指数函数的图像与性质
指数,对数,幂函数的图像和性质
指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。
指数函数的性质有:
1.在y 轴上的截距为1。
2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。
如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。
3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。
对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。
对数函数的性质有:
1.在y 轴上的截距为0。
2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。
如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。
3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。
幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。
幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。
2.当n<0 时,幂函数的图像是一条向右开口的曲线。
3.当n=0 时,幂函数的图像是一条水平直线。
4.幂函数的图像在y 轴上的截距为1。
5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。
如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。
6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。
指数函数图像及性质
指数函数图像及性质
指数函数图像的特征就是“J”形的曲线,它可用来表示水平和垂直运动的加速度和内能释放。
指数函数可以表示非常多种物理或生物学现象。
指数函数图像具有以下性质:
1. 指数函数图像以指数增长和指数衰减。
即曲线是从左向右张开的,以及从右向左收缩的。
2. 一般情况下,指数函数图像会通过坐标原点(0,0),如果不是,则说明指数函数图像是一条平行曲线。
3. 在每一个定义域,指数函数图像的斜率最大值为1,但是随着x的增加,它的斜率越来越小,趋近于0。
4. 在不同的定义域,指数函数图像的形状也有所不同,一般数学家会把它们分成“快速增长函数”和“减速函数”,其中前者的最大斜率大于1而后者的最大斜率小于1。
5. 对于指数函数图像,从右向左看斜率是负值,而从左向右看又会变成正值。
6. 有时候,指数函数图像会拐到右上或者右下方,这时候说明指数函数正在发挥它的作用。
7. 指数函数的绝对值有三种情况,即增加,减少和突然增加,这种情况受到外部因素的影响。
8. 指数函数图像在平行于y轴的负半轴上,其值会无限接近0,而在平行于y轴的正半轴上,其值会无限增长。
指数函数对数函数与幂函数指数函数的性质与图像
指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。
指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。
a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。
当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。
02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。
常用对数:以10为底数的对数,记作lg(x)。
底数为任意正数的对数,记作log(x)。
对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。
•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。
指数函数的图象和性质
1
1
练习:比较大小 a3和a 2,(a 0, a 1)
方法总结
(1)构造函数法:要点是利用函数的单调性,数的特征是同底不同 指(包括可以化为同底的),若底数是参变量要注意分类讨论。比 较两个同底数幂的大小时,可以构造一个指数函数,再利用指数函数的 单调性即可比较大小. (2)搭桥比较法:用别的数如0或1做桥。数的特征是不同底不同指。 比较两个不同底数幂的大小时,通常引入第三个数作参照.
分析:(1)因为该城市人口呈指数增长,而同一指数函数 的倍增期是相同的,所以可以从图象中选取适当的点计算 倍增期.(2)要计算20年后的人口数,关键是要找到20年与 倍增期的数量关系. 解:(1)观察图,发现该城市人口经过20年约为10万人,经过40年 约为20万人,即由10万人口增加到20万人口所用的时间约为20年, 所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为 20年,所以每经过20年,人口将翻一番.因此,从80万人开始, 经过20年,该城市人口大约会增长到160万人.
x
用描点法作函数y (1)x 和y (1)x的图象.
函
2
3
x … -3 -2 -1 0 1 2 3 …
数 y=2-x … 8 4 2 1 1/2 1/4 1/8 …
图 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
象 y (1)x 2
特 征
y (1)x 3
y
O
思考:若不用描点法, 这两个函数的图象又该 如何作出呢?
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三:图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1
指数函数的图象与性质指数函数知识梳理指数函数运算法则公式
指数函数的图象与性质•指数函数y=a x(a>0,且a≠1)的图象和性质:0<a<1 a>1 图像图像定义域R值域(0,+∞)恒过定点图像恒过定点(0,1),即当x等于0时,y=1单调性在(∞,+∞)上是减函数在(∞,+∞)上是增函数函数值的变化规律当x<0时,y>1 当x<0时,0<y<1当x=0时,y=1 当x=0时,y=1当x>0时,0<y<1 当x>0时,y>1•底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当0<a<l时,底数越小,函数图象在第一象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数与函数y=的图象关于y轴对称。
利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值,•指数函数图象的应用:函数的图象是直观地表示函数的一种方法.函数的很多性质,可以从图象上一览无余.数形结合就是几何与代数方法紧密结合的一种数学思想.指数函数的图象通过平移、翻转等变可得出一般函数的图象.利用指数函数的图象,可解决与指数函数有关的比较大小、研究单调性、方程解的个数、求值域或最值等问题.高中数学必修之指数函数知识梳理知识点1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图象.3体会指数函数是一类重要的函数模型.知识梳理1.根式的性质2.有理指数幂考点1:指数幂的运算[规律方法] 1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.考点2:指数函数的图象及应用[规律方法]指数函数图象的画法(判断)及应用(1)画(判断)指数函数y=ax(a>0,a≠1)的图象,应抓住三个关键点:(1,a),(0,1) ,【1,1/a】(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.[规律方法] 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.总结思想与方法1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较。
指数函数的图像及性质
∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;
,
xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是
解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.
2.1.2指数函数的图象及性质
a>1
y y=ax
(a>1) (0,1)
0<a<1
y=ax
(0<a<1) (0,1)
y y=1 x
x
0
定义域: R 值 域: (0,+ ∞ ) 必过 点: 0 , 1 ) ,即 x = 0 时, y = 1 . (
在 R 上是 增函数 在 R 上是 减函数
指数函数: y=ax (a >0且a=1) 图 象
13* 1+1% ( )
2
3 经过3年后(2002年),人口数为13 (1+1%) *
经过x年后,人口数为
y = 13 * (1 + 1%)
x
指数型函数: 指数型函数: 设原有量为N,每次的增长率为p,经过x年次 增长,该量增长到y,则
y = N *(1+ p) (x ∈ N)
x
形如 y = ka x (k ∈ R, 且k ≠ 0; a > 0, 且a ≠ 1) 的函数叫做指数型函数。
x
定义域是R 定义域是R。
探究:为什么要规定 a 探究:
探讨:若不满足上述条件 探讨 若不满足上述条件
> 0且a ≠ 1
y=a
x
会怎么样? 会怎么样
(1)若 a = 0 x 则当x > 0时, a
x
=0
当x≤0时, a 无意义. (2)若 a < 0 则对于x的某些数值,可使 x 如 (−2) x ,这时对于 a 无意义.
指数函数图象与性质的应用: 指数函数图象与性质的应用 比较下列各题中两个值的大小: 例3 、比较下列各题中两个值的大小: ①
1.7
2.5
指数函数及其图像与性质_图文
小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x
…
-3
…
8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1
图
像
性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5
指数函数图象及性质
mn
⑶比较下列各数的大小:
10 , 0.42.5 ,
2 0.2
1 0.42.5 0
2 0.2
例3在同一坐标系下作出下列函数的图象,并指出
它们与指数函数y= 2x 的图象的关系,
⑴ y 2x1 与 y 2x2
⑵ y 2x1 与 y 2x2
解:⑴列出函数数据表,作出图像
x -3 -2 -1 0 1 2 3
( 1 0,且 1 1)
a
a
探究2:判断下列函数,那些是指数函数?
(1) y=4x
(2) y=x4
(3) y=-4x
(4) y=(-3)x
(5) y=xx
(6) y=3×4x
(7) y=3x+1
点评:函数解析式三大特征为①指数是自变量 x ;②底数是非1正常数;③系数为1.
随堂练习:
函数y=(a2-3a+3)ax 是指数函数,求a的 值.
-0.5 0 0.6 1 1.7 1
0.5 1 2 3 … 1.4 2 4 8 …
0.71 0.5 0.25 0.13 …
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
由3x≥30.5,可得x≥0.5,即x的取值范围为 [0.5,+∞)。
;
高中数学必修1同步辅导课程——指数函数及其性质
例2:解下列不等式
(1)(1)x2 8 32x 3
(2) ax22x ( 1 )x2 (a 0且a 1) a
例2:指出下列函数的单调区间,并判断增减性;
指数函数的性质与图像公开课优质课件一等奖
2024/1/27
16
人口增长模型
人口增长模型
假设人口增长率保持不变,则人口数量与时间之间的关系可以用指数函数来描 述。即N(t) = N0e^(rt),其中N(t)表示t时刻的人口数量,N0表示初始人口数 量,r表示人口增长率。
指数函数在人口增长模型中的应用
通过指数函数模型,可以预测未来人口数量的变化趋势,为城市规划、资源分 配等提供决策依据。
指数函数的性质与图像公 开课优质课件一等奖
2024/1/27
1
目录
2024/1/27
• 指数函数基本概念 • 指数函数性质分析 • 指数函数图像特征 • 指数函数在生活中的应用举例 • 求解指数方程和不等式方法探讨 • 总结回顾与拓展延伸
2
01
指数函数基本概念
2024/1/27
3
指数函数定义
指数函数是形如 f(x) = a^x (a > 0, a ≠ 1) 的函数,其中 a 是底数,x 是指 数。
当a=1时,指数函数f(x)=1是偶函数,因为 f(-x)=f(x)对于所有的x都成立。
当a=-1时,指数函数f(x)=(-1)^x是奇函数, 因为f(-x)=-f(x)对于所有的x都成立。
2024/1/27
10
03
指数函数图像特征
2024/1/27
ห้องสมุดไป่ตู้
11
图像形状及位置
指数函数图像是一条从左下方 向右上方延伸的曲线,形状类 似于指数增长的曲线。
指数函数的单调性可以通过其导数进行证明。对于底数a>1的指数函数,其导数恒大于0,因此函数单调增加; 对于0<a<1的指数函数,其导数恒小于0,因此函数单调减少。
课件6:4.1.2 指数函数的性质与图像
∴
1
0< ≤≤.
由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],
∴
2 −2−3
1
2
∴ y=
≤
1 −4
=16.又∵
2
2 −2−3
1
2
2 −2−3
1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2
=
(2)
=
;
2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1
指数函数图像和性质
[例 3]
比较下列各组数的大小: 1;
3-1.8 3-2.6 5 -2 (1)4 与4 ;(2)(8) 3 与
-2
4 -2 1 0.3 3 (3)0.6 与(3) ;(4)(3) 与 3-0.2. [思路点拨] (1),(2),(4)利用指数函数的单调性比
较;(3)利用中间值 1 比较.
4 -2 40 3 (3)∵0.6 >0.6 =1,(3) <(3) =1,
-2
0
4 -2 ∴0.6 >(3) 3 ;
-2
1 0.3 (4)∵(3) =3-0.3, 又∵-0.3<-0.2,∴3-0.3<3-0.2, 1 0.3 -0.2 ∴(3) <3 .
[一点通] 比较指数式大小的方法
(1)单调性法:比较同底数幂的大小,可构造指数函数,
(1) 1.72.5 , 1.73; (2) 0.8-01,0.8-02 指数相同底数不同 幂式比较大小,利用 (4幂函数单调性比较 ) 与
(3)
与
(5)(0.3) -0.3 与 (0.2) -0.3 (6)1.70.3,0.93.1
利用函数图像 不同底但同指数 或中间变量进行 比较 底不同,指数也不同
-0.28,
0.67
-3.1
.
解:(1)0.90.1,0.90.2可看作函数y=0.9x的两个函数值, 由于底数0.9<1, 所以指数函数y=0.9x在R上是减函数, 因为0.1<0.2,
所以0.90.1>0.90.2;
当 x > 0 时, 0< y < 1。
定义域: R 性 值 域: ( 0,+ ∞ ) 恒 过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 . 质 在 R 上是单调 增函数 在 R 上是单调 减函数
指数函数图像和性质_课件
0.4
2.5
10 20.2
比较指数型值常常 借助于指数函数的图像 或直接利用函数的单调性 或选取适当的中介值(常用的特殊值是0和1),再利用单调性比较大小
a>1
图
6
0<a<1
6
5
5
4
4
3
3
象
1
-4 -2
2
2
1
1
1
-4
-2
0
-1
2
4
6
0
-1
2
4
6
1.定义域:R
性
2.值域:(0,+∞) 3.过点(0,1),即x=0时,y=1
x
x
-2
-1
0 1
1 2
2 4
3 8
2
1 2 x
1 8 8 1 27 1 27
1 4
4
1 2 2 1 3 3
1
1 1
3
1 3
x
1 9 9
1 2 3 1 3
1 4 9 1 9
1 8 27 1 27
y
1 y 2
x
1 y 3
x
y 3x
x>0时,0<y<1 x<0时, y>1 在R上是减函数
比较下列各题中两个值的大小: ①
1 .7
2 .5
,
1.7
3
解 :利用函数单调性, 1.7 2.5 与 1.7 3 的底数是1.7,它们可以看成函数 y= 1.7 x 当x=2.5和3时的函数值;
5
;
因为1.7>1,所以函数y= 1.7 在R上是增函数, 而2.5<3,所以,
4.2指数函数的图象与性质课件(人教版)
(2)该城市人口从80万人开始,经过20年会
增长到多少万人?
分析:(1)因为该城市人口呈指数增长,而
同一指数函数的倍增期是相同的,所以可以
从图象中选取适当的点计算倍增期.
(2)要计算20年后的人口数,关键是要找到
20年与倍增期的数量关系.
解:(1)视察图,发现该城市人口经过20年
或中间变量进行
比较
三、应用三
(2023·北京·统考高考真题)下列函数中,在区间 (0, ) 上单调递增的是( C )
A. f ( x) ln x
C. f ( x)
1
x
1
B. f ( x) x
2
| x 1|
D. f ( x) 3
三、应用四
如图,某城市人口呈指数增长.
(1)根据图象,估计该城市人口每翻一番所
4
7
3
7
不同底但可化同底
5 0.3
0.3
与 0.2
<
0.3
不同底但同指数
6
0.3
1.7
>
同底指数幂比大
小,构造指数函数,
利用函数单调性
与0.9
3.1
底不同,指数也不同
7
与
8
<
5
12
不同底数幂比大小
,利用指数函数图像
与底的关系比较
利用函数图像
y 的图象,探究两个函数的图象有什
2
两个函数图像关于y轴对称
8
fx = 2x
7
6
x
x
y
y
5
-2
4
指数函数的图像和性质
指数函数的图像和性质
指数函数是一种特殊函数,其定义域为实数集合R,值域也是实数集合R。
指
数函数的图像是一条弧线,朝右上方抛物线式延伸,底点在坐标原点处。
其图像如下所示:
指数函数具有以下性质:
一、指数函数是定义在实数集合上的单值函数,其图象是一条朝右上方延伸的
弧线,且在坐标原点处有底点,函数值随x增大而增大,函数图像上每一点到底点的距离都不变;
二、指数函数对任何正实数都有定义,指数函数f(x)=a^x(a为正实数)的图
谱具有单调性,当a的值不同时,指数函数的函数图象具有相似的特点;
三、指数函数具有不变性,不论x的取值范围如何,函数的函数图象仍不改变;
四、指数函数的切线斜率随着x的增大而增大;
五、指数函数的斜率在同一条线上增加或减少;
六、不论指数函数是升幂函数还是降幂函数,其图象都是从坐标原点开始,一
条朝右上方延伸的弧线。
以上就是指数函数的图像与性质,根据以上描述,指数函数的函数图像与以及
其性质可以得出:指数函数是从坐标原点开始,一条朝右上方延伸的弧线,有着单调性,不变性,切线斜率随着x的增大而增大等性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数的图像与性质
教师李昱彤班级高一()班时间2019.9.24课题指数函数及其性质
依据课程标准:
通过具体实例,了解指数函数的实际意义,理解指数函数的概念;
能用描点法或借助计算工具画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点。
教学目标
知识与技能通过具体实例,了解指数函数模型的实际背景,认识数学与现实生活的联系。
理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性和特殊点。
过程与方法在学习过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的思想方法,分类讨论的思想方法。
情感态度与价值观通过对指数函数的自主探究和思考,培养学生的数学建模,数学运算,逻辑推理等数学核心素养。
学情分析:
学生初中已经掌握了用描点法描绘函数图像的方法,通过对第一章的学习学生已经充分认识了函数的感念,了解函数的基本性质,认识简单函数的图像,具备数形结合思想。
教材分析
本节课的作用与地位:函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中学习之中。
本节课是在实数指数幂及其运算性质等知识基础上,进一步学习指数函数的概念、图像和性质及初步应用。
本节课主要内容:从指数函数的实际背景引入课题构建指数函数的概念画指数函数的图像探索指数函数的性质指数函数的初步应用课堂小结与作业
教学重点:指数函数的概念与性质
教学难点:用数形结合的方法通过对指数函数的图像的探究,从具体到一般地探索、概括指数函数的性质
教学方法
运用直观感知、操作确认、软件展示等认识和探究指数函数的图像与性质
教学过程设计
教
学
流
程
教学内容师生互动设计意图
情境引入1、国际象棋的起源:棋盘与麦
粒的故事
2、俗语:“一尺之锤,日取其
半,万世不竭”
(1)引例一:学生思考第格所放的麦粒
数是;
(2)引例二:第天取
(3)比较这两个函数的
相似之处,观察它们的定义域
(4)思考:有意义吗,哪?
(5)分析当时,都是有意
义的
用函数的观
点分析变量
间的对应关
系,为引出
指数函数的
概念做准
备。
探究新知归纳方法一、指数函数的概念
指数函数定义:一般地,函数
叫做指
数函数;
二、指数函数的图像
1、运用列表、描点、连线画指数
函数的图
像;
2、观察的图
像关于y轴对称
3、在同一坐标系中画指数函数
图像
4、归纳一般性与
提出问题:(1)为什么要规定:
?
归纳当时,x可以取任意实
数。
(2)那么请同学们分析下列哪些函数是指数
函数(2)(3)
(4)(5)
(6)
(3)画图像的步骤是什么?—列表、描点、
连线
(4)请同学们在学案上画出这两个函数的图
像。
(5)几何画板展示:列表过程;追踪点的轨
迹,形成指数函数图像;通过实例特点体会
指数函数图像特点
通过描点分
析取同一个
自变量x,
提炼出指数
函数的模型
用描点法画
这两个函数
的图像
总结中两个
指数函数图
像关于
轴对称时
解析式的
特点
感受
时底数越
大,图像
越靠近
轴
由特殊到一
般归纳指数
函数的图像
图像间的对称关系三、归纳指数函数的性质
的函
数值更大,
并动点演示
底的变化情
况,由特
殊到一般分
析指数函数
的图像分为
两
和
小组讨论,
自主学习,
探究,在
学案中完成
指数函数的
性质。
特点
获得指数函
数的性质
自我尝试运用新知例题:(1)指数函数
过点,求的值
(2)函数图像
恒过定点P,则P的坐标是
_______
学生回答,并思考指数型函数过定点问题。
思考题:请同学们思考如果在同一坐标系中
画出下列指数函数图像,如何比较底数
的大小。
尝试运用,
巩固新知。
通过课后思
考题,加深
学生对指数
函数图像的
认识。