高中数学必修5-必修2公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).
(2),a b R +∈⇒
2a b +≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>
(4)柯西不等式
22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈
(5)b a b a b a +≤+≤-.
72.极值定理
已知y x ,都是正数,则有
(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;
(2)若和y x +是定值s ,则当y x =时积xy 有最大值
241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(2
2+-=+
(1)若积xy 是定值,则当||y x -最大时,||y x +最大;
当||y x -最小时,||y x +最小.
(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;
当||y x -最小时, ||xy 最大.
73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.
121212()()0()x x x x x x x x x <<⇔--<<;
121212,()()0()x x x x x x x x x x <>⇔--><或.
74.含有绝对值的不等式
当a> 0时,有
2
2x a x a a x a <⇔<⇔-<<. 22x a x a x a >⇔>⇔>或x a <-.
(1
()0()0
()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩
. (2
2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩
或. (3
2()0()()0
()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式
(1)当1a >时,
()()()()f x g x a a f x g x >⇔>;
()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩
.
(2)当01a <<时,
()()()()f x g x a a f x g x >⇔<;
()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩
77.斜率公式
2121
y y k x x -=-(111(,)P x y 、222(,)P x y ). 78.直线的五种方程
(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).
(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).
(3)两点式 112121
y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b
+=(a b 、分别为直线的横、纵截距,0a b ≠、)
(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).
79.两条直线的平行和垂直
(1)若111:l y k x b =+,222:l y k x b =+
①121212||,l l k k b b ⇔=≠;
②12121l l k k ⊥⇔=-.
(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222
||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;
80.夹角公式 (1)2121
tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212
tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).
直线12l l ⊥时,直线l 1与l 2的夹角是
2π. 81. 1l 到2l 的角公式 (1)2121
tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212
tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).
直线12l l ⊥时,直线l 1到l 2的角是2
π.
82.四种常用直线系方程
(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.
(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.
(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.
(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.
83.点到直线的距离
d =(点00(,)P x y ,直线l :0Ax By C ++=).
84. 0Ax By C ++>或0<所表示的平面区域
设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:
若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.
若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.
85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域
设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则
111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:
111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;