2016国家公务员考试行测数量关系之工程问题(三)

合集下载

国家公务员行测考试:工程问题介绍及题型分析.doc

国家公务员行测考试:工程问题介绍及题型分析.doc

2016国家公务员行测考试:工程问题介绍及题型分析为了各位考生更好的备战2016国家公务员考试,华图教育根据历年考试经验与习题分析认为工程问题仍然是2016国家公务员考试中常考的问题之一,华图教育撰文介绍工程问题的基础情况以及考查形式,希望各位考生可以举一反三、有所收获。

一、基础知识(一)工程问题的基本数量关系工作总量=工作效率工作时间常考考点:正反比的应用,(1)当工作总量一定时,工作效率与工作时间成反比;(2)当工作效率一定时,工作总量与工作时间成正比;(3)当工作时间一定时,工作总量与工作效率成正比。

2016国家公务员行测考试:工程问题介绍及题型分析(2)2016国家公务员行测考试:工程问题介绍及题型分析(2)(1)当已知工作效率或工作时间的实际值,往往设工作总量为特值,就设工作总量为工作效率或工作时间的最小公倍数即可。

例:一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。

甲、乙、丙三人共同完成该工程需多少天?A.8天B.9天C.10天D.12天解析:设工作总量为30,18,15的最小公倍数=90,则甲的效率为3,甲、乙效率之和为5,乙、丙效率之和为6,从而易知,那么,甲、乙、丙合作的天数=90 (3+6)=10。

故选C。

(2)当已知工作效率的比例关系,就设工作效率为其最简比所代表的实际值。

例:甲乙丙三个工程队完成一项工作的效率比为2:3:4。

某项工程,乙先做了1/3后,余下交由甲与丙合作完成,3天后完成工作。

问完成此项工程共用了多少天?A:6B:7C:7D:9解析:设甲的效率为2,乙的效率为3,丙的效率为4,乙先做了1/3后,则甲丙合作完成剩余的2/3,所代表的实际量=(2+4)*3=18,则1/3所代表的实际量=9,则实际乙自己工作1/3所用时间=9/3=3天,则该工程总计3+3=6天完工。

故选A.2、比例法:正反比的应用。

例:对某工程队修水渠,原计划要18小时完成,改进工作效率后只需12小时就能完成,已知后来每小时比原计划每小时多修8米,问这段水渠共多少米?解析:先后时间之比=18:12=3:2,可得先后效率之比=2:3,则由题意可得1份=8米,2份就是16米,所以水渠共=16 18=288(米)。

公考行测数量关系-工程问题

公考行测数量关系-工程问题

1.甲、乙两辆卡车运输一批货物,其中甲车每次能运输35箱货物。

甲车先满载运输2次后,乙车加入并与甲车共同满载运输10次完成任务,此时乙车比甲车多运输10箱货物。

问如果乙车单独执行整个运输任务且每次都尽量装满,最后一次运多少箱货物?由题意可知,甲车前两次共运输箱货物,后乙车加入后,共同满载10次完成任务,此时乙车比甲车多运输10箱货物,因此可得,解得箱货物,该批货物总量为,,即全部由乙车运输,最后一次运33箱货物。

2.A、B、C三辆卡车一起运输1次,正好能运完一集装箱的某种货物。

现三辆卡车一起执行该种货物共40集装箱的运输任务,A运7次、B运5次、C运4次,正好运完5集装箱的量。

此时C车休息,而A、B车各运了21次,又完成了12集装箱的量。

问如果此后换为A、C 两车同时运输,至少还需要各运多少次才能运完剩余的该种货物?根据题意列方程:A+B+C=1……①,7A+5B+4C=5……②,21A+21B =12……③,由①和②可得,2A=C。

所以方程③可化为7A+7C+7B+14B =12。

所以得到。

再代入①得到。

所以。

3.甲、乙、丙三个工厂承接A和B两批完全相同的加工订单,如果甲厂和乙厂负责A订单而丙厂负责B订单,则丙厂要比甲厂和乙厂晚15天完成;如在上述条件下甲厂分配1/3的生产资源或者乙厂分配1/5的生产资源用于B订单的生产,则A、B两个订单同时完成。

问如果合并三个工厂的生产能力,第几天可以完成A订单的生产任务:根据条件,在甲分配的生产资源或乙分配的生产资源给丙后,用于两个订单的工作效率相同,可列式:;。

化简后得。

设甲的工作效率为3,乙的工作效率为5,则丙的工作效率为6。

设开始A、B两订单的完工时间分别为天、天,则根据A、B订单量相等,可列式:,解得。

则A的订单量为。

那么三厂合并合力加工A订单,需要:天,即第26天可以完成A订单。

4.甲、乙、丙三村共建一项水利工程,原计划三村派出的劳动力之比为8:5:7,因丙村劳动力紧张,经协调,丙村少出的劳动力由甲、乙两村分担,相应的工钱由丙村承担。

(完整版)公务员考试行测数量关系各类题型汇总

(完整版)公务员考试行测数量关系各类题型汇总

例2:某高校对一些学生进行问卷调查。

在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,至少准备选择参加两种考试的有46人,不参加其中任何一种考试的有15人。

问接受调查的学生共有多少人?A.120B.144C.177D.192【中公解析】此题与第一题的区别在于所给条件多出两个字变为“至少准备选择参加两种考试的有46人”虽然只多出了至少两个字,但是它代表的含义就有所不同。

至少准备选择参加两种考试的有46人表示的是参加两种考试和参加三种考试的人数之和,即文氏图中两层和三层之和,所以减去46后,两层减了一次,三层也减了一次,因此三层只需再减一次就够了。

所以列示就应该是63+89+47-46-1×24+15=144,选B。

例3:某高校对一些学生进行问卷调查。

在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择参加注册会计师考试和英语六级考试的有16人,准备参加英语六级考试和计算机考试的有13人,准备参加计算机考试和注册会计师考试的有17人,不参加其中任何一种考试的有15人。

问接受调查的学生共有多少人?A.120B.144C.177D.192【中公解析】此题将“准备选择参加两种考试的有46人”条件改为“准备选择参加注册会计师考试和英语六级考试的有16人,准备参加英语六级考试和计算机考试的有13人,准备参加计算机考试和注册会计师考试的有17人”,这三个数值代表的是文氏图中两个圆相交的区域,每一个相交的区域都包含一遍三层的区域。

所以它们加起来的代表的两层的区域之和以及三遍三层的区域,所以减去这三个数之和需要加上三层的一遍,列示应该是63+89+47-16-13-17+24+15=,选D。

例4:某高校对一些学生进行问卷调查。

2016公务员行测数量关系技巧之基本工程问题

2016公务员行测数量关系技巧之基本工程问题

2016公务员行测数量关系技巧之基本工程问题工程问题:在日常生活中,做某一件事、制造某种产品、完成某项任务等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本关系是:我们研究这三个量之间关系的问题就是工程问题。

考试中所有的工程问题都离不开这个公式的运用,那针对我们公务员考试中的工程问题,我们怎么去运用这个公式呢?在公务员考试中工程问题主要有两种题型:基本工程问题和交叉合作问题。

本文主要讲解基本工程问题。

这类工程问题主要是与后面的交替合作问题相区别,也就是说除了交替合作的工程问题,其它的我们都归结为基本工程问题,基本工程问题很简单,考试中主要有两种方法需要大家去掌握。

1、比例法确定比例关系,把比例看成份数,份数做差对应实际量。

当题目中有某一量不变时,就要想到运用比例法。

根据这个式子我们可以得到三个比例关系:工作总量一定时,工作时间之比等于工作效率之比的反比例。

工作时间一定时,工作总量之比等于工作效率之比。

工作效率一定时,工作总量之比等于工作时间之比。

第一个比例关系考的最多,后面两个比例关系基本不考。

例1. 对某批零件进行加工,原计划要18小时完成,改进工作效率后只需要12小时就能完成,已知后来每小时比原计划每小时多加工8个零件,问这批零件共有多少个?【中公分析】工作总量是一定的,前后效率有变化,那就要用比例法,原时间:改进效率后时间=18:12=3:2,则原效率:改进后效率=2:3,效率之差是1,对应的实际量是8,原效率就是,又原工作时间是18,总的零件数= 个。

2、特值法当某一个量具有任意性时我们可以设特值,在公务员考试中,设特值不再像小学时那样简单的设单位“1”了,更多是体现了一种技巧性,在工程问题中,有两种典型的情况需要我们灵活地设特值。

①工作效率有变化,把工作效率的比设为前后实际的工作效率。

例2. 建筑队计划150天建好大楼,按此计划工作30天后由于购买新型设备,工作效率提高了20%,此大楼可以提前多少天完工?②一项工程由不同的对象去完成有不同的时间,这时我们设工作总量为“时间们”的最小公倍数,这个特值方法主要是针对多者合作问题(就是一项工程由几个对象同时去做合作完成)。

2016重庆上半年公务员考试行测:工程问题题型全解

2016重庆上半年公务员考试行测:工程问题题型全解

更多重庆公务员考试真题<<<点这里2016重庆上半年公务员考试行测:工程问题题型全解重庆公务员考试《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,通过测试选拔出能够胜任公共管理工作的优秀人才。

测试内容包括言语理解与数量关系、逻辑判断推理能力、资料分析和常识应用能力。

更具体的,我们来看看重庆公务员考试课程是如何设置教学的。

点击这里可以进行 >>>重庆地区在线咨询。

工程问题也是数学运算的常考题型,在复习过程中,考生应重点掌握工程问题涉及的基本概念,并学会对计算公式的灵活运用。

国家公务员考试中,工程问题主要考查二人合作型、多人合作型和水管问题。

其中,二人或者多人合作的工程问题考查的比较多,中公教育专家研究认为,这类问题解题关键是找到二人或者多人的工作效率和。

下面,中公教育专家就针对工程问题题型进行全面讲解。

一、工程问题基本概念及关系式工程问题中涉及到工作量、工作时间和工作效率三个量。

工作量:指工作的多少,可以是全部工作量,在没有指明具体数量时,工作总量可视为已知量。

一般来说,可设总量为“1”;部分工作量用分数表示。

工作时间:指完成工作的所需时间,常见的单位一般为小时、天。

这里需要注意“单位时间”这个概念。

当工作时间的单位是小时,那么单位时间为1小时;当工作时间的单位是天,那么单位时间为1天。

工作效率:指工作的快慢,也就是单位时间里所完成的工作量。

工作效率的单位一般是“工作量/天”或“工作量/小时”。

工作量、工作时间、工作效率三个量之间存在如下基本关系式:工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率。

解决基本的工程问题时,要明确所求,找出题目中工作量、工作时间、工作效率三量中的已知量,再利用公式求出未知量。

二、工程问题常考题型(一)二人合作型更多重庆公务员考试真题<<<点这里例题:有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:A.16天B.15天C.12天D.10天(二)多人合作型例题:甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。

行测数量关系难题和解析

行测数量关系难题和解析

行测数量关系难题和解析一、难题一:工程问题中的合作与交替工作1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

如果甲先做3天,然后甲乙合作2天,剩下的工程由乙单独完成,问乙还需要多少天?2. 解析我们先算出甲和乙的工作效率。

甲单独做10天完成,那么甲一天的工作效率就是1÷10 = 1/10;乙单独做15天完成,乙一天的工作效率就是1÷15 = 1/15。

甲先做3天,完成的工作量就是3×(1/10)=3/10。

甲乙合作2天,完成的工作量就是2×(1/10 + 1/15)。

1/10+1/15 = 3/30+2/30 = 5/30 = 1/6,那么合作2天完成的工作量就是2×(1/6)=1/3。

总共的工作量看作单位1,那么剩下的工作量就是 1 - 3/10 - 1/3。

3/10 = 9/30,1/3 = 10/30,所以剩下的工作量是 1 - 9/30 - 10/30 = 11/30。

乙单独完成需要的时间就是剩下的工作量除以乙的工作效率,即(11/30)÷(1/15)=11/30×15 = 11/2 = 5.5天。

二、难题二:行程问题中的相遇与追及1. 题目甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时6千米,乙的速度是每小时4千米,两人相遇后继续前行,甲到达B地后立即返回,乙到达A地后也立即返回,第二次相遇时距离A地8千米,求A、B两地的距离。

2. 解析设A、B两地的距离为x千米。

第一次相遇时,甲乙两人走过的路程之和就是A、B两地的距离,根据时间 = 路程÷速度,两人相遇所用时间为x÷(6 + 4)=x/10小时。

第二次相遇时,两人走过的路程之和是3倍的A、B两地的距离,所用时间就是3x÷(6 + 4)=3x/10小时。

甲在第二次相遇时走过的路程是x + 8千米,甲的速度是6千米每小时,根据路程 = 速度×时间,可得到方程6×(3x/10)=x + 8。

《国考技巧荟萃》国考笔试资料数量关系之工程问题

《国考技巧荟萃》国考笔试资料数量关系之工程问题

行测高频考点技巧荟萃第 1 期:数量关系之工程问题工程问题是行测常考考点, 公务员考试、 政法干警考试等考试的行测试题都会考到, 这部分内容难度虽不算太大,但考生拿分率并不是很高,更多的原因是对基本内容掌握不清, 基本公式利用度不高造成的。

大家在解决工程问题的过程中一定要注意方法和技巧, 章将全面盘点有关 工程问题 。

工程问题考情分析: 工程问题是数学运算中最经典的题型之一, 在往年的国家公务员考试中经常出现,虽然现在出现的频率略有下降, 但是几乎每年还有出现, 在各省市的公务员考试中更是行测考试中的工程问题知识梳理做过行测真题或模拟题的考生都会发现,工程问题是行测考试数学运算部分的常考题型, 其题型变化多、衍生问题多、题设陷阱多的特点决定了它是数量关系中的重难点。

、考情分析工程问题是数学运算中最经典的题型之一, 在往年的国家公务员考试中经常出现, 虽然现 在出现的频率略有下降,但是几乎每年还有出现,在各省市的公务员考试中更是频频出现。

可以说,工程问题在公务员考试中占据了很重要的位置。

二、基本概念和公式在日常生活中, 做某一件工作, 制造某种产品, 完成某项工程等等, 都要涉及到工作效率、 工作时间和工作量这三个量, 探讨这三个数量之间关系的应用题, 我们都叫做“工程问题”。

它们之间的基本数量关系:工作效率X 工作时间 =工作量。

最基本的工程问题为: 一个施工队要修长度为 1500米的隧道,每天可以修 50 米,问多少天修完 ?什么叫工作量 ?就是拿到一个工程项目以后,这个项目工作的多少,比如上题中的“ 1500米的隧道”。

工作效率呢,就是你完成项目的快慢程度, 工作量,比如上题的“每天修 50 米”。

工作时间就更简单了, 是指你完成项目所花的时间。

这三个量存在这么一个关系,大家要好好注意这个关系:工作效率=工作量十工作时间 本篇文频频出现。

可以说, 工程问题在公务员考试中占据了很重要的位置 基本概念和公式: 在日常生活中,做某一件工作,制造某种产品,完成某项工程等等,都 要涉及到工作效率、工作时间和工作量这三个量, 探讨这三个数量之间关系的应用题, 我们 都叫做“工程问题”。

公务员事业编考试行测数量关系公式汇总

公务员事业编考试行测数量关系公式汇总

行测数量关系公式汇总工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

国考行测数量关系题型解答方法

国考行测数量关系题型解答方法

国考行测数量关系题型解答方法在国家公务员考试行政职业能力测验(简称“国考行测”)中,数量关系一直是让众多考生感到头疼的一个模块。

但其实,只要掌握了正确的解题方法和技巧,数量关系也并非不可攻克。

下面,我将为大家详细介绍一些常见的国考行测数量关系题型的解答方法。

一、工程问题工程问题是国考行测数量关系中的常见题型,通常涉及工作效率、工作时间和工作总量之间的关系。

对于这类问题,我们首先要明确三个量之间的基本关系式:工作总量=工作效率×工作时间。

如果题目中给出的是多人合作完成一项工作,那么我们通常设工作总量为“1”,或者设工作总量为各个工作效率的最小公倍数,这样可以简化计算。

例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?我们设工作总量为 30(10 和 15 的最小公倍数),那么甲的工作效率为 3,乙的工作效率为 2,两人合作的工作效率为 5,所以两人合作完成这项工作需要的时间为 30÷5 = 6 天。

二、行程问题行程问题也是国考行测数量关系中的高频考点,包括相遇问题、追及问题等。

相遇问题的基本公式是:相遇路程=速度和×相遇时间。

追及问题的基本公式是:追及路程=速度差×追及时间。

在解决行程问题时,我们通常要先画出线段图,清晰地表示出各个量之间的关系。

比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度是 5 千米/小时,乙的速度是 3 千米/小时,2 小时后相遇,A、B 两地相距多远?根据相遇问题的公式,相遇路程=(5 + 3)×2 = 16 千米,即 A、B 两地相距 16 千米。

再比如:甲、乙两人同时同向而行,甲的速度是 8 千米/小时,乙的速度是 6 千米/小时,出发 3 小时后甲追上乙,出发时两人相距多远?根据追及问题的公式,追及路程=(8 6)×3 = 6 千米,即出发时两人相距 6 千米。

国家公务员考试:行测数量关系必考点之工程问题.doc

国家公务员考试:行测数量关系必考点之工程问题.doc

2017国家公务员考试:行测数量关系必考点之工程问题2017国家公务员考试:行测数量关系必考点之工程问题2016-08-24 10:51:50 公务员考试网文章来源:华图教育工程问题是数量关系中的必考题型,每年在国家公务员考试行测试卷中都会出现1至2道题。

这部分内容难度虽不算太大,但是考生们的拿分率并不是很高,更多的原因是对于这部分基本的内容掌握不是很清楚,基本的公式利用度不高造成的。

下面华图教育专家就来介绍一下解答工程问题要用的基本公式和方法。

一、工程问题的基本公式工作总量=工作效率工作时间。

对于这个公式大家可能已经比较熟悉,但更重要的是要弄明白他们之间的正反比关系。

工作总量一定时,工作效率和工作时间成反比工作效率一定时,工作总量和工作时间成正比工作时间一定时,工作总量和工作效率成正比这种正反比关系是解答工程问题时用得比较广泛的知识点,一般来讲我们把工作总量设成倍数的形式去解决会更好。

下面我们就各类工程问题题型来讲解如何应用正反比和特值。

二、工程问题题型介绍1、普通工程问题例题:建筑队计划150天建好大楼,按此效率工作30天后由于购买新型设备,工作效率提高20%,则大楼可以提前( )天完工。

A、20B、25C、30D、45【解析】效率原来和现在的比为5∶6时间原来和现在的比为6 ∶5所以原来是120现在是100,提前20天完成。

2、多者合作问题例题:一篇文章,现有甲、乙、丙三人,如果由甲乙两人合作翻译,需要10小时完成;如果由乙丙两人合作翻译,需要12小时完成;现在先由甲丙两人合作翻译4小时,剩下的再由乙单独翻译,需要12小时才能完成。

则这篇文章如果全部由乙单独翻译,需要( )小时能够完成。

A.15B.18C.20D.25【解析】甲丙合作4小时+乙工作12小时=乙丙合作12小时,则甲丙合作4小时=丙工作12小时,即甲工作4小时=丙工作8小时,则甲、丙的效率比为2:1,即甲、乙的效率分别为2和1。

公务员行测:工程问题解题方法及例题详解

公务员行测:工程问题解题方法及例题详解

公务员⾏测:⼯程问题解题⽅法及例题详解 在⽇常⽣活中,做某⼀件事,制造某种产品,完成某项任务,完成某项⼯程等等,都要涉及到⼯作量、⼯作效率、⼯作时间这三个量,它们之间的基本数量关系是⼯作量=⼯作效率×时间 在数学中,探讨这三个数量之间关系的应⽤题,我们都叫做“⼯程问题” 举⼀个简单例⼦ ⼀件⼯作,甲做10天可完成,⼄做15天可完成.问两⼈合作⼏天可以完成? ⼀件⼯作看成1个整体,因此可以把⼯作量算作1.所谓⼯作效率,就是单位时间内完成的⼯作量,我们⽤的时间单位是“天”,1天就是⼀个单位,再根据基本数量关系式,得到所需时间=⼯作量÷⼯作效率 =6(天) 两⼈合作需要6天 这是⼯程问题中最基本的问题,这⼀讲介绍的许多例⼦都是从这⼀问题发展产⽣的 为了计算整数化(尽可能⽤整数进⾏计算),如第三讲例3和例8所⽤⽅法,把⼯作量多设份额.还是上题,10与15的最⼩公倍数是30.设全部⼯作量为30份.那么甲每天完成3份,⼄每天完成2份.两⼈合作所需天数是30÷(3+ 2)= 6(天) 数计算,就⽅便些∶2.或者说“⼯作量固定,⼯作效率与时间成反⽐例”.甲、⼄⼯作效率的⽐是15∶10=3∶2.当知道了两者⼯作效率之⽐,从⽐例⾓度考虑问题,也 需时间是 因此,在下⾯例题的讲述中,不完全采⽤通常教科书中“把⼯作量设为整体1”的做法,⽽偏重于“整数化”或“从⽐例⾓度出发”,也许会使我们的解题思路更灵活⼀些 ⼀、两个⼈的⼯程问题 标题上说的“两个⼈”,也可以是两个组、两个队等等的两个集体 例1 ⼀件⼯作,甲做9天可以完成,⼄做6天可以完成.现在甲先做了3天,余下的⼯作由⼄继续完成.⼄需要做⼏天可以完成全部⼯作? 答:⼄需要做4天可完成全部⼯作 解⼆:9与6的最⼩公倍数是18.设全部⼯作量是18份。

甲每天完成2份,⼄每天完成3份.⼄完成余下⼯作所需时间是(18- 2 × 3)÷ 3= 4(天) 解三:甲与⼄的⼯作效率之⽐是6∶ 9= 2∶ 3 甲做了3天,相当于⼄做了2天.⼄完成余下⼯作所需时间是6-2=4(天)例2 ⼀件⼯作,甲、⼄两⼈合作30天可以完成,共同做了6天后,甲离开了,由⼄继续做了40天才完成.如果这件⼯作由甲或⼄单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,⼄做 24天, 现在,甲做0天,⼄做40=(24+16)天 这说明原来甲24天做的⼯作,可由⼄做16天来代替.因此甲的⼯作效率 如果⼄独做,所需时间是 如果甲独做,所需时间是 答:甲或⼄独做所需时间分别是75天和50天 例3 某⼯程先由甲独做63天,再由⼄单独做28天即可完成;如果由甲、⼄两⼈合作,需48天完成.现在甲先单独做42天,然后再由⼄来单独完成,那么⼄还需要做多少天? 解:先对⽐如下: 甲做63天,⼄做28天; 甲做48天,⼄做48天 就知道甲少做63-48=15(天),⼄要多做48-28=20(天),由此得出甲的 甲先单独做42天,⽐63天少做了63-42=21(天),相当于⼄要做 因此,⼄还要做28+28= 56 (天) 答:⼄还需要做 56天 例4 ⼀件⼯程,甲队单独做10天完成,⼄队单独做30天完成.现在两队合作,其间甲队休息了2天,⼄队休息了8天(不存在两队同⼀天休息)问开始到完⼯共⽤了多少天时间? 解⼀:甲队单独做8天,⼄队单独做2天,共完成⼯作量 余下的⼯作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天) 答:从开始到完⼯共⽤了11天 解⼆:设全部⼯作量为30份.甲每天完成3份,⼄每天完成1份.在甲队单独做8天,⼄队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天) 解三:甲队做1天相当于⼄队做3天 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)⼯作量.相当于⼄队要做2×3=6(天)⼄队单独做2天后,还余下(⼄队)6-2=4(天)⼯作量。

公务员考试行测工程问题例题及答案解析

公务员考试行测工程问题例题及答案解析

公务员考试行测工程问题例题及答案解析数量关系中的工程问题一直是行测考试中重点的考场题型,接下来,本人为你分享公务员考试行测工程问题例题及答案解析,希望对你有帮助。

公务员考试行测工程问题例题及答案解析公务员考试行测工程问题我们在常规运算的时候一般使用的方法根据题目的类型来确定,比如特值法、比例法以及方程法,那么在一些考试中,其实很多考试都忽视了部分题型的巧算方法,下面专家就带我们来看一道这样的题目。

公务员考试行测工程问题【例题】王师傅打算加工一批零件,如果每天加工20个的话,就会比原计划提前一天完成任务,按照这个效率工作,在工作四天之后,由于技术更新,每天可以多加工5个零件,结果比原计划提前三天完成了任务,问:这批零件共有多少个?A、300B、280C、260D、270公务员考试行测工程问题【例题答案解析】此问题所求的是工作总量,根据我们已知的条件,这个题目不适用特值的办法,所以我们可以考虑使用方程法解题,想要使用方程必然存在等式,我们发现条件中说,如果每天加工20个会比原计划提前一天完成,如果开工四天后提高效率,提前三天完成工作,我们发现这两种办法的总量是一样的,所以我们可以利用这个等量关系来进行列示,需要我们找到的未知量为原计划工作的天数。

所以设原计划这批零件打算a天来完成,所以第一种方式表示出的工作总量为20(a—1)个,第二种方式因为提前了三天,同时按照原来的效率已经工作了4天,所以可以表示工作总量为[80+25(a—7)]个,故可列出等式20(a—1)=80+25(a—7)解这个方程可以求出a=15天,之后从两种方法中任意选一种方法来表示工作总量,以第一种为例20×(15—1)=280个,所以答案为B。

上面讲的是常规办法遇到这类题目时的思路,那么可以发现这种方法在解题的时候虽然相对来说比较容易想,但是列式子和运算相对也比较耗时,那么为了更好,更快的完成这类题目,我们可以利用题目中给我们数据的特点来解决。

2016国家公务员考试行测备考:工程问题三大技巧

2016国家公务员考试行测备考:工程问题三大技巧

2016国家公务员考试行测备考:工程问题三大技巧是考试的重点,是近年来考试中最重要、最常考的之一,需要考生重点掌握。

工程类问题涉及的公式只有一个:工作总量=工作效率×工作时间,所有的考题围绕此公式展开。

中公教育专家通过分析发现,近年来工程问题的难度有所上升,然而其解题步骤仍然较为固定,一般而言分为3步:1.设工作总量为时间条件公倍数;2.求效率;3.求题目所问。

即使是较为复杂的工程问题,运用这一解题步骤也可解出。

例1、同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?()(2011年国家公务员考试行测试卷第77题)A、6B、7C、8D、9答案:B。

中公解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,A、B管加满水需要90分钟,A管加满水需160分钟,因此把水量设为1440份。

(2)分别求出A、B工作效率:A、B管每分钟进水量=16份,A每分钟进水量=9份,因此B每分钟进水量=7份。

(3)求题目所问。

由于B效率为7份,因此B管每分钟的进水量必定是7的倍数,四个选项,只有B选项是7的倍数,因此可直接选出B选项。

例2、一条隧道,甲用20天的时间可以挖完,乙用10天的时间可以挖完,现在按照甲挖一天,乙再接替甲挖一天,然后甲再接替乙挖一天…如此循环,挖完整个隧道需要多少天?()(2009年国家公务员考试行测试卷第110题)A、14B、16C、15D、13答案:A。

中公解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,甲、乙完成工作各需20天、10天,因此设工作总量为20。

(2)分别求出甲、乙工作效率:甲效率=1,乙效率=2。

(3)求题目所问。

题目要求让甲、乙轮流挖,一个循环(甲乙两人各挖1天)共完成工作量1+2=3。

如此6个循环后可以完成工作量18,还剩余2,需要甲挖1天,乙挖半天。

行测数量关系——工程问题交替工作问题

行测数量关系——工程问题交替工作问题

行测数量关系——工程问题交替工作问题【答题妙招】解决若干人轮流交替完成一份工作的题目,思路如下:(1)明确工作总量、每个人的效率;(2)找到作业周期,明确周期内的工作量、工作时间;(3)计算所有工作需要多少个周期,剩下多少个工作量(不足一周期的);(4)明确剩下的工作量需要如何分配。

【例1】一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。

如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少天()A.13B.14C.15D.16【答案】B。

交替工作问题,只知道时间,(由设最小公倍数法)则设工作总量为20,则甲乙的工作效率分别为1、2,则由题意周期为2天,周期工作量为甲乙之和1+2=3,则20/3=6余2,即完成6个周期之后还余2个工作量(3),则第13天甲做1个工作量还剩1个工作量,则第十四天乙才能将工程做完。

【例2】单独完成某项工作,甲需要16小时,乙需要12小时,如果按照甲乙甲乙的顺序轮流工作,每次一小时,那么完成这项工作需要多长时间()A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时【答案】B。

交替工作问题,只知道时间,则设工作总量为48,则甲乙的工作效率分别为3和4,2小时为一个周期,一个周期可以完成7个工作量,则需要48÷7=6……6,即需要做6个周期,还剩下6个工作量,6个周期是12小时,则第13小时是甲来做,甲能做3个,还剩下3个工作量,第14小时乙来做,3÷4=45分钟,答案选B。

【例3】一个水池有一进水管A和一出水管B,单开A需要4小时把空池注满,单开B需要6小时把一池水放空,按照AB循环,每次各开1个小时,经过多长时间空水池第一次注满()A.18B.20C.19D.17【答案】C。

交替工作问题,设工作总量为12,则P A=3,P B=-2,以AB各开1小时为一个周期,一个周期内完成的工作量为3-2=1,所用时间为2个小时,经过若干个整数个周期,在最后一个周期肯定是在注水,那么此时可能已经注满不需要进行之后的周期了,而这里的临界值为3,经过n个周期最后一个周期不需要再循环则有12-1×n≤3,有n≥9,n最小取为9,最后一个循环需完成工作量为12-9=3,则只需要A管工作1个小时即可,则共用时间为2×9+1=19个小时。

2016国家公务员行测备考:巧解工程问题

2016国家公务员行测备考:巧解工程问题

2016国家公务员行测备考:巧解工程问题公务员行测考试要求考生能够快速准确地答题,这就要求大家在做题时要注重一些技巧,不仅要会做题,还要在很短的时间内选出正确的答案。

今天中公教育专家就为大家讲解行测考试中非常重要的一个题型——工程问题。

工程问题基本公式为:工作总量=工作效率×时间。

数学表达式为W=P×T,其中W为工作总量,P为工作效率,T为工作时间。

当W是定值时,P与T成反比,当P一定时,W与T成正比,当T一定时,W与P成正比,解工程问题时一般采用特值思想,设特值时一般设最小公倍数。

例1.甲、乙、丙三个工程队完成一项工作的效率比为2:3:4。

某项工程,乙先做了1/3后,余下交由甲丙合作完成,3天后完成工作。

问完成此工程共用了多少天?A.6B.7C.8D.9中公解析:设甲乙丙的效率为2,3,4,则甲丙合作完成了18的工作总量,18是工作总量的2/3,则乙的工作总量为9,乙工作了3天,所以总共花费了6天,因此选A。

例2.一项工程由甲、乙、丙三个工程队共同完成需要15天,甲队与乙队的工作效率相同,丙队3天的工作量与乙队4天的工作量相当。

三队同时开工2天后,丙队被调往另一工地,甲乙两队留下继续工作。

那么,开工22天后,这项工程:A.已经完工B.余下的量需要甲乙两队共同工作1天C.余下的量需要乙丙两队共同工作1天D.余下的量需要甲乙丙三队共同完成1天中公解析:丙队3天的工作量与乙队4天的工作量相当,根据计算公式可以得到:丙的工作效率和乙的工作效率之比为4:3,由此可得甲乙丙的工作效率之比为3:3:4,所以设甲的工作效率为3,乙为3,丙为4,则工作总量为(3+3+4)15=150,三队共同完成2天,完成了20个工作量。

甲乙工作了 20天,完成了120工作量,所以还剩下10个工作量,这样就需要甲乙丙三队共同完成1天。

所以选D。

2016国家公务员考试行测备考:巧用特值思想解工程问题

2016国家公务员考试行测备考:巧用特值思想解工程问题

2016国家公务员考试行测备考:巧用特值思想解工程问题是历年中的高频考点之一,需要考生重点掌握。

其核心公式为:工作量=工作时间×效率,所考题目均以此公式为基础。

近年来,工程问题的考查主要以特值方法为主,即:对于题干中“已知时间,求时间”,通常设工作总量为时间的最小公倍数,化繁为简,变未知为已知。

下面专家为大家举例说明。

例1.一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。

甲、乙、丙三人共同完成该工程需( )A.8天B.9天C.10天D.12天【中公解析】C。

设工作总量为90,则P甲=3,P甲+P乙=5,P乙+P丙=6,可得出:P甲+P乙+P丙=9。

则所求时间t=90÷9=10天。

例2.某工厂的一个生产小组,当每个工人在自己的工作岗位上工作时,9小时可以完成一项生产任务。

如果交换工人甲和乙的工作岗位,其他人的工作岗位不变时,可提前1小时完成任务;如果交换工人丙和丁的工作岗位,其他人的工作岗位不变时,也可提前1小时完成任务。

如果同时交换甲和乙、丙和丁的工作岗位,其他人的工作岗位不变,可以提前多少小时完成这项任务?( )A.1.6B.1.8C.2.0D.2.4【中公解析】B。

设工作总量为72,则原工作效率为8,若甲乙交换岗位,工作效率为9,效率提高1;若丙丁交换岗位,工作效率也为9,效率提高1;根据题意可推出,同时交换甲和乙、丙和丁的工作岗位,效率为10,所用时间为72÷10=7.2小时,故可提前9-7.2=1.8小时。

【题目类型及规律】工程问题,注意效率能相加,时间不能相加。

例3.某项工程,小王单独做需15天完成,小张单独做需10天完成。

现在两人合做,但中间小王休息了5天,小张也休息了若干天,最后该工程用11天完成。

则小张休息的天数是( )A.6B.2C.3D.5【中公解析】D。

设工程总量为30,则小王的效率为2,小张的效率为3。

小王休息了5天,则工作了6天,工作量=6×2=12,所以小张的工作量=30-12=18,工作天数=18÷3=6,则休息了11-6=5天,所以答案选D。

省考笔试数量关系基本技巧之工程问题

省考笔试数量关系基本技巧之工程问题

省考笔试数量关系基本技巧之工程问题2016年辽宁省公务员考试即将到来,你是否已经准备好了呢?众所周知,在辽宁省公务员考试中,行测科目考试分成常识判断、言语理解与表达、数量关系、判断推理和资料分析五部分,而其中最令考生头疼和无从下手的要属数量关系了,那么今天笔者就简要叙述下数量关系的一些答题技巧。

工程问题在每年的辽宁省公务员考试中几乎都会考察,是数量关系中非常重要的知识点和考点,所以考生们必须认真复习,充分准备。

工程问题的核心公式为:工作总量=工作效率×工作时间,解题方法有方程法和赋值法两种,区分方程法与赋值法的办法是看该工程是否为一次性连续完成,若是一次性连续完成则用赋值法,不是一次性连续完成则使用方乘法。

下面我们看一道例题:(2013年辽宁-86)早上7点两组农民开始在麦田里收割麦子,其中甲组20人,乙组15人。

8点半,甲组分出10人捆麦子;10点,甲组将本组所有已割的麦子捆好后,全部帮乙组捆麦子;如果乙组农民一直在割麦子,什么时候乙组所有已割的麦子能够捆好?(假设每个农民的工作效率相同)( )A.10:30B.11:00C.11:30D.12:00【答案】B【解析】设每个农民一小时割麦子的量为1,一小时捆麦子的量为X。

甲组将本组所有已割的麦子捆好时,共割了麦子3小时,其中头一个半小时是20人割,后一个半小时是10人;捆麦子是10人捆了一个半小时。

可得方程:20×1.5+10×1.5=10×1.5X,解得X=3。

设甲组需要Y个小时捆好已割的麦子,对于乙组而言,乙组15个人一直在割麦子,共割了3+Y小时;甲组共20个人共捆了Y个小时。

可得方程:15(3+Y)=20×3Y,解得Y=1。

所以甲组从10点开始捆麦子,再过一个小时即11点时能全部捆好。

因此,本题正确案为B。

此题为典型的工程问题,用方程法解答,围绕着收割麦子的总数与捆绑麦子的总数相等来列方程。

历年国考行测高频考点分析之工程问题

历年国考行测高频考点分析之工程问题

江西国考考试题库<<<点这里看历年国考行测高频考点分析之工程问题在国家公务员考试行测数学运算部分,工程问题属于高频率考点,而这类问题也成为困扰很多考生的难题。

大家的目标不仅仅是做对同时还要做快,那就必须要掌握解答工程问题常用的方法—-特值法,以提高做题速度。

工程问题最基本的等量关系:工程总量=工作效率×工作时间,大家都知道,可设工程总量为“1”,但这并不是最简便的方法,接下来中公教育专家就为大家具体讲解工程问题中设特值的技巧和方法。

1.工程问题中,题目中已知所有时间量时,设多个时间的最小公倍数为工程总量。

【例1】一口水井,在不渗水的情况下,甲抽水机用4小时可将水抽完,乙抽水机用6小时可将水抽完。

现用甲、乙两台抽水机同时抽水,但由于渗水,结果用了3小时才将水抽完。

问在渗水的情况下,用乙抽水机单独抽,需几小时抽完?A.12小时B.13小时C.14小时D.15小时【解析】答案选C。

设工程总量为时间4、6、3的最小公倍数12,由题干可知,甲抽水机的抽水效率为3,乙抽水机的抽水效率为2,则甲乙的合作效率为3+2=5。

在渗水的情况下,甲乙共同抽水的效率为4,即渗水效率为5-4=1,则在渗水的情况下,乙抽水机单独抽需要12÷(2-1)=12小时。

2:工程问题中,题目中已知效率比时,直接设比值为所对应的效率值。

【例2】某市有甲、乙、丙三个工程队,工作效率比为3∶4∶5。

甲队单独完成A工程需要25天,丙队单独完成B工程需要9天。

现由甲队负责B工程,乙队负责A工程,而丙队先帮甲队工作若干天后转去帮助乙队工作。

如希望两个工程同时开工同时竣工,则丙队要帮乙队工作多少天?A.6B.7C.8D.9【解析】答案选B。

因工程总量不一样,如果这时设其中一个工程的工程总量为1,再进行计算时会把题目复杂化,因此要用到特直法。

江西国考考试题库<<<点这里看方法二:设甲、乙、丙的工作效率分别为3、4、5,则A工程的工作量为3×25=75,B工程的工作量为5×9=45,共需要(75+45)÷(3+4+5)=10天竣工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016国家公务员考试行测数量关系之工程问题(三)公务员考试数量关系主要测查报考者理解、把握事物间量化关系和解决数量关系问题的能力,主要涉及数据关系的分析、推理、判断、运算等。

觉的题型有:数字推理、数学运算等。

了解公务员成绩计算方法,可以让你做到心中有数,高效备考。

公务员行测题库帮助您刷题刷出高分来!
>>>我想看看国考课程。

(一)工程问题的基本数量关系
工作总量=工作效率×工作时间
常考考点:正反比的应用,(1)当工作总量一定时,工作效率与工作时间成反比;
(2)当工作效率一定时,工作总量与工作时间成正比;
(3)当工作时间一定时,工作总量与工作效率成正比。

(二)常用方法
1、特值法:
(1)如已知工作效率或工作时间的实际值,往往设工作总量为特值,就设工作总量为工作效率或工作时间的最小公倍数即可。

例:一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需
15天。

甲、乙、丙三人共同完成该工程需多少天?
A.8天
B.9天
C.10天
D.12天
中公解析:设工作总量为30,18,15的最小公倍数=90,则甲的效率为3,甲、乙效率之和为5,乙、丙效率之和为6,从而易知,那么,甲、乙、丙合作的天数=90÷(3+6)=10,故选C。

(2) 如已知工作效率的比例关系,就设工作效率为其最简比所代表的实际值。

例:甲乙丙三个工程队完成一项工作的效率比为2:3:4。

某项工程,乙先做了1/3后,余下交由甲与丙合作完成,3天后完成工作。

问完成此项工程共用了多少天?
A:6 B:7 C:7 D:9
中公解析:设甲的效率为2,乙的效率为3,丙的效率为4,乙先做了1/3后,则甲丙合作完成剩余的2/3,所代表的实际量=(2+4)×3=18,则1/3所代表的实际量=9,则实际乙自己工作1/3所用时间=9/3=3天,则该工程总计3+3=6天完工,故选A。

2、比例法:正反比的应用
例:对某工程队修水渠,原计划要18小时完成,改进工作效率后只需12小时就能完成,已知后来每小时比原计划每小时多修8米,问这段水渠共多少米?
中公解析:先后时间之比=18:12=3:2,可得先后效率之比=2:3,则由题意可得1份=8米,2份就是16米,所以水渠共=16×18=288(米)。

(三)常见的考查形式
1、普通工程:是工程问题中比较基本简单的题型,一般不涉及多者合作的情形,利用公式及正反比即可求解。

例:建筑队计划150天建好大楼,按此效率工作30天后由于购买新型设备,工作效率提高20%,则大楼可以提前几天完工?
A.20
B.25
C.30
D.45
中公解析:工作效率提高20%,原效率与现在效率比为5:6,工作总量一定时,所用时间与效率成反比,即6:5。

剩下的工作原定150-30=120天完成,效率改变后只需要100天即可完成,因此节省20天,选A。

2、多者合作
多者合作可能是两者合作或两者以上进行合作,关键点是合作时的总效率等于各部分效率之和。

例:一项工程如果交给甲乙两队共同施工,8天能完成;如果交给甲丙两队共同施工,10天能完成;如果交给甲丁两队共同施工,15天能完成;如果交给乙丙丁三队共同施工,6天就可以完成。

如果甲队独立施工,需要多少天完成?
A.16
B.20
C.24
D.28
中公解析:设工作总量为120(8、10、15、6的最小公倍数),从而易知,甲乙效率和=15,甲丙效率和=12,甲丁效率和=8,乙丙丁效率和=20,故甲的效率=5,乙的效率=10,丙的效率=7,丁的效率=3,所以,甲队独立施工时需要的天数=120÷5=24(天),答案选C。

>>>我想看看国考课程。

中公教育公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!公务员考试题库系统邀请您一同刷题!。

相关文档
最新文档