图象过(3,0),(3.5,150)两点,则解得∴y=300x-900.∴y=创新应用10.解(1)由y=-3x+3,令y=0,得-3x+3=0.∴x=1.∴D(1,0).(2)设直线l2的解析式为y=kx+b(k≠0),由题图知x=4,y=0;x=3,y=-.∴故直线l2的解析式为y=x-6.(3)由解得∴C(2,-3).∵AD=3,∴S△ADC=×3×|-3|=.(4)P(6,3).。
【三套打包】福州市人教版初中数学八年级下册第十九章一次函数单元试卷及答案(1)
![【三套打包】福州市人教版初中数学八年级下册第十九章一次函数单元试卷及答案(1)](https://img.taocdn.com/s3/m/b9311752a21614791711284a.png)
八年级数学下册第19章小专题求一次函数解析式的常见类型小专题(六)求一次函数解析式的常见类型类型1依据一次函数定义求一次函数解析式1.已知y-3与x+5成正比例,且当x=2时,y=17.求y与x的函数解析式.2.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=-1;当x=3时,y1-y2=12.求这两个正比例函数的解析式.类型2依据一次函数图象性质求一次函数解析式3.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,求一次函数的表达式.4.(益阳中考)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位长度,再向上平移2个单位长度得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的解析式;(3)若将点P2先向右平移3个单位长度,再向上平移6个单位长度得到点P3.请判断点P3是否在直线l上,并说明理由.5.(荆州中考改编)为更新果树品种,某果园计划购进A,B两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.求y与x的函数解析式.类型3依据一次函数图象变换求一次函数解析式6.已知直线y=-12x+1与直线a关于y轴对称,求出直线a的解析式,并在同一坐标系中画出它们的图象.类型4依据几何图形面积求一次函数解析式7.因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x-2的“镜子”函数:____________;(2)如果一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B,C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.8.若一次函数y =2x +b 的图象与坐标轴围成的三角形的面积是9,求b 的值.9.一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是8,且过点(0,2),求此一次函数的解析式.参考答案1.由题意,设y -3=k(x +5).把x =2,y =17代入,得14=7k ,即k =2. ∴y -3=2(x +5),即y 与x 的函数解析式为y =2x +13.2.根据题意,得⎩⎪⎨⎪⎧2k 1+2k 2=-1,3k 1-3k 2=12.解得⎩⎨⎧k 1=74,k 2=-94.∴这两个正比例函数的解析式分别为:y1=74x ,y 2=-94x. 3.由图象可知,一次函数图象经过点A(0,2),点B 的横坐标是-1. ∵点B 在正比例函数y =-x 图象上,∴y =-(-1)=1. ∴点B 的坐标为(-1,1).设一次函数的表达式为y =kx +b ,把A(0,2),B(-1,1)分别代入,得⎩⎪⎨⎪⎧b =2,-k +b =1.解得⎩⎪⎨⎪⎧b =2,k =1.∴一次函数的解析式为y =x +2. 4.(1)P 2(3,3).(2)设直线l 所表示的一次函数的解析式为y =kx +b(k ≠0).∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3.解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的解析式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9).人教版八年级数学下册第十九章一次函数章末复习研究(含答案)人教版八年级数学下册第十九章一次函数章末复习研究一.求一次函数的解析式1.例题:已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.解:设一次函数解析式为y=kx+b (k≠0),∵一次函数的图象与直线y=﹣2x+1平行, ∴k=﹣2,∵一次函数过点(3,2),∴﹣2×3+b=2,解得b=8, ∴一次函数解析式为y=﹣2x+8.对应训练:已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,求直线解析式 二.一次函数的性质例题:函数y=(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,求m 的取值范围 解:由已知得,函数y=(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限, 有,解之得:m <﹣1.对应训练:一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 三.一次函数的图像例题:在下列各图象中,表示函数y =-kx (k <0)的图象的是( )【分析】∵k <0,∴-k >0,∴函数y =-kx (k <0)的值随自变量x 的增大而增大,且函数为正比例函数.故选C.对应训练:一次函数y=ax+b 与y=ax+c(a>0)在同一坐标系中的图象可能是()四.一次函数的应用1.图表问题例题:某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?解:(1)由题意可知,调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱为60﹣(70﹣x)=(x﹣10)台,则y=200x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=20x+16800.∵,∴10≤x≤40.∴y=20x+16800(10≤x≤40);(2)由题意得:y=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=(20﹣a)x+16800.∵200﹣a>170,∴a<30.当0<a<20时,20﹣a>0,函数y随x的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,20﹣a<0,函数y随x的增大而减小,故当x=10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.对应训练:生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?2.最值问题例题:某年秋冬北方严重干早,凤凰社区人畜饮用水紧张.毎天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元.试写出W关于与x的函数关系式,怎样安排调运方案才能使毎天的总运费最省?解:(1)设从甲厂调运了x吨饮用水,从乙厂调运了y吨饮用水,由题意得:,解得:,∵50<80,70<90,∴符合条件,∴从甲、乙两水厂各调运了50吨、70吨饮用水;(2)从甲厂调运饮用水x吨,则需从乙调运水(120﹣x)吨,∵x≤80,且120﹣x≤90,∴30≤x≤80,总运费W=20×12x+14×15(120﹣x)=30x+25200,∵W随x的增大而增大,∴当x=30时,W最小=26100元,∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省对应训练:“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.3. 方案问题例题:现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式; (2)小明选择哪家快递公司更省钱?解:(1)y 甲=⎩⎪⎨⎪⎧22x (0<x≤1),15x +7(x >1);y 乙=16x +3 (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =12;令y 甲>y 乙,即22x >16x+3,解得12<x≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3,解得x >4;令y 甲=y 乙,即15x +7=16x +3,解得x =4;令y 甲>y 乙,即15x +7>16x +3,解得1<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x =4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱对应训练:随着信息技术的快速发展,“互联网”渗透到我们日常生活的各个领域,网上在线A B (1)下图是y B 与x 之间函数关系的图象,请根据图象填空:m =____,n =____; (2)写出y A 与x 之间的函数关系式;(3)选择哪种方式上网学习合算,为什么?4. 数形结合例题:如图,正方形ABCD 的边长为10,点E 在CB 的延长线上,EB=10,点P 在边CD 上运动(C ,D 两点除外),EP 与AB 相交于点F ,若CP=x ,四边形FBCP 的面积为y ,求y 关于x的函数关系式解:∵正方形ABCD的边长为10,CP=x,EB=10∴BF是ECP的中位线,∴BF=CP=x∵AB∥CD∴四边形FBCP是梯形,S梯形FBCP=(BF+CP)•BC=•×10=即y=(0<x<10).故答案为:y=(0<x<10)对应训练:已知一次函数y=3x+p和y=x+q的图象都经过点A(﹣2,0),且与y轴分别交于B、C两点,求△ABC的面积.5.动态几何例题:如图,矩形ABCD中,AB=6,动点P以2个单位/s速度沿图甲的边框按B→C→D→A 的路径移动,相应的△ABP的面积s关于时间t的函数图象如图乙.根据下图回答问题:(1)P点在整个的移动过程中△ABP的面积是怎样变化的?(2)图甲中BC的长是多少?(3)图乙中的a在图甲中具有什么实际意义?a的值是多少?解:(1)P点在整个的移动过程中△ABP的面积先逐渐从0增大到30,然后在3分钟内保持30不变,再从30逐渐减小;(2)BC=10; (3)a=30. a的值表示点P在CD边上运动时,△ABP的面积;对应训练:如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10 cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.五.综合训练1.如图,直线l1和l2的交点坐标为()A.(4,﹣2)B.(2,﹣4)C.(﹣4,2)D.(3,﹣1)2.如图,已知直线y=kx﹣3经过点M,求此直线与x轴,y轴的交点坐标.3.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.4.对于函数y=- x(k是常数,k≠0)的图象,下列说法不正确的是() A. 是一条直线B. 过点(,-k)C. 经过一、三象限或二、四象限D. y随着x增大而减小5.已知直线l1:y=﹣4x+5和直线l2:y=x﹣4,求两条直线l1和l2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为________.7.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A. a+b<0B. a﹣b>0C. ab>0D. <08.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,直线y= x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A. (﹣3,0)B. (﹣6,0)C. (﹣,0)D. (﹣,0)10.如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是9,则k的值为.11.如图,直线与轴、轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.12.“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额﹣成本)13.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的,但又不少于B种笔记本数量的,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?14.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.15.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是()16.如图,在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4,求m的值。
八年级数学下册第19章一次函数单元测试题1(含答案)
![八年级数学下册第19章一次函数单元测试题1(含答案)](https://img.taocdn.com/s3/m/fba928a177232f60dccca1b4.png)
八年级数学下册 一次函数一、选择题 (每题 4 分,共 28 分)1. 以下函数中: (1)y =πx , (2)y = 2x -1 ,(3)y = 1,(4)y =2- 3x ,(5)y = x 2- 1,是一次函 x数的有()A .4个B .3 个C .2 个D .1 个2. 若一次函数 y =kx +b 的图象经过第二、三、四象限 ,则 k , b 的取值范围是 ()A . k >0, b > 0B . k > 0,b < 0C .k < 0, b <0D .k < 0, b >03. 对于函数 y =- 3x + 1,以下结论正确的选项是 ()A . 它的图象必经过点 (-1, 3)B . 它的图象经过第一、二、三象限C . 当 x > 1时,y < 0D . y 的值随 x 值的增大而增大34. 若点 A(2, 4)在函数 y = kx 的图象上 ,则以下各点在此函数图象上的是 ()A . (1,2)B .(-2,-1)C . (- 1,2)D . (2, - 4)5. 一次函数 y 1= ax + b 与一次函数 y 2=- bx - a 在同一平面直角坐标系中的图象大概是()6.若函数y = 2x + 3 与y = 3x - 2b 的图象交 x 轴于同一点 ,则 b 的值为()A .-3B .- 3C .9D .- 9247.双胞胎兄弟小明和小亮在同一班念书 ,周五 16:00 时下学后 ,小明和同学走路回家途中没有逗留 ,小亮骑车回家 ,他们各自与学校的距离s(米 ) 与用去的时间 t(分 )的关系如图,19-Z - 2 所示,依据图象供给的相关信息 ,以下说法中错误的选项是 (A .兄弟俩的家离学校 1000 米B . B . 他们同时到家 ,用时 30 分C . 小明的速度为 50 米 /分D . 小亮中间逗留了一段时间后 ,再以 80 米/ 分的速度骑回家)8.函数 y =x + 1的自变量 x 的取值范围是 ________.x - 19. 如图 19- Z - 3,直线 y = ax + b 与直线 y = cx + d 订交于点 (2,1),则对于 x 的一元一次方程 ax + b =cx + d 的解为 ____________ .10.在平面直角坐标系xOy 中,直线y = 1x + 2 向上平移两个单位长度获取直线2m ,那么直线m 与 x 轴的交点坐标是________.11. 一次函数y = kx + b 的图象经过点A(0, 4)且与两坐标轴围成的三角形的面积为2,则这个一次函数的分析式为____________.12. 如图19- Z -4,在平面直角坐标系中,直线y =- 1x + 2 分别交2x 轴、 y 轴于 A ,B 两点 ,点 P(1,m)在△ AOB 内 (不包括界限 ),则 m 的取值范围是 ________.三、解答题 (共 52 分 )13. (8 分 )一次函数的图象经过(- 2,1)和 (1, 4)两点.(1)求这个一次函数的分析式;(2)当 x= 3 时,求 y 的值.14.(10 分) 已知一次函数y= 2x+4.(1)在如图 19- Z- 5 所示的平面直角坐标系中,画出函数的图象;(2)求图象与 x 轴的交点 A 的坐标,与 y 轴的交点 B 的坐标;(3)在 (2)的条件下,求△ AOB 的面积;(4)利用图象直接写出当 y< 0 时, x 的取值范围.15.(10 分 )如图 19-Z- 6,直线 l 1的函数分析式为y=- 3x+ 3,且 l 1与 x 轴交于点 D ,直线l2经过点 A,B,直线 l 1, l2交于点 C.(1) 求点 D 的坐标;(2) 求直线 l 2的函数分析式;(3) 求△ ADC 的面积.16.(10 分 )某大剧院举行专场音乐会,成人票每张 20 元,学生票每张 5 元,暑期时期,为了丰富广大师生的业余文化生活,影剧院拟订了两种优惠方案:方案 1:购置一张成人票赠予一张学生票;方案 2:按总价的 90%付款.某校有 4 名老师与若干名 (许多于 4 名 )学生听音乐会.(1) 设学生人数为x 名,付款总金额为y(元 ),分别成立两种优惠方案中y 与x 之间的函数关系式;(2)请计算并确立出最节俭花费的购票方案.17.(14 分) 国庆节时期,为了知足百姓的花费需求,某商铺计划用170000 元购进一批家电,这批家电的进价和售价以下表:类型彩电冰箱洗衣机进价 (元 /台 )200016001000售价 (元 /台 )230018001100若在现有资本同意的范围内,购置上表中三类家电共100 台,此中彩电台数是冰箱台数的 2 倍.设该商铺购置冰箱x 台.(1)商铺至多能够购置冰箱多少台?(2)购置冰箱多少台时,能使商铺销售完这批家电后获取的收益最大?最大收益为多少元?17. (12 分 )已知两直线l1: y=k1x+b1, l 2:y= k2x+ b2,若 l 1⊥l 2,则有 k1·k2=- 1.(1)应用:已知直线 y= 2x+1 与直线 y= kx- 1 垂直,求 k 的值;(2)已知直线经过点 A(2,3),且与直线 y=-1x+3 垂直,求该直线所对应的函数分析式.316. (10 分 )小丽的家和学校在一条笔挺的马路旁,某天小丽沿着这条马路去上学,她先从家步行到公交站台甲,再搭车到公交站台乙下车,最后步行到学校 (在整个过程中小丽步行的速度不变 ),图 3- G- 8 中的折线 ABCDE 表示小丽和学校之间的距离 y(米 )与她离家的时间 x(分 )之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当 8 ≤x≤ 15时,求 y 与 x 之间的函数分析式.详解详析1. B [分析 ] (1) y =πx, (2)y = 2x - 1,(3) y = 2- 3x 是一次函数 ,共 3 个,应选 B. 2. C [分析 ] 由于一次函数 y = kx + b 的图象经过第二、三、四象限 ,因此 k <0,b < 0.3. C4. A [ 分析 ] ∵点 A(2 ,4)在函数 y =kx 的图象上 , ∴ 4= 2k ,解得 k =2, ∴一次函数的 分析式为 y = 2x.A . ∵当 x = 1 时, y = 2, ∴此点在函数图象上 ,故 A 选项正确;B . ∵当 x =- 2 时, y =- 4 ≠- 1, ∴此点不在函数图象上 ,故 B 选项错误;C . ∵当 x =- 1 时, y =- 2 ≠2, ∴此点不在函数图象上 ,故 C 选项错误;D . ∵当 x = 2 时, y = 4 ≠- 4, ∴此点不在函数图象上 ,故 D 选项错误. 5. D6. D [分析 ] 在函数 y = 2x +3 中,当 y = 0 时, x =- 3,即交点坐标为 (- 3,0) .把 (-3, 0)代入函数 y =3x - 2b ,求得 b =- 9 22 . 2 47.C [分析 ] A .依据函数图象右上端点的纵坐标可知 ,兄弟俩的家离学校 1000 米,故 A 正确;B . 依据函数图象右上端点的横坐标可知,兄弟俩同时到家 ,用时 30 分钟,故 B 正确;C . 依据小明与学校的距离s( 米 )与用去的时间 t(分 )的函数关系可知,小明的速度为1000 ÷ =30100(米/ 分),故 C 错误;3D .依据折线的第三段的端点坐标可知 ,小亮用 5 分钟走了 400 米,速度为 400 ÷5=80(米/分),故 D 正确.8. x ≠1 [ 分析 ] 函数 y =x + 1的自变量 x 的取值范围是 x - 1≠0, 即 x ≠1. x - 19. x = 2 [ 分析 ] 察看图象 ,由直线 y = ax + b 与直线 y = cx +d 订交于点 (2, 1),即可知 对于 x 的一元一次方程 ax + b = cx + d 的解为直线 y = ax + b 与直线 y = cx +d 交点的横坐标 ,即 x =2.10. (- 8,0) [分析 ] ∵直线 y = 1x + 2 向上平移两个单位长度获取直线m ,∴直线 m 的21分析式为 y = x + 4,∵当 y = 0 时, 1x + 4= 0,解得 x =- 8,∴直线 m 与 x 轴的交点坐标是 (- 8,0).211. y = 4x + 4 或 y =- 4x + 4 [分析 ] ∵一次函数 y = kx + b 的图象经过点 A(0 , 4), ∴ b = 4,设图象与 x 轴交于点 B ,设 B(a , 0).∵三角形的面积为2,∴ 1×|a ×b =2, ∴ a = ±1,2∴点 B 的坐标是 (1 , 0)或 (- 1, 0), ∴k + b = 0 或- k + b = 0, ∴ k =- 4 或 4,∴这个一次函数的分析式为 y = 4x + 4 或 y =- 4x + 4. 12. 0< m <32[ 分析 ] 由于点 P(1, m) 在△ AOB 内(不包括界限 ),解得 0< m <3.213. 解: (1) 设这个一次函数的分析式为 y =kx + b , ∵该函数图象经过 ( -2, 1)和 (1, 4)两点,∴这个一次函数的分析式为y = x +3.(2) 当 x = 3 时, y = 3+ 3=6.14. 解: (1) 以下图:(2) 令 x = 0,则 y = 4;令 y = 0,则 x =- 2.∴ A(- 2, 0),B(0, 4).(3) ∵ A(- 2, 0), B(0, 4), ∴ OA = 2, OB = 4,∴△ AOB 的面积= 1OA ·OB =1× 2 ×4=.2 2(4) 由图象得 x 的取值范围为 x <- 2.15. 解: (1) 由 y =- 3x + 3,令 y = 0,得- 3x +3= 0, ∴x = 1, ∴ D(1, 0).(2) 设直线 l 2 的函数分析式为 y = kx + b ,由图象知: x = 4 时, y = 0;x = 3 时, y =- 3. 23∴直线 l 2 的函数分析式为 y = x - 6.∴C(2,-3).∵ AD = 3, ∴S △ ADC = 1× 3|-× 3|= 9.2 216. 解: (1) 按优惠方案 1 可得 y 1= 20 ×4+ (x -4) ×5=5x + 60(x ≥ 4); 按优惠方案 2 可得y 2= (5x + 20 × 4) × =+ 72(x ≥4).(2) y 1- y 2=- 12(x ≥ 4), ①当 y1- y 2=0 时,得 - 12=0,解得 x =24, ∴当学生人数为 24 时,两种优惠方案付款同样多; ②当 y 1- y 2<0 时,得- 12<0,解得 x <24,∴学生人数许多于 4 且少于 24 时,选方案一较划算; ③当 y1-y 2>0时,得 -12>0,解得x >24, ∴当学生人数多于 24 时,选方案二较划算.17. 解: (1) 依据题意 ,得2000 ×2x + 1600x + 1000 × (100-3x) ≤ 170000.12解得 x ≤26 .13∵ x 为正整数 ,∴ x 最大为 26.答:商铺至多能够购置冰箱26 台.(2) 设商铺销售完这批家电后获取的收益为y 元,则y = (2300 - 2000) ×2x +(1800 -1600)x + (1100- 1000) × (100-3x)= 500x +10000.∵ k = 500>0, ∴ y 随 x 的增大而增大.∵ x ≤2612且 x 为正整数 ,∴当 x = 26 时,y 取最大值 ,最大值为 500×26+10000= 23000.13答:当购置冰箱 26 台时 ,商铺销售完这批家电后获取的收益最大 ,最大收益为 23000元.。
八年级下第19章《一次函数》单元测试题及答案(2)
![八年级下第19章《一次函数》单元测试题及答案(2)](https://img.taocdn.com/s3/m/8dab502e2e3f5727a5e962fa.png)
新人教版八年级数学第19章《一次函数》单元测试(2)文档设计者: 设计时间 : 文档类型:文库精品文档,欢迎下载使用。
Word 精品文档,可以编辑修改,放心下载一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为()A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).x y1234-2-1CA-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?新人教版八年级数学第19章《一次函数》单元测试(2)答案3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.可以编辑的试卷(可以删除)。
(人教版)福州八年级数学下册第十九章《一次函数》经典练习(含答案解析)
![(人教版)福州八年级数学下册第十九章《一次函数》经典练习(含答案解析)](https://img.taocdn.com/s3/m/d7669e0bba0d4a7303763a80.png)
一、选择题1.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <A解析:A 【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可. 【详解】∵当x=-3时,kx+b=2, 且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-, 故选A. 【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.2.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( )A .B .C .D .C解析:C 【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决. 【详解】解:∵a +5656+250>,ab=5656=10-<,∴该函数的图象经过第一、三、四象限, 故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.3.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11C .15D .18A解析:A 【分析】根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决. 【详解】解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<,∵不等式组恰有4个整数解,∴123a<≤,∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限,∴60a ->, ∴6a <, ∴36a <<, 又∵a 为整数, ∴a=4或5,∴满足条件的所有整数a 的和为4+5=9, 故选:A . 【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.4.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<<B解析:B 【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解. 【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0), ∴k +b =0,则b =−k , ∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3), 则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间, 即:−3<−k <0, 解得:0<k <3, 故选:B . 【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.5.下列关于一次函数25y x =-+的说法,错误的是( ) A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限D解析:D 【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可. 【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意. 故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键. 6.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-A解析:A 【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案. 【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A 【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <D 解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确; D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小A解析:A 【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答. 【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+, ∴直线y kx b =+的解析式为2(2)123y x x =+-=+, ∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确; 当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误; ∵k=2>0,∴y 随x 的增大而增大,故D 错误, 故选:A . 【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.9.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( )A .3B .﹣5C .6D .不存在C解析:C 【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求. 【详解】 解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩,解得:21a b =⎧⎨=-⎩,∴2x ﹣1=11, 解得:x =6. 故选:C . 【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.10.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m > B .32m >-C .32m <D .32m <-B 解析:B【分析】由当x 1<x 2时y 1>y 2,利用一次函数的性质可得出-(2m+3)<0,解之即可得出m 的取值范围. 【详解】解:∵当x 1<x 2时,y 1>y 2, ∴-(2m+3)<0, 解得:m >-32. 故选:B . 【点睛】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键.二、填空题11.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以解析:②④⑤ 【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得dc->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限, ∴c >0,d >0, ∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1, ∴a +b =c +d ,故④正确;⑤∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且dc->-1,c >0, ∴c >d .故⑤正确. 故答案为:②④⑤. 【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.12.已知y +3与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为______________________.【分析】根据题意设把x =2时y =7代入求出k 的值即可求解【详解】解:根据题意可得把x =2时y =7代入可得解得∴故答案为:【点睛】本题考查正比例函数的定义根据题意求出k 的值是解题的关键 解析:53y x =-【分析】 根据题意设3y kx ,把x =2时,y =7代入求出k 的值,即可求解.【详解】解:根据题意可得3y kx ,把x =2时,y =7代入可得732k +=,解得5k =,∴53y x =-, 故答案为:53y x =-. 【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.13.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC的解析式为y=kx+b(k≠0)然后利用待定系数法求出直线AC的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴63012 bk b=⎧⎨+=⎩,解得156kb⎧=⎪⎨⎪=⎩.所以,直线AC的解析式为165y x=+(0≤x≤50),当x=50时,15065y=⨯+=16cm.答:该植物最高长16cm.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.14.如图,正方形ABCD,CEFG边在x轴的正半轴上,顶点A,E在直线12 y x =上,如果正方形ABCD边长是1,那么点F的坐标是______.【分析】令y =1可得x =2即点A (21)根据正方形的性质可得点E 的横坐标待入解析式即可求得点E 的纵坐标继而根据正方形的性质可得点F 的坐标【详解】∵正方形边在轴的正半轴上∴AB =BC =CD =AD =1C解析:93,22⎛⎫⎪⎝⎭【分析】令y =1可得x =2,即点A (2,1)根据正方形的性质可得点E 的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标. 【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴, ∵顶点A ,E 在直线12y x = 令y =1,则x =2 ∴点A (2,1) ∴点E 的横坐标为3 将x =3代入直线12y x =,得32y =∴点E 、F 的纵坐标是32即32CE FG EF ===∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.15.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.【分析】求出两直线交点的横坐标m 代入求出b 的取值范围即可【详解】解:根据题意得解得∴∵∴∴故答案为:【点睛】此题主要考查了直线交点问题构造方程求交点是解答本题的关键解析:111b -≤<【分析】求出两直线交点的横坐标m ,代入13m -≤<,求出b 的取值范围即可.【详解】解:根据题意得,22x x b +=-+, 解得,23b x -=, ∴23b m -= ∵13m -≤< ∴2133b --≤< ∴111b -≤<故答案为:111b -≤<【点睛】此题主要考查了直线交点问题,构造方程求交点是解答本题的关键.16.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.(00)或(22)或(-2-2)【分析】作出图形分别以ABP 为直角顶点三种情况讨论利用勾股定理即可求解【详解】令则令则∴A(0)B(4)∵点P 在一次函数的图象上∴设点的坐标为(xx)==①当∠ABP解析:(0,0)或(2,2)或(-2,-2)【分析】作出图形,分别以A 、B 、P 为直角顶点三种情况讨论,利用勾股定理即可求解.【详解】令0x =,则4y =,令0y =,则4x =-,∴A(4-,0),B(0,4),∵点P 在一次函数 y x =的图象上,∴设点P 的坐标为(x ,x),2AB =224432+=,()222242816PB x x x x =+-=-+,2PA =()22242816x x x x ++=++, ①当∠ABP=90︒时,根据勾股定理得:222AB PB PA +=,即223228162816x x x x +-+=++, 解得:2x =∴点P 的坐标为(2,2);②当∠BAP=90︒时,根据勾股定理得:222AB PA PB +=,即223228162816x x x x +++=-+, 解得:2x =-∴点P 的坐标为(-2,-2);③当∠APB=90︒时,此时点P 与点O 重合,∴点P的坐标为(0,0);综上,点P的坐标为(0,0)或(2,2)或(-2,-2).【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,采用了分类讨论的思想,与方程相结合是解决问题的关键.17.如图,直线y=﹣43x+8与x轴、y轴分别交于点A、B,∠BAO的角平分线与y轴交于点M,则OM的长为_____.3【分析】过点M作MH⊥AB于H利用AAS可证△AHM≌△AOM则由全等三角形的性质可得AH=AOHM=OM根据一次函数的解析式可分别求出直线y=﹣x+8与两坐标轴的交点坐标并得OAOB的长由勾股定解析:3【分析】过点M作MH⊥AB于H,利用AAS可证△AHM≌△AOM,则由全等三角形的性质可得AH=AO,HM=OM.根据一次函数的解析式可分别求出直线y=﹣43x+8与两坐标轴的交点坐标,并得OA、OB的长,由勾股定理可求AB.最后在Rt△BMH中利用勾股定理即可求解OM的长.【详解】解:如图,过点M作MH⊥AB于H,∴∠BHM=∠AHM=90°=∠AOM.∵AM平分∠BOA,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB =2268+=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.18.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k x y k x b =⎧⎨=+⎩的解是___________. 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:∵一次函数y1=k1x 与y=k2x+b 的图象的交点坐标为(12)∴二元一次方程组的解为故答案是:【点睛】本题考查了一次函解析:12x y =⎧⎨=⎩【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y 1=k 1x 与y=k 2x+b 的图象的交点坐标为(1,2),∴二元一次方程组12y k x y k x b =⎧⎨=+⎩的解为12x y =⎧⎨=⎩. 故答案是:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.19.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.20.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 三、解答题21.要从甲、乙两仓库向A 、B 两工地运送水泥.已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需要70吨水泥,B 工地需要110吨水泥.两仓库到A 、B 两工地的路程和每吨每千米的运费如下表:B 地水泥__________吨;乙仓库运往A 地水泥________吨,乙仓库运往B 地水泥_______吨.(2)试用x 的代数式表示总运费.(3)总运费能达到3695元吗?若能,求出此时甲仓库应运往A 地多少吨水泥;若不能,说明理由.解析:(1)100x -,70x -,10x +;(2)33920y x =-+;(3)能,75吨【分析】(1)用甲仓库一共可运出的100吨水泥减去x 得到甲仓库运往B 地的水泥吨数,用A 工地需要的水泥减去x 得到乙仓库运往A 工地的水泥吨数,用同样的方法得到乙仓库运往B 地的水泥吨数;(2)设总运费是y 元,根据表格中的距离和运费列出总费用的表达式;(3)令(2)中的3695y =,解出x 的值即可.【详解】解:(1)设甲仓库运往A 地水泥x 吨,则甲仓库运往B 地水泥()100x -吨;乙仓库运往A 地水泥()70x -吨,乙仓库运往B 地水泥()110100x --⎡⎤⎣⎦吨故答案是:100x -,70x -,10x +;(2)设总运费是y 元,()()()1.220125100 1.215700.82010y x x x x =⨯+⨯-+⨯-+⨯+,整理得:33920y x =-+;(3)令3695y =,则339203695x -+=,解得75x =,答:可以,此时甲仓库应运往A 地75吨水泥.【点睛】本题考查一次函数的实际应用,解题的关键是根据题意列出函数关系式进行求解. 22.设一次函数y 1=kx ﹣2k (k 是常数,且k≠0).(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围. (3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.解析:(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.23.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )生长年数n /年1 2 3 4 5 青甘杨树苗高度/cm h 125 160 195 230(1)第5年树苗可能达到的高度为_______cm .(2)请用含n 的代数式表示高度h .(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度.解析:(1)265;(2)3590h n =+;(3)生长满11年的青甘杨可能达到的高度为475cm .【分析】(1)根据题意和表格中的数据,可以得到第5年树苗可能达到的高度;(2)根据题意,可以用含n 的代数式表示高度h ;(3)将n=11代入(2)中的关系式,即可得到生长了11年后的青甘杨可能达到的高度.【详解】解:(1)由表格中的数据可得,树苗每年长高160-125=35(cm ),∴第5年树苗可能达到的高度为230+35=265(cm ),故答案为:265;(2)由题意可得,h=90+35n ,即用含n 的代数式表示高度h 是h=35n+90;(3)当n=11时,h=35×11+90=475(cm ),答:生长了11年后的青甘杨可能达到的高度是475cm .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值. 24.如图,平面直角坐标系中,直线2y x m =+与轴交于点A ,与直线5y x =-+交于点()4,B n ,直线5y x =-+与x 轴、y 轴分别交于点M 、N ,P 为直线5y x =-+上一点.(1)求m ,n 的值;(2)求ONM ∠的度数;(3)求线段AP 的最小值,并求此时点P 的坐标.解析:(1)1n =,7m =-;(2)45ONM ∠=︒;(3)62,(6,1)P -.【分析】(1)首先把点B (4,n )代入直线y=-x+5得出n 的值,再进一步代入直线y=2x+m 求得m 的值即可;(2)根据坐标特点求()5,0M , ()0,5N ,从而得到ON OM =,得到OMN 为等腰直角三角形,从而得到45ONM ∠=︒.(3)通过做辅助线,过点A 作直线5y x =-+的垂线,垂足为P ,过点P 作PQ ⊥y 轴时, 此时线段AP 最短,再进一步求解即可.【详解】解:(1)∵点(4,)B n 在直线上5y x =-+上,∴1n =,即(4,1)B ,∵点(4,1)B 在直线上2y x m =+上,∴7m =-;(2)∵点N 、M 在直线上5y x =-+上,令0y =,得5x =,即()5,0M ,令0x =,得5y =,即()0,5N ,∴ON OM =,∴OMN 为等腰直角三角形,∴45ONM ∠=︒. (3)过点A 作直线5y x =-+的垂线,垂足为P ,过点P 作PQ ⊥y 轴.此时线段AP 最短,∴90APN ∠=︒,∵直线5y x =-+与y 轴交于点(0,5)N ,直线27y x =-与y 轴交于点7(0,)A -,∴12AN =,∵45ANP ∠=︒,∴6AQ QN PQ ===,∴651OQ QN ON =-=-=,∴(6,1)P -.∴AP 的最小值=62 .【点睛】本题考查了一次函数图象上点的坐标特征与垂线段最短的性质,结合图形,选择适当的方法解决问题.25.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)解析:(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩. (3)由②得,025x ≤≤时,4200y x =-+,y=,2535<≤时,100x如图所示,由图象可知,配货中心建在CD段时,这辆货车每天行驶的路程最短为100km.【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P到A,B,C,D距离是解题关键.26.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y随x的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.解析:(1)3600,20;(2)休息前65米/分,休息后55米/分(3)1100米【分析】根据图象获取信息:(1)甜甜到达山顶用时80分钟,中途休息了20分钟,行程为3600米;(2)休息前30分钟行走1950米,休息后30分钟行走(3600﹣1950)米.(3)求慧慧到达缆车终点的时间,计算甜甜行走路程,求离缆车终点的路程.【详解】解:(1)根据图象知:甜甜行走的总路程是3600米,她途中休息了20分钟.故答案为 3600,20;(2)甜甜休息前的速度为:1950=6530(米/分),甜甜休息后的速度为:360019501650=553030-=(米/分);(3)慧慧所用时间:360018002=10 180180=(分),甜甜比慧慧迟到80﹣50﹣10=20(分),∴慧慧到达终点时,甜甜离缆车终点的路程为20551100⨯=米【点睛】此题考查函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大.27.如图,销售某产品,1l表示一天的销售收入1y(万元)与销售量x(件)的关系2l表示一天的销售成本2y(万元)与销售量x的关系.(1)1y与x的函数关系式____________.2y与x的函数关系式____________.(2)每天的销售量达到多少件时,每天的利润达到18万元?解析:(1)y1=2x,y2=0.5x+6;(2)16件【分析】(1)根据题意和函数图象中的数据,可以得到y1与x的函数关系式和y2与x的函数关系式;(2)根据(1)中函数关系式,令2x-(0.5x+6)=18,求出x的值,即可解答本题.【详解】解:(1)设y1与x的函数关系式y1=kx,∵点(4,8)在该函数图象上,∴8=4k,得k=2,即y1与x的函数关系式y1=2x,设y2与x的函数关系式y2=ax+b,∵点(0,6)、(4,8)在该函数图象上,∴648 ba b=⎧⎨+=⎩,解得0.56ab=⎧⎨=⎩,即y2与x的函数关系式y2=0.5x+6,故答案为:y1=2x,y2=0.5x+6;(2)令2x-(0.5x+6)=18,解得x=16,答:每天的销售量达到16件时,每天的利润达到18万元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.如图,直线EF与x轴、y轴分别交于点E(-8,0),F(0,6).(1)求直线EF的函数表达式;(2)若点A的坐标为(-6,0),点P(m,n )在线段EF上(不与点E重合)①求△OPA的面积S与m的函数表达式;②求当△OPA的面积为9时,点P的坐标;③求当△OPA的面积与△OPF的面积相等时,点P的坐标.参考答案解析:(1)y=34x+6 ;(2)①94S=m+18;②P(-4,3);③P(247-,247)【分析】(1)利用待定系数将E(-8,0),F(0,6)分别代入y=kx+b即可求直线EF的解析式;(2)①过P点作PH垂直x轴与D点,根据三角形的面积公式S△OPA=12OA PH,用m表示出PH代入即可求解;②由题(2)①可得:9=+184S m,将S=9代入解得m,将m代入直线解析式即可求得n,进而求解;③过点P作PQ⊥OF于Q,则PQ=﹣m,再根据题意列出关于m的一元一次方程,解方程求得m 的值,将m 代入解析式即可求得n 的值,进而求解【详解】(1)设直线EF 的解析式为:y=kx+b把E(-8,0),F(0,6)带入可得8k b 0b 6-+=⎧⎨=⎩; 解得34k =, 6b = 所以y=34x+6 ; (2) ①过P 点作PH 垂直x 轴与D 点∵为P (m ,n )在直线EF 上∴n=34m+6 ∴PH=34m+6 ∴11366224S OA PH m ⎛⎫==⨯⨯+ ⎪⎝⎭即:9=+184S m ; ②当△OPA 的面积为S=9时,即94m+18=9; 解得m=﹣4; ∵n=34m+6; ∴n=3,P (﹣4,3);③如图,过点P 作PQ ⊥OF 于Q ,则PQ=-m∵△OPA 的面积与△OPF 的面积相等。
人教版数学八年级下《第19章一次函数》单元检测题(有答案)
![人教版数学八年级下《第19章一次函数》单元检测题(有答案)](https://img.taocdn.com/s3/m/b3793b1eb307e87101f696b1.png)
《一次函数》单元检测题一、选择题(每小题只有一个正确答案)1.若函数y=(k+1)x+k 2-1是正比例函数,则k 的值为()A. 0B. ﹣1C. ±1D. 12.直角三角形中一个锐角的度数y 与另一个锐角的度数x 的函数解析式为( )A. y =180°-x(0°<x<90°)B. y=90°-x(0°<x<90°)C. y =180°-x(0°≤x ≤90°)D. y=90°-x(0°≤x ≤90°)3.甲、乙两人进行慢跑练习,慢跑路程y (单位:m)与所用时间t (单位:min)之间的关系如图所示,下列说法错误的是()A. 前2 min,乙的平均速度比甲快B. 甲、乙两人8 min 各跑了800 mC. 5 min 时两人都跑了500 mD. 甲跑完800 m 的平均速度为100 m/min4.一次函数y =ax +b 交x 轴于点(-5,0),则关于x 的方程ax +b =0的解是( )A. x =5B. x =-5C. x =0D. 无法求解5.要得到函数23y x =+的图象,只需将函数2y x =的图象()A. 向左平移3个单位B. 向右平移3个单位C. 向上平移3个单位D. 向下平移3个单位6.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是()A. B. C. D.7.某班进行乒乓球比赛,班主任老师为鼓励同学们积极参与,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则该老师购买笔记本的方案共有( )A.3种B.4种C.5种D.6种8.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A. m>-2B. m<1C. m<-2D. m>19.如图,直线y=﹣x+c与直线y=ax+b的交点坐标为(3,﹣1),关于x的不等式﹣x+c≥ax+b 的解集为()A. x≥﹣1B. x≤﹣1C. x≥3D. x≤3→→→10.在矩形ABCD中,1AB=,2AD=,M是CD的中点,点P在矩形的边上沿A B C M 运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.二、填空题11.函数y=x的取值范围是__________.12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中,_____随____变化而变化,其中自变量是___,因变量是___.13.已知点P 的坐标是()23,,则点P 到x 轴的距离是______.14.若点P (a ,b )在一次函数y = -2x +1的图像上,则2a +b +1=.15.设直线1:1l y kx k =+-和直线()2:1l y k x k =++(k 为正整数)及x 轴围成的三角形面积为k S ,则122017S S S +++的值为__________.三、解答题 16.已知一次函数y=(2m+2)x+2+m ,y 随x 增大而减小,且其图像与y 轴交点在x 轴上方,求m 的取值范围。
人教版八年级下册数学《第19章一次函数》单元检测卷含答案(数学试卷新课标人教版).docx
![人教版八年级下册数学《第19章一次函数》单元检测卷含答案(数学试卷新课标人教版).docx](https://img.taocdn.com/s3/m/c004a6af6bd97f192279e9c7.png)
第 19 章一次函数单元检测卷姓名: __________ 班级: __________题号一二三总分评分一、选择题(共11 题;共 33 分)1.下列函数中为一次函数的是()A. B. C.(D.、是常数)2.下列函数中,“y是 x 的一次函数”的是()﹣ 12C. y=1D. ﹣y=1xA. y=2xB. y=x3.一次函数 y=kx+b 的图象经过第一、三、四象限,则()A. k>0 ,b> 0B. >k 0, b< 0C. <k 0,b> 0D. <k 0, b< 04.下列函数( 1)y= πx;( 2)y=2x﹣ 1;(3)y=;( 4)y=22﹣ x;( 5)y=x2﹣ 1 中,一次函数的个数是()A. 4 个B. 个3C. 个2D. 个15.如图 1,在矩形 MNPQ 中,动点 R 从点 N 出发,沿着 N→ P→ Q→M方向运动至点 M 处停止,设点R 运动的路程为 x,△ MNR 的面积为 y,如果 y 关于 x 的函数图象如图 2所示,则下列说法不正确的是()A. 当 x=2 时, y=5B. 矩形 MNPQ 的面积是20C.当 x=6 时, y=10D. 当 y=时, x=106.对于函数,下列说法不正确的是()A. 其图象经过点(0,0 )B其.图象经过点(﹣1,)C. 其图象经过第二、四象限D. 随y x 的增大而增大7.如图,把直线y=-2x 向上平移后得到直线AB,直线 AB 经过点( m,n ),且 2m+n=6,则直线AB 的解析式是()A. y=-2x-3B. y=-2x-6C. y=-2x+3D. y=-2x+68.结合正比例函数y=4x 的图象回答:当x>1 时, y 的取值范围是()A. y=1B1.≤y< 4 C. y=4>D. 4y9. “五一节”期间,王老师一家自驾游去了离家170 千米的某地,下面是他们家的距离y(千米)与汽车行驶时间 x(小时)之间的函数图象,当他们离目的地还有20 千米时,汽车一共行驶的时间是()A. 2 小时B. 2.2小时C. 2.25小时D. 2.4小时10.函数 y= 中,自变量x 的取值范围是()A. x> 2Bx. ≥﹣3 C.>x﹣ 3Dx. ≥211.把直线 y=﹣ x+l 沿 y 轴向上平移一个单位,得到新直线的关系式是()A. y=﹣xB. y=﹣x+2C. y=﹣ x﹣ 2D. y=﹣ 2x二、填空题(共11 题;共 33 分)12.甲、乙两名大学生去距学校36 千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20 分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5 千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距 y 甲(千米),乙与学校相离y 乙(千米),甲离开学校的时间为t (分钟). y 甲、y 乙与 x 之间的函数图象如图所示,则乙返回到学校时,甲与学校相距________千米.13.已知正比例函数y=mx 的图象经过( 3 ,4),则它一定经过________ 象限.14.如图,已知一次函数y=kx+b,观察图象回答下列问题:x________ 时, kx+b< 0.15.已知一次函数y=2x+4 的图象经过点(m, 8),则 m=________16.函数中,自变量x 的取值范围是________。
八年级下第19章《一次函数》单元测试题及答案(1)(精校版)
![八年级下第19章《一次函数》单元测试题及答案(1)(精校版)](https://img.taocdn.com/s3/m/f571b2bd0c22590102029dea.png)
新人教版八年级数学第19章《一次函数》单元测试(1)时间:10分钟 满分:120分一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( )A.x >2B.x <2C.x ≠2D.x ≠-2 2.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤15.若一次函数y=(1-2m)x+m 的图象经过点A(x 1,y 1)和点B(x 2,y2),当x 1<x 2时,y 1<y2,且与y 轴相交于正半轴,则 m 的取值范围是( )A.m >0B.m <21C.0<m <21D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6± B.4C. 6±或4 D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )C8.一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( ) A.-2<y <0 B. -4<y <0 C. y <-2 D. y <-4 9.将直线y=-2x 向右平移2个单位所得直线的解析式为( )A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与x 之间关系的函数图象是( )二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为 。
(人教版)福州八年级数学下册第十九章《一次函数》经典测试卷(答案解析)
![(人教版)福州八年级数学下册第十九章《一次函数》经典测试卷(答案解析)](https://img.taocdn.com/s3/m/4a1a1a135ef7ba0d4b733b80.png)
一、选择题1.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.25B.35C.25D.35D解析:D【分析】利用一次函数与坐标轴的交点求出△AOB的两条直角边,并运用勾股定理求出AB.根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB2222+=+=.OA OB125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD =AD +OA =5+1;如图2所示,当△ACD ≌△BAO 时,∠ADC =∠AOB =90°,AD =OB =2,∴OD =OA +AD =1+2=3. 综上所述,OD 的长为351. 故选:D . 【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.2.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( ) A .22y x =-- B .22y x =-+C .27y x =--D .27y x =-+C解析:C 【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式. 【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7, ∴c=-7,∴直线l 的解析式为y=-2x-7, 故选C . 【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.3.甲,乙两车分别从A , B 两地同时出发,相向而行.乙车出发2h 后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x (h ), 甲,乙两车到B 地的距离分别为y 1(km ), y 2(km ), y 1, y 2关于x 的函数图象如图.下列结论:①甲车的速度是45a km /h ;②乙车休息了0.5h ;③两车相距a km 时,甲车行驶了53h .正确的是( )A .①②B .①③C .②③D .①②③A解析:A 【分析】根据速度=路程÷时间即可算出甲的速度,由此可判断①,甲乙相遇时甲走路程为2akm ,计算出时间可判断②,分甲乙相遇前和相遇后两个时间段考虑甲乙相距akm 时的时间,可判断③. 【详解】解:由函数图象可知,甲5小时到达,速度为4/5akm h ,故①正确;甲与乙相遇时,时间为42 2.545a aha -=,所以乙休息了 2.520.5h -=,②正确;乙的速度为:2/2aakm h =, 在2小时时,甲乙相距4242255a a a akm --⋅=, ∴在2小时前,若两车相距a km 时,445a a a a t t -=⋅+⋅,解得53t h =, 当两车相遇后,即2.5小时后,若两车相距a km 时,44(0.5)5aa a a t t +=⋅-+⋅, 解得5518t h =, ∴两车相距a km 时,甲车行驶了53h 或5518h ,故③错误; 故选:A . 【点睛】本题考查一次函数的应用.解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C.D.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.【详解】∵A表示-2,B表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q的速度是2个单位/s,∴Q运动到原点的时间为4÷2=2(s),∴当0<x≤2时,点P表示的数为-2-x,点Q表示的数为4-2x,∴PQ=4-2x-(-2-x)=6-x,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q从返回运动,点P表示的数为-2-x,点Q表示的数为2x-4,∴PQ=2x-4-(-2-x)=3x-2,∴当x=4时,y=12-2=10,只有B图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ的长度是解题的关键.5.已知56b=y=(a+b)x+ab的图象大致为()a=56A .B .C .D .C解析:C 【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决. 【详解】解:∵a +5656+250>,ab=5656=10-<,∴该函数的图象经过第一、三、四象限, 故选:C . 【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<<B解析:B 【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解. 【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0), ∴k +b =0,则b =−k , ∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3), 则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间, 即:−3<−k <0, 解得:0<k <3, 故选:B . 【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.如图,边长为2的正方形ABCD 中,点P 从点A 出发沿路线A B C D →→→匀速运动至点D 停止,已知点P 的速度为1,运动时间为t ,以P .A .B 为项点的三角形面积为S ,则S 与t 之间的函数图象可能是( )A .B .C .D .C解析:C 【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可. 【详解】解:当0≤t≤2时,P 在AB 上运动,P .A .B 为项点的三角形AB 边上的高为0,即面积s=0;当2<t≤4时,P 在BC 上运动,P .A .B 为项点的三角形AB 边上的高为逐渐增大,即面积s 逐渐增大;当4<t≤6时,P 在DC 上运动,P .A .B 为项点的三角形AB 边上的高恒为2,即面积s 为1222⨯⨯=2; 综上可以发现C 满足题意. 故答案为C . 【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.8.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( ) A .2是常量,C 、π、r 是变量 B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量 D .2是常量,C 、r 是变量B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量. 【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量, 故选:B . 【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.9.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是()A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >A解析:A 【分析】根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决. 【详解】 解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <, 故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.10.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表:A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm参考答案B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=10+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.二、填空题11.已知关于x,y的二元一次方程组1,mx yy nx-=⎧⎨=⎩的解是1,2xy=⎧⎨=⎩则直线1y mx=-与直线y nx=的交点坐标是______;(12)【分析】根据二元一次方程组的解对应的x和y 值就是对应函数交点的横纵坐标即可得解【详解】解:由可得它的解为故直线与直线的交点坐标是(12)故答案为:(12)【点睛】本题考查一次函数与二元一次方解析:(1,2) 【分析】根据二元一次方程组的解对应的x 和y 值,就是对应函数交点的横纵坐标即可得解. 【详解】解:由1mx y y nx -=⎧⎨=⎩可得1y mx y nx =-⎧⎨=⎩,它的解为12x y =⎧⎨=⎩,故直线1y mx =-与直线y nx =的交点坐标是(1,2),故答案为:(1,2). 【点睛】本题考查一次函数与二元一次方程组.理解二元一次方程组与一次函数的关系是解题关键.12.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时此时两车间距离减少求得乙车的速度为由经过时两车相遇求得甲车的速度再求得甲车到达B 地时所用时间即可求解【详解】甲车开车半小时后 解析:80【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时1h ,此时两车间距离减少80km ,求得乙车的速度为80/km h ,由经过3h 时,两车相遇,求得甲车的速度,再求得甲车到达B 地时,所用时间,即可求解. 【详解】甲车开车半小时后返回再到达出发点A 地共用时1h , 而此时两车间距离减少48040080-=(km ), 则乙车的速度为80/km h ,3h 时,两车距离为0,即两车相遇,()31803480v -+⨯=甲,解得:120v =甲(/km h ),∴甲车到达B 地时,共用时48015120t =+=(h ), 此时,乙车行驶了580400⨯=(km ),则乙车离A 地的路程为48040080-=(km ),故答案为:80.【点睛】本题考查了函数图象的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x 和y 表示的数量关系.13.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______. 或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =, 结合AMN 的面积不小于12, ∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.15.函数y =的定义域是______.x <1【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x >0解得x <1故答案是:x <1【点睛】本题考查了自变量的取值范围使函数解析式有意义列式求解即可是基础题解析:x <1.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x >0,解得x <1.故答案是:x <1.【点睛】本题考查了自变量的取值范围,使函数解析式有意义列式求解即可,是基础题,比较简单.16.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n 解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n的纵坐标为2n-1是解题的关键.17.某一列动车从A地匀速开往B地,一列普通列车从B地匀速开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图像进行探究,图中t的值是__.4【分析】根据题意和函数图象中的数据:AB两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB两地相距9解析:4【分析】根据题意和函数图象中的数据:AB两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB两地相距900千米,两车出发后3小时相遇,普通列车的速度是:90012=75千米/小时,动车从A地到达B地的时间是:900÷(9003-75)=4(小时),故填:4.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.如图,经过点B(﹣4,0)的直线y=kx+b与直线y=mx相交于点A(﹣2,﹣4),则关于x不等式mx<kx+b<0的解集为______.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.19.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______.或【分析】先确定正比例函数的解析式利用分类思想用点M 的坐标表示△ABM 的面积求解即可【详解】∵正比例函数的图像经过点∴k=∴y=x ∵=<10∴点M 不可能在线段AO 上∴当点M 在点A 的左上时设M (-2a解析:25,33⎛⎫-⎪ ⎭⎝或1435,33⎛⎫-⎪ ⎭⎝. 【分析】先确定正比例函数的解析式,利用分类思想,用点M 的坐标表示△ABM 的面积求解即可.【详解】∵正比例函数y kx =的图像经过点)(2,5A -,∴k= 52-, ∴y=52-x ,∵12AOB A S OB y =⋅=152<10, ∴点M 不可能在线段AO 上,∴当点M 在点A 的左上时,设M (-2a,5a ), ∵ABM MOB AOB S S S =-,∴10=152a -152, ∴a=73, ∴M (143-,353); ∴当点M 在点O 的右下时,设M (2a,-5a ),∵ABM MOB AOB S S S =+,∴10=152a +152, ∴a=13, ∴M (23,53-); 综上所述,符合题意的M 的坐标为(23,53-)或(143-,353). 故填(23,53-)或(143-,353). 【点睛】 本题考查了正比例函数的解析式和性质,三角形面积的表示法,数学的分类思想,合理设点M 的坐标,并用点M 的坐标表示已知三角形的面积是解题的关键.20.如图,正方形ABCD 的边长为4,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若AF 平分DFE ∠,则k 的值为_________.1或3【分析】分两种情况:①当点F 在DC 之间时作出辅助线求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值【详解】解:①如图作AG ⊥EF 交EF 于点G 连接AE ∵AF 平分∠D解析:1或3.【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE ,∵AF 平分∠DFE ,∴DA=AG=4,在RT △ADF 和RT △AGF 中,AD AG AF AF =⎧⎨=⎩, ∴RT △ADF ≌RT △AGF (HL ),∴DF=FG ,∵点E 是BC 边的中点,∴BE=CE=2,∴∴,∴在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+2)2=(4-DF )2+22,解得DF=43, ∴点F (43,4), 把点F 的坐标代入y=kx 得:4=43k ,解得k=3; ②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE ,∴F (4,4),把点F 的坐标代入y=kx 得:4=4k ,解得k=1.故答案为:1或3.【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k .三、解答题21.如图,直线22y x =-+与x 轴、y 轴分别交于点A 、B .(1)求A 、B 两点的坐标;(2)在x 轴上有一点P ,使得PAB △的面积为5,求P 点的坐标. 解析:(1)(1,0)A ,(0,2)B ;(2)(6,0)P 或(4,0)-.【分析】(1)分别令0y =和0x =即可;(2)设P 的坐标(,0)a ,根据题目条件列出等量关系即可求出a ;【详解】解:(1)把0y =代入,220x -+=,1x =, (1,0)A ∴,把0x =代入,2y =,(0,2)B ∴;(2)设P 的坐标(,0)a , 152PA OB ⨯=, 5PA =,|1|5a -=,6a =或者4-,(6,0)P ∴或者(4,0)-;【点睛】本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.22.如图,已知直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2). (1)求直线AB 的函数表达式.(2)已知直线AB 上一点C 在第一象限,且点C 的坐标为(a ,2),求a 的值及△BOC 的面积.解析:(1)y =2x ﹣2;(2)a =2,S △BOC =2.【分析】(1)设函数的关系式,把点A 、B 的坐标代入,即可求出待定系数,确定函数关系式, (2)把C (a ,2)代入y=2x-2,即可求得a 的值,然后根据三角形面积公式△BOC 的面积.【详解】解:(1)设一次函数的关系式为y=kx+b ,把A (1,0),B (0,-2)代入得, 02kx b b +=⎧⎨=-⎩,解得,22k b =⎧⎨=-⎩ ∴直线AB 的表达式为y=2x-2;;(2)∵点C (a ,2)在直线y =2x ﹣2上,∴2=2a ﹣2,∴a =2,∴C (2,2),∴S △BOC =1222⨯⨯=2. 【点睛】 本题考查待定系数法求一次函数的关系式,一次函数图象上点的坐标特征以及三角形的面积,熟练掌握待定系数法是解题的关键.23.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?解析:(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.24.平面直角坐标系中,直线24y x =+与x 轴、y 轴分别交于点B 、A .(1)直接写出直线AB 关于x 轴对称的直线BC 的解析式______.(2)如图,直线BC 与直线y x =-交于E 点,点P 为y 轴上一点,PE PB =,求P 点坐标.(3)如图,点P 为y 轴上一点,OEB PEA ∠=∠,直线EP 与直线AB 交于点M ,求M 点的坐标.解析:(1)24y x =--;(2)70,2⎛⎫ ⎪⎝⎭;(3)420,77⎛⎫-⎪⎝⎭或428,55⎛⎫ ⎪⎝⎭. 【分析】 (1)由轴对称的性质得出点C 的坐标,则可得出答案;(2)求出点E 的坐标为()44-,,设,4OP a AP a ==-,由勾股定理得出()224164a a +=+-,解得72a =,则可得答案; (3)分两种情况:点点P 在点A 的下方或点P 在点A 的上方,求出直线EP 的解析式,解方程组可求出答案.【详解】解:(1)直线24y x =+与x 轴、y 轴分别交于点B 、A ∴()0,4A ,()2,0B -,直线AB 与直线BC 关于x 轴对称,∴C 点坐标为()0,4-,设直线BC 的解析式为y kx b =+,∴402b k b -=⎧⎨=-+⎩, 解得:24k b =-⎧⎨=-⎩∴直线BC 的解析式为:24y x =--.(2)()44E -,AE AO ∴⊥设,4OP a AP a ==-在Rt BOP △和Rt EAP 中,224BP a =+,()22164PE a =+- PE PB =()224164a a ∴+=+- 解得:72a = 702P ⎛⎫∴ ⎪⎝⎭, (3)①如图,当点P 在点A 的下方,,45OEB PEA AEO ∠=∠∠=︒45PEB ∴∠=︒过点B 作BN BE ⊥交直线EP 于点N,过点N 作NQ OB ⊥于点Q ,过点E 作EH OB ⊥于点HEBN ∴△为等腰直角三角形EB BN ∴=90BEH EBH ∠+∠=︒,90EBH NBQ ∠+∠=︒BEH NBQ ∴∠=∠又90EHB BQN ∠=∠=︒()EHB BQN AAS ∴≅△△2NQ BH ∴==,4BQ EH ==,()2,2N ∴设直线EN 的解析式为y kx b =+由4422k b k b -+=⎧⎨+=⎩ 解得:1383k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线EN 的解析式为1833y x =-+,83OP = 84433PA ∴=-= 由183324y x y x ⎧=-+⎪⎨⎪=+⎩ 解得:47207x y ⎧=-⎪⎪⎨⎪=⎪⎩即420,77M ⎛⎫- ⎪⎝⎭②P 点在A 点的上方,由①知,43PA = 416433OP OA PA ∴=+=+= 设直线EP 的解析式为163y mx =+ ()44E -,16443m ∴-+= 解得:13m = ∴直线EP 的解析式为11633y x =+ 由1163324y x y x ⎧=+⎪⎨⎪=+⎩ 解得:45285x y ⎧=⎪⎪⎨⎪=⎪⎩ 428,55M ⎛⎫∴ ⎪⎝⎭综上所述:M 坐标为420,77⎛⎫- ⎪⎝⎭或428,55⎛⎫ ⎪⎝⎭. 【点睛】本题考查了一次函数的综合应用,考查了轴对称的性质、函数图象与坐标的交点、待定系数法、全等三角形的判定及性质、等腰三角形的判定及性质、勾股定理等知识,熟练掌握待定系数法是解题的关键.25.一次函数()0y kx b k =+≠满足,当112x -≤≤,121y -≤≤,求这条直线的函数解析式.解析:1y x =-或y x =-.【分析】分点()1,2--,()2,1或()1,1-,()2,2-在直线上两种情形,分别解答即可.【详解】解:∵112x -≤≤时,121y -≤≤,∴点()1,2--,()2,1或()1,1-,()2,2-在直线上.∵点()11,x y 在直线y kx b =+上,∴221k b k b -+=-⎧⎨+=⎩或122k b k b -+=⎧⎨+=-⎩, ∴11k b =⎧⎨=-⎩或10k b =-⎧⎨=⎩ ∴1y x =-或y x =-.【点睛】本题主要考查运用待定系数法求一次函数解析式,掌握分类讨论思想是解答本题的关键. 26.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.解析:(1)甲种商品购进80件,乙种商品购进120件;(2)共有4种购货方案,甲种商品购进81件、乙种商品购进119件时,获利最大【分析】(1)设甲种商品购进x 件,乙种商品购进y 件,根据该商品购进两种商品共200件且销售完这批商品后能获利1680元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m 件,则乙种商品购进(200﹣m )件,根据“该商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为非负整数即可得出购货方案的数量,设销售完这批商品后获利w 元,根据总利润=每件的利润×销售数量(购进数量),即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设甲种商品购进x 件,乙种商品购进y 件,依题意得:200(2014)(4535)1680x y x y +=⎧⎨-+-=⎩, 解得:80120x y =⎧⎨=⎩. 答:甲种商品购进80件,乙种商品购进120件.(2)设甲种商品购进m 件,则乙种商品购进(200)m -件,依题意得:1435(200)5320(2014)(4535)(200)1660m m m m +-<⎧⎨-+-->⎩,解得:8085m <<,又m 为非负整数,m ∴可以为81,82,83,84,∴该商店共有4种购货方案.设销售完这批商品后获利w 元,则(2014)(4535)(200)42000w m m m =-+--=-+, 40-<,w ∴随m 的增大而减小,∴当81m =时,w 取得最大值,即甲种商品购进81件、乙种商品购进119件时,该商店销售完这批商品后获利最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.27.画出函数2y x =+的图象,利用图象:(1)求方程20x +=的解;(2)求不等式20x +<的解集;(3)若13y -≤≤,求x 的取值范围.解析:(1)x=﹣2;(2)x <2;(3)﹣3≤x≤1【分析】(1)利用描点法画出一次函数图像,结合图像求出答案;(2)根据图像判断不等式的解集;(3)根据图像求出自变量x 的取值范围.【详解】解:对于函数y=x+2,列表:。
福建专版2019春八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第3课时一次函数
![福建专版2019春八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第3课时一次函数](https://img.taocdn.com/s3/m/0c799a6fba68a98271fe910ef12d2af90242a8ba.png)
费用为y元.
(1)y与x的函数解析式为:
;
(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最
省的方案,并求出该方案所需费用.
关闭
(1)y=-20x+1 890(提示:y=90(21-x)+70x=-20x+1 890);
(2)由题意,得x<21-x,解得x<10.5.
速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程
y(单位:km)与时间x(单位:h)之间的关系如图,则下列结论正确的是
(
).
关闭
汽车在高速公路上行驶速度为180÷2=90(km/h),A错误;乡村公路行
驶了90 km,总长不一定是90 km,B错误;汽车在乡村公路上行驶速度
A.汽车在高速公路上行驶速度为100
又x≥1,∴1≤x<10.5,且x为整数,由(1)中一次函数知,y随x的增大而减小,
故当x=10时,y有最小值为-20×10+1 890=1 690,因此费用最省方案
是购买B种树苗10棵,A种树苗11棵,所需费用为1 690元.
答案
(1)旅客最多可免费携带
千克行李.
(2)费用y(单位:元)与行李重量x(单位:千克)之间的函数解析式
为
.
(3)一旅客携带80千克行李需交费
元.
0,0 < ≤ 40,
(1)40 (2)y=
-40, > 40
关闭
(3)40
答案
5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每
【例题】 如图,已知一次函数的图象交正比例函数图象于点M,
福州市八年级数学下册第十九章《一次函数》经典题
![福州市八年级数学下册第十九章《一次函数》经典题](https://img.taocdn.com/s3/m/c7bc9d12551810a6f42486ae.png)
一、选择题1.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-2.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,103.甲,乙两车分别从A , B 两地同时出发,相向而行.乙车出发2h 后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x (h ), 甲,乙两车到B 地的距离分别为y 1(km ), y 2(km ), y 1, y 2关于x 的函数图象如图.下列结论:①甲车的速度是45a km /h ;②乙车休息了0.5h ;③两车相距a km 时,甲车行驶了53h .正确的是( )A .①②B .①③C .②③D .①②③ 4.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .3 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .7.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C .D .8.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <9.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 10.对于函数31y x =-+,下列结论正确的是( )A .y 随x 的增大而增大B .它的图象经过第一、二、三象限C .它的图象必经过点()0,1D .当1x >时,0y >11.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 12.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 13.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个14.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 15.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______. 18.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.19.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.20.函数1y x=-的定义域是______. 21.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.22.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)23.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.24.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k x y k x b =⎧⎨=+⎩的解是___________.25.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.26.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题27.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.28.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)29.某公司市场营销部的营销员的个人月收入y(元)与该营销员每月的销售量x(万件)成一次函数关系,图象如图所示.根据图象提供的信息,解答下列问题:(1)求出营销员的个人月收入y(元)与该营销员每月的销售量x(万件)(0x≥)之间的函数关系式.(2)该公司营销员李平5月份的销货量为1.2万件,求李平5月份收入.30.如图,已知一次函数43y x m=+的图象与x轴交于点(6,0)A-,与y轴交于点B.(1)求m的值和点B的坐标;(2)在x轴上是否存在点C,使得ABC的面积为16?若存在,求出点C的坐标;若不存在,请说明理由.。
福州市时代中学八年级数学下册第十九章《一次函数》测试(课后培优)
![福州市时代中学八年级数学下册第十九章《一次函数》测试(课后培优)](https://img.taocdn.com/s3/m/98a525e7b7360b4c2f3f644c.png)
一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 2.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( )A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2 C .3 D .44.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2 B .3 C .4 D .55.已知56a =56b =y =(a +b )x +ab 的图象大致为( )A .B .C .D . 6.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录: 蟋蟀每分钟鸣叫的次数温度/°F 14476 15278 16080 16882 176 84如果这种数量关系不变,那么当室外温度为90°F 时,蟋蟀每分钟鸣叫的次数是( ) A .178 B .184 C .192D .200 7.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .188.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 9.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 11.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个12.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .13.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 14.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D 5 15.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 二、填空题16.函数1y x =-中自变量x 的取值范围是________. 17.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.18.如图,矩形ABCO 的对角线AC 、OB 交于点1A ,直线AC 的解析式33y x =-+1A 作11AO OC ⊥于1O ,过点1A 作11A B BC ⊥于1B ,得到第二个矩形111A B CO ,1A C 、11O B 交于点2A ,过点2A 作22A O OC ⊥于2O ,过点2A 作22A B BC ⊥于2B ,得到第三个矩形222A B CO ,…,依此类推,这样作的第n 个矩形对角线交点n A 的坐标为____________________.19.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,三角形与正方形重叠部分的面积为y,在下面的平面直角坐标系中,线段AB表示的是三角形在正方形内部移动的面积图象,C点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③20.如图,正方形ABCD,CEFG边在x轴的正半轴上,顶点A,E在直线12 y x上,如果正方形ABCD边长是1,那么点F的坐标是______.21.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t(分)和离家距离S(米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.22.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.23.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.24.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.25.如图,正方形ABCD 的边长为4,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若AF 平分DFE ∠,则k 的值为_________.26.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题27.每年“双11"天猫商城都会推出各种优惠活动进行促销,今年,王阿姨的“双11“到来之前准备在两家天期店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已如网家店铺在活动明间分别给子以下优惠:A 店铺:"双11"当天购实所有商品可以享受8折优惠:B 店铺:买2条被子,赠送1个预椎枕、同时“双11"当天下单,还可立减160元; 设购买颈椎枕x (个),若王阿姨在“双11"当天下单,A ,B 两个店铺优惠后所付金额分别为y A (元)、y B (元).(1)试分别表示y A 、y B 与x 的函数关系式;(2)王阿姨准备在”双11"当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱? 28.如图,已知直线123y x =-+和21y mx =-分别交y 轴于点A ,B ,两直线交于点()1,C n .(1)求m ,n 的值;(2)求ABC 的面积.29.某校801班师生共45人前往某景区游览,该景区窗口票价标明:成人票每张30元,学生票享受六折优惠.(1)若老师有x 名,801班师生景区游览的门票总费用为y 元,请用x 的代数式表示y . (2)若师生门票总费用y 不超过858元,问至少有几名学生.30.如图,直线1l :1y x =+与直线2l :2y x n =-+相交于点()1,P b .(1)求点P 的坐标;(2)若120y y >>,求x 的取值范围;(3)点(),0D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.。
(人教版)福州八年级数学下册第十九章《一次函数》经典测试卷(培优)
![(人教版)福州八年级数学下册第十九章《一次函数》经典测试卷(培优)](https://img.taocdn.com/s3/m/540471e7b7360b4c2f3f64ec.png)
一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 2.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2) 3.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .4.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .5.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t << 6.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .7.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( )A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 8.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→9.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .10.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( )A .B .C .D . 11.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 12.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 13.一个一次函数的图象与直线112y x =-平行,与x 轴、y 轴的交点分别为A ,B ,并且过点(1,5)--,则在线段AB 上(包括端点A ,B )横、纵坐标都是整数的点有( ) A .4个 B .5个C .6个D .7个 14.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 二、填空题16.已知点)(,A m n 在一次函数53y x =+的图像上,则53n m -+的值是______. 17.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.18.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________.19.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.20.已知一次函数5y x m =+的图象与正比例函数y kx =的图象交于点(2,4)(,k m -是常数),则关于x 的方程5x kx m =-的解是________.21.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).22.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.23.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.24.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.25.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.26.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.三、解答题27.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x 人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y (元)与x 之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.28.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg0 1 2 3 4 5 弹簧长度y/cm 28 30 32 34 36 38是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)29.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km yx的关系如图所示.与所用的时间()h(1)甲乙两地之间的路程为________km;快车的速度为________km/h;慢车的速度为_________km/h;(2)出发________h,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h相距250km.30.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:甲乙进价(元/件)1435售价(元/件)2045件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.。
福州市时代中学八年级数学下册第十九章《一次函数》提高练习(提高培优)
![福州市时代中学八年级数学下册第十九章《一次函数》提高练习(提高培优)](https://img.taocdn.com/s3/m/499cb66cdd88d0d232d46a75.png)
一、选择题1.如图,直线y =-2x +2与x 轴和y 轴分别交与A 、B 两点,射线AP ⊥AB 于点A .若点C 是射线AP 上的一个动点,点D 是x 轴上的一个动点,且以C 、D 、A 为顶点的三角形与△AOB 全等,则OD 的长为( )A .2或5+1B .3或5C .2或5D .3或5+1 2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( ) A . B . C . D . 4.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .5.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2 B .3 C .4 D .58.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.对于函数31y x =-+,下列结论正确的是( )A .y 随x 的增大而增大B .它的图象经过第一、二、三象限C .它的图象必经过点()0,1D .当1x >时,0y >10.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<< 11.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限 12.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③ 13.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 14.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3 二、填空题16.如图,直线y =12x +b 交x 轴于点A ,交y 轴于点B ,OA =2,点C 是x 轴上一点,且△ABC 是直角三角形,满足这样条件的点C 的坐标是_____.17.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.18.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.19.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.20.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.21.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)22.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 23.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.24.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.25.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.26.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题27.己知,如图,在平面直角坐标系中,直线y kx b =+经过点(3-,4-),(6,2),且分别交x 轴、y 轴于A 、B 两点.(1)确定直线y kx b =+的表达式:(2)求A 、B 两点的坐标;(3)求AOB 的面积;(4)过AOB 的顶点B 的一条直线把AOB 分成面积相等的两部分,求这条直线表达式.28.平面直角坐标系中,直线24y x =+与x 轴、y 轴分别交于点B 、A . (1)直接写出直线AB 关于x 轴对称的直线BC 的解析式______.(2)如图,直线BC 与直线y x =-交于E 点,点P 为y 轴上一点,PE PB =,求P 点坐标.(3)如图,点P 为y 轴上一点,OEB PEA ∠=∠,直线EP 与直线AB 交于点M ,求M 点的坐标.29.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标.30.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.。
福建福州市八年级数学下册第十九章《一次函数》阶段练习(含答案解析)
![福建福州市八年级数学下册第十九章《一次函数》阶段练习(含答案解析)](https://img.taocdn.com/s3/m/431d82ea52d380eb63946d75.png)
一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地3.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .4.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .35.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =- D .3y x =-6.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:蟋蟀每分钟鸣叫的次数温度/°F 144 76 152 78 160 80 168 82 17684) A .178 B .184 C .192 D .200 8.在直角坐标系中,点P 在直线x +y -4=0上,O 为原点,则OP 的最小值为( )A .22B .2C .6D .109.下列关于一次函数25y x =-+的说法,错误的是( ) A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 11.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-12.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <13.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .经过第一、二、三象限 B .与x 轴交于()1,0- C .与y 轴交于()0,1D .y 随x 的增大而减小14.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限15.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( ) ①,B C 两港之间的距离为60海里 ②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时 ④甲船到达C 港时,乙船还需要一个小时才到达C 港 ⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个二、填空题16.如图,直线y =12x +b 交x 轴于点A ,交y 轴于点B ,OA =2,点C 是x 轴上一点,且△ABC 是直角三角形,满足这样条件的点C 的坐标是_____.17.体育训练课上,小健同学与小宇同学在AB 之间进行往返蛙跳训练.小健先出发10s ,小宇随后出发.当小宇恰好追上小健时,王老师立即飞奔3秒到小宇身边对他进行指导,一分钟...后小宇继续前行,但速度减为原来的12,小健和小宇相距的路程y (米)与小健出发时间t (秒)的关系如图所示,则当小宇再次出发时,两人还有__________秒二次相遇.18.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.19.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.20.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________. 21.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 22.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.23.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.24.请写出一个符合下列要求的一次函数的表达式:_______. ①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.25.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.26.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题27.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克? 28.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C .(1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.29.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少? 30.一次函数23y x =-+的图像经过点P (1,n ). (1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章《一次函数》单元测试卷
一、选择题(共10题,每题3分)
1.下列关系式中,y 不是自变量x 的函数的是().
A.y =x
B.y =x 2
C.y =|x |
D.y 2=x
2.下列函数①y =x
1
,②y =2x -1,③y=x 2-1,④y =2-1-3x ,⑤y =ax +2中,是一次数的有(
).
A.4个
B.3个
C.2个
D.1个
3.无论a 取何值,关于x 的函数y =-x+a 2+1的图象都不经过().
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.已知点(-2,y 1)\()-1,y 2)都在直线y =-x+b 上,则y 1、y 2的值的大小关系是().
A.y 1>y 2
B.y 1<y 2
C.y 1≥y 2
D.y 1≤y 2
5.弹簧的长度y (cm )与所挂物体的质量x (kg )的关系是一次函数,
图象如图所示,则弹不挂物体时的长度是().
A.9cm
B.10cm
C.10.5cm
D.12.5cm
6.如图,将点P (-1,3)向右平移n 个单位后,落在直线y =2x -1上的点P'处,则n 等于()A.2
B.2.5
C.3
D.4
7.如图,一次函数y =kx -b (k ≠0)的图象经过点(2,0),则关于的不等式的解为()
A.x <0
B.x >0
C.x <2
D.x >2
8.如果直线y =3x+b 与两坐标轴图成的三角形面积等于2,则b 的值是()A.
2
B.32
C.±23
D.23
9.若点A(-1,m )、B(1,m )、C(2,m -1)在同一个函数图象上,这个函数象可以是(
)
D .
C .A .B .
10.如图,在平面直角坐标系中,函数y =2x 和y =-x 的图象分别为直线l 1、l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2017的坐标是()A.(21008,21009) B.(-21008,-21009)C.(21009,21010)
D.(-21009,-21010)
二、填空题(共6题,每题4分)
11.已知函数y =⎪⎩⎪
⎨⎧>+≤+)0(22
1)0(2x x x x ,当x =-4时,y =_______.
12.一次函数y =(k +1)x -k 的图象不经过第二象限,则k 的取值范图是_______.
13.在平面直角坐标系中,无k 论取何实数,直线y=(k -1)x +4-5k 总经过定点P ,则P
的坐标是_______.
14.有一种动画设计,屏幕上的长方形ABCD 是黑色区域(含长方形的边界),其中A (-1,1)、
B (2,1)、
C (2,2),
D (-1,2),用信号枪沿直线y=kx -2发射信号、当信号遇到黑色区域时,便
由黑变白,则能够使黑色区域变白的k 的取值范围是_______.
15.如图,在同一直角坐标系中,函数y 1和y 2的图象相交于点A ,y 2与x 轴交点坐标为(3,0),则不等式0<y 2<y 1的解集是_______.
16.如图,把直线y =-2x 向上平移后,分别交y 轴,x 轴于A 、B 两点,直线AB 经过点(m ,n )且2m +n =6,则点O 到线段AB 的距离为_______.
三、解答题(共4题)
(第14题)(第15题)(第16题)
17.(8分)已知:y-2与x+1成正比例,且x=2时,y=8.
(1)求y与x之问的函数关系式;
(2)当y=3时,求x的值.
18.(12分)如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0),点P(x,y)是线段EF上的一个动点.
(1)求k的值;
(2)求点P在运动过程中,△OPA的面积S与x的函数关系式,
写出自变量x的取值范围并画出S与x的函数图象.
19.(13分)某地城管需要从甲、乙两个仓库向A、B两地分别运送10吨和5吨的防寒物资,甲、乙两仓库分别有8吨、7吨防寒物资,从甲、乙两仓库运送防寒物资到A、B 两地的运费单价(元/吨)如下表,设从甲仓库运送到B地的防寒物资为x吨.
(1)求运送的总运费y与x(吨)之间的函数表达式,
并求出自变量x的取值范图;
(2)怎样调配使得总运费最低?并求出总运费的最低值.
甲仓库乙仓库A地80100
B地6040
20.(13分)如图,直线y =
2
1
x +3与x 轴交于点A ,与y 轴交于点B ,点C 与A 关于y 轴对称.
(1)求直线BC 的函数表达式;
(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q ,连接BM .
①若∠MBC =90°,求点P 的坐标;②若△PQB 的面积为
9
4
,请直接写出点M 的坐标
附加题
1.在平面直角坐标系xOy 中,若点A (0,1),B (m ,m –1),则AB +OB 的最小值是(
).
(A)1
(B)
3(C)2(D)5
2.在平面直角坐标系xoy 中,点O 是原点,点B 的坐标是(3m ,4m –4),则OB 的最小值是_______.。