2020~2021学年中考数学《数轴上的动点问题》专题讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数轴上的动点问题》专题讲义
一.动点问题的处理方法
“点-线-式”三步
二.动点问题的解题步骤
1.列点:将已知点用具体的数表示,未知动点用含t的式子表示
①点的左右移动:数轴上的点向左移动用减法,移动几个单位长度就减去几,
向右移动用加法,移动几个单位长度就加上几。
②点的表示:通常用含t的式子表示数轴上的动点,可以根据动点的位置、速度和移动的方向将点表示出来。
例题1:如图,数轴上点A表示的数为-3,点B表示的数为6,动点P从A出发向右运动,速度2为每秒个单位长度,动点Q从B出发向左运动,速度为每秒3个单位长度,t秒后,求动点P、Q表示的数。
2.列线:利用两点间距离的表示方法将线段用具体的数或式子表示出来
数轴上两点之间的距离三种表示方式:
①如果两个点所表示的数的大小已知,直接用较大的数减去较小的数;
②如果两个点所表示的数的大小未知,则用两个数的差的绝对值表示;
③动点的起始点和终止点之间的线段可以用动点所走的路程表示。
例题2:数轴上点A表示的数为-3,点B表示的数为6,动点P从A出发向右运动,速度为每秒2个单位长度,动点Q从B出发向左运动,速度为每秒3个单位长度,t秒后,求线段AB、AQ、BP、PQ、AP、BQ的长。
3.列式:解决数轴上的动点问题的一个重要方法就是方程法,可以根据题目中的线段之间的数量关系,列出方程并解方程
例题3:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一点,对应的数为x。若点P到A、B两点的距离相等,求点P对应的数。
三、动点问题的常用工具
1.中点公式:如图,数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,且B为A、C中点,
则b=2c
a
2.解绝对值方程:
①|a|=b,则a=±b ②|a|=|b|,则a=±b ③|x-a|+|x-b|=c(零点分段法)
3.分类讨论思想:
例题4:已知数轴上两点A、B对应的数分别为-3、5,P为数轴上的动点,其对应的数为x。数轴上是否存在点P,使得点P到A、B的距离之和为10,若存在,请求出x的值;若不存在,请说明理由。
四、动点问题的常见题型
1.点的重合问题:通常是相遇与追击问题,通过点的运动状态可以判断出两个动点重合,重合则两个点表示的数相等,将两个动点用含t的式子表示出来,并令两个式子相等。
例题5 :已知数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)甲,乙在数轴上的哪个点相遇?
(2)多少秒后,甲到A,B,C的距离和为48个单位?
(3)在甲到A、B、C的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.
2.中点问题:
①题目中明确说明其中一个点为另外两个点的中点,如:A、B、C三点,点A是点B、C的中点,直接利用中点公式列方程
②题目中说三个点有一个点是另外两个点的中点,如:A、B、C三点,有一点是另外两个点的中点,分三种情况进行讨论,然后利用中点公式列方程
例题6:如图,数轴原点为O,A、B是数轴上的两点,点A对应的数是1,点B对应的数是﹣4,动点P、Q 同时从A、B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为t秒(t >0).
(1)AB两点间的距离是;动点P对应的数是(用含t的代数式表示);动点Q对应的数是(用含t的代数式表示).
(2)几秒后,点O恰好为线段PQ中点?
(3)几秒后,恰好有OQ=2PO?
3、线段长及线段的和、差、倍、比关系问题
解题思路:题目中通常会说点与点之间的距离,即线段的长度,条件中会给出两条线段的和、差、倍数、或比例关系,先将题目中的线段用两点间的距离表示出来,然后根据具体的关系列方程,当动点之间的位置无法确定时,通常用绝对值来表示线段长度。
(1)线段之长问题(线段之和问题、线段之比问题、线段倍数问题、线段相等问题)
例题7:如图,已知数轴上有A、B、C三个点,它们表示的数分别是a、b和8,O是原点,且(a+20)2+|b+10|=0.(1)填空:a= ,b= ;
(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长;并探索:BC﹣AB的值是否随着时间t的变化而变化?请说明理由.
(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动,设点P移动的时间为t秒,
问:①当t为多少时,点Q追上点P;
②当t为多少时,P、Q两点相距6个单位长度?
4.线段定值问题:题目中给出几条线段的关系,要求判断其是否为定值,先将所给线段都用两点间的距离表示出来,然后再将题目中所给的式子用线段表示出来,化简之后可以将t消去,所得值为常数,因此可以确定是定值。
例题8:如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣6)2=0.
若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
(1)a= ,b= ,c= ;
(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,设运动时间为t秒.
①当t=1时,则AC= ,AB= ;
②当t=2时,则AC= ,AB= ;
③请问在运动过程中,3AC﹣4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.