2020~2021学年中考数学《数轴上的动点问题》专题讲义

合集下载

2020~2021学年中考数学《数轴》专题知识点归纳

2020~2021学年中考数学《数轴》专题知识点归纳

《数轴》专题知识点归纳知识点一、认识数轴、画数轴1. 数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.(1)数轴是一条可以向两端无限延伸的直线;(2)数轴有三要素:原点、正方向、单位长度,缺一不可;(3)数轴三要素是“规定”的,通常,我们习惯性向右为正方向,原点的位置和单位长度的大小要依据实际情况灵活选取,但是,一旦选定后就不能随意改变;(4)在同一条数轴上,单位长度的大小必须统一,要根据实际问题灵活选取单位长度的大小.2. 数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)确定正方向:规定直线上向右为正方向,画上箭头;(4)选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…例:下列能正确表示数轴的是()【解答】D【解析】A选项不是直线,所以不是数轴;B选项单位长度不统一,也不是数轴;C选项没有正方向,也不是数轴;D选项正确.知识点二、数轴与有理数、无理数的关系1. 有理数和无理数都可以用数轴上的点表示.(1)正数可以用数轴上原点右边的点表示;(2)负数可以用数轴上原点左边的点表示;(3)0用原点表示.2. 所有的有理数都可以用数轴上的点来表示,但数轴上的点不一定表示有理数.3. 数轴上的点与有理数、无理数建立了一一对应的关系,揭示了数与形的联系,是数形结合的基础.例:画一个数轴,并在数轴上将下列各数在数轴上表示出来:-3、-5.3、0、、【解答】见解析【解析】如图所示:知识点三、利用数轴比较有理数的大小1. 在数轴上表示的两个数,右边的数总比左边的数大;2. 正数都大于0,负数都小于0,正数大于负数.正确画出数轴后,将各个有理数在数轴上表示出来,按照从左到右顺序用“<”号或者按照从右到左顺序用“>”号连接起来,注意不要漏数.例:在数轴上表示出2.5、0、、-2、2、,并用“<”号将它们连接起来.【解答】见解析【解析】如图所示:由上图可得.巩固练习一.选择题1.在数轴上,点A、B在原点O的两侧,分别表示数a、2,将点A向右平移3个单位长度,得到点C.若CO=2BO,则a的值为()A.﹣1 B.﹣7 C.1或﹣7 D.7或﹣12.数轴上点C是A、B两点间的中点,A、C分别表示数﹣1和2,则点B表示的数()A.2 B.3 C.4 D.53.数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.54.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对5.数轴上到点﹣2的距离为5的点表示的数为()A.﹣3 B.﹣7 C.3或﹣7 D.5或﹣36.如图,O,A,B,C四点在数轴上,其中O为原点,且AC=2,OA=2OB,若C点所表示的数为m,则B点所表示的数正确的是()A.﹣2(m+2)B.C.D.7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二.填空题8.在数轴上点A对应的数为﹣2,点B是数轴上的一个动点,当动点B到原点的距离与到点A的距离之和为6时,则点B 对应的数为.9.点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.10.数轴上表示﹣4.5与2.5之间的所有整数之和是.11.已知数轴上两点A,B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x,当P到点A,B的距离之和为8时,则对应的数x的值为.12.在数轴上,点A表示的数是3+x,点B表示的数是2﹣x,且A,B两点的距离为8,则x=.13.利用数轴解答:有一座三层楼房不幸起火,一位消防队员搭梯子爬往三楼去救人,当他爬到梯子正中一级时,二楼窗口喷出火来,他就往下退了3级,等到火过去了,他又爬了7级,这时屋顶有砖掉下,他又往后退了2级,幸好没事,他又爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有级.14.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N 两点间的距离为12个单位长度.15.一个点从数轴上的原点开始,先向右移动一个单位长度,再向左移动4个单位长度,从图中可以看出,终点表示的数是﹣3.请参照图,完成填空:(1)如果点A表示的数是﹣5,向左移动4个单位长度,那么终点表示的数是.(2)如果点B表示的数是4,将点B向右移动6个单位长度,再向左移动5个单位长度,那么终点表示的数是.三.解答题16.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米):+10,﹣8,+6,﹣14,+4,﹣2.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?17.2019年2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为1.2千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?18.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.19.如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由:若不变,请求其值.20.小明、小兵、小英三人的家和学校在同一条东西走向的大街上,星期天班主任到这三位学生家进行家访,班主任从学校出发先向东走0.5千米到小明家,后又向东走1.5千米到小兵家,再向西走5千米到小英家,最后回到学校.(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵小英三人家的位置.(2)小明家距离小英家多远?(3)这次家访,班主任共走了多少千米路程?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,然后又向东走了14千米,又向西走了11千米,又向东走了10千米,最后向西走了8千米.(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x是小于5的正数,单位:km):第1次第2次第3次第4次x x﹣6 2(8﹣x)(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当x=2时,求这辆出租车在这四次的行驶中总共耗油多少升?23.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?24.已知数轴上A,B两点对应数分别为﹣2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?参考答案一.选择题1.在数轴上,点A、B在原点O的两侧,分别表示数a、2,将点A向右平移3个单位长度,得到点C.若CO=2BO,则a的值为()A.﹣1 B.﹣7 C.1或﹣7 D.7或﹣1【解答】B【解析】∵B表示数2,∴CO=2BO=4,由题意得:|a+3|=4,∴a+3=±4,∴a=1或﹣7,∵点A、B在原点O的两侧,∴a=﹣7,故选B.2.数轴上点C是A、B两点间的中点,A、C分别表示数﹣1和2,则点B表示的数()A.2 B.3 C.4 D.5【解答】D【解析】设点B所表示的数为b,∵点C是AB的中点,∴2,解得,b=5,故选D.3.数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.5【解答】D【解析】设点D表示的数为x,则点C表示的数为x﹣3,点B表示的数为x﹣4,点A表示的数为x﹣7,由题意得,x+(x﹣3)+(x﹣4)+(x﹣7)=6,解得,x=5,故选D.4.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对【解答】C【解析】∵点A表示的数为﹣10,OB=3OA,∴OB=3OA=30.则B对应的数是30,设经过x秒,点M、点N分别到原点O的距离相等,①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.故选C.5.数轴上到点﹣2的距离为5的点表示的数为()A.﹣3 B.﹣7 C.3或﹣7 D.5或﹣3【解答】C【解析】设这个数为x,由题意得,|x﹣(﹣2)|=5,x+2=5或x+2=﹣5,解得,x=3或x=﹣7.故选C.6.如图,O,A,B,C四点在数轴上,其中O为原点,且AC=2,OA=2OB,若C点所表示的数为m,则B点所表示的数正确的是()A.﹣2(m+2)B.C.D.【解答】D【解析】由点A、B、C在数轴上的位置,AC=2,若C点所表示的数为m,∴点A表示的数为m﹣2,∴OA=|m﹣2|=2﹣m∵OA=2OB,∴OB OA,故选D.7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【解答】D【解析】已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选D.二.填空题8.在数轴上点A对应的数为﹣2,点B是数轴上的一个动点,当动点B到原点的距离与到点A的距离之和为6时,则点B 对应的数为.【解答】﹣4或2【解析】设点B表示的数为b,①当点B在点A的左侧时,则有﹣2﹣b﹣b=6,解得,b=﹣4,②当点B在OA之间时,AB+AO=2≠6,因此此时不存在,③当点B在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为﹣4或2.9.点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.【解答】7【解析】AB=|﹣2﹣5|=7,故答案为7.10.数轴上表示﹣4.5与2.5之间的所有整数之和是.【解答】﹣7【解析】如图所示:,数轴上表示﹣4.5与2.5之间的所有整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,故符合题意的所有整数之和是:﹣4﹣3﹣2﹣1+0+1+2=﹣7.故答案为﹣7.11.已知数轴上两点A,B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x,当P到点A,B的距离之和为8时,则对应的数x的值为.【解答】﹣3或5【解析】由题意得,|x+1|+|x﹣3|=8,①当点P在点A的左侧时,即x<﹣1时,方程可变为:﹣x﹣1﹣x﹣3=8,解得,x=﹣3,②当点P在点A、B之间,即﹣1<x<3时,方程可变为:﹣x﹣1+x﹣3=8,此方程无解,③当点P在点B的右侧时,即x>3时,方程可变为:x+1+x﹣3=8,解得,x=5,因此x的值为﹣3或5,故答案为﹣3或5.12.在数轴上,点A表示的数是3+x,点B表示的数是2﹣x,且A,B两点的距离为8,则x=.【解答】3.5或﹣4.5【解析】①当点A在点B左侧时,2﹣x﹣(3+x)=8,解得:x=﹣4.5;②当点A在点B右侧时,3+x﹣(2﹣x)=8,解得:x=3.5.故答案为3.5或﹣4.513.利用数轴解答:有一座三层楼房不幸起火,一位消防队员搭梯子爬往三楼去救人,当他爬到梯子正中一级时,二楼窗口喷出火来,他就往下退了3级,等到火过去了,他又爬了7级,这时屋顶有砖掉下,他又往后退了2级,幸好没事,他又爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有级.【解答】23【解析】设中间一级为第x级,则全梯共有2x﹣1级,根据题意得:x﹣3+7﹣2+8+1=2x﹣1.∴x=12.∴2x﹣1=23.故答案为23.14.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为12个单位长度.【解答】2或18【解析】分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;①当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t(舍去),或t=2;故答案为2或18.15.一个点从数轴上的原点开始,先向右移动一个单位长度,再向左移动4个单位长度,从图中可以看出,终点表示的数是﹣3.请参照图,完成填空:(1)如果点A表示的数是﹣5,向左移动4个单位长度,那么终点表示的数是.(2)如果点B表示的数是4,将点B向右移动6个单位长度,再向左移动5个单位长度,那么终点表示的数是.【解答】(1)﹣9;(2)5【解析】(1)﹣5﹣4=﹣9.故终点表示的数是﹣9;(2)4+6﹣5=5;故终点表示的数是5.故答案为﹣9;5.三.解答题16.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米):+10,﹣8,+6,﹣14,+4,﹣2.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?【解答】(1)A处在岗亭西方,距离岗亭4千米;(2)22升【解析】(1)+10﹣8+6﹣14+4﹣2=﹣4(千米),答:A处在岗亭西方,距离岗亭4千米;(2)|+10|+|﹣8|+|+6|+|﹣14|+|﹣2|=10+8+6+14+4+2=44(千米)44×0.5=22(升)答:这一天共耗油22升.17.2019年2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为1.2千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?【解答】(1)A站是市政府站;(2)58.8(千米)【解析】(1)由题意得:+5﹣2+6﹣11+8+1﹣3﹣2﹣4+7=+5+6+8+1+7﹣2﹣11﹣3﹣2﹣4=27﹣22=5,在电业局东第5站是市政府,答:A站是市政府站;(2)由题意得:(|+5|+|﹣2|+|+6|+|﹣11|+|+8|+|+1|+|﹣3|+|﹣2|+|﹣4|+|+7|)×1.2=(5+2+6+11+8+1+3+2+4+7)×1.2=49×1.2=58.8(千米)答:小王志愿服务期间乘坐公交车行进的路程是58.8千米.18.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.【解答】(1)见解析;(2)﹣1,图见解析;(3)点P所表示的数是﹣3或﹣7 【解析】(1)点B在数轴上的位置如图1所示.(2)解法一:因为AC=2BC,点C在AB之间,所以AB=AC+BC=3BC.因为AB=1﹣(﹣5)=6,所以BC=2.因为点B所表示的数是1,1﹣2=﹣1所以点C所表示的数是﹣1.解法二:设BC=x,则AC=2x.因为AB=1﹣(﹣5)=6,所以x+2x=6.解得x=2.因为点B所表示的数是1,1﹣2=﹣1,所以点C所表示的数是﹣1.解法三:设点C所表示的数为x.因为点C在AB之间,所以BC=1﹣x,AC=x﹣(﹣5)=x+5.因为AC=2BC,所以x+5=2(1﹣x).解得x=﹣1,点C在数轴上的位置,如图2所示.(3)解法一:因为PA+PC=PB,所以点P在点C左侧.因为点A表示的数是﹣5,点B表示的数是1,点C表示的数是﹣1,所以AC=﹣1﹣(﹣5)=4,AB=1﹣(﹣5)=6.①当点P在AC之间时,设PA=x,则PC=AC﹣PA=4﹣x.所以PB=PC+BC=4﹣x+2=6﹣x.因为PA+PC=PB,所以x+4﹣x=6﹣x.解得x=2.因为点A所表示的数是﹣5,﹣5+2=﹣3,此时点P所表示的数是﹣3.②当点P在点A左侧时,设PA=x,则PC=PA+AC=4+x,PB=PA+AB=x+6,因为PA+PC=PB,所以x+4+x=6+x.解得x=2.因为点A所表示的数是﹣5,﹣5﹣2=﹣7,此时点P所表示的数是﹣7.所以点P所表示的数是﹣3或﹣7.解法二:因为PA+PC=PB,所以点P在点C左侧.所以PA=PB﹣PC=BC=2.因为点A所表示的数是﹣5,所以点P所表示的数是﹣3或﹣7.19.如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由:若不变,请求其值.【解答】(1)2,6,8;(2)①(﹣2﹣t),2t,(6+5t);②4【解析】(1)AB=|﹣2﹣0|=2,BC=|0﹣6|=6,AC=|﹣2﹣6|=8,故答案为2,6,8.(2)①移动t秒后,点A所表示的数为(﹣2﹣t),点B所表示的数为2t,点C所表示的数为(6+5t),因此,AB=2t﹣(﹣2﹣t)=3t+2,BC=(6+5t)﹣2t=3t+6,AC=6+5t﹣(﹣2﹣t)=6t+8,②BC﹣AB=3t+6﹣(3t+2)=4,答:BC﹣AB的值不会随着运动时间t的变化而变化,其值为4.20.小明、小兵、小英三人的家和学校在同一条东西走向的大街上,星期天班主任到这三位学生家进行家访,班主任从学校出发先向东走0.5千米到小明家,后又向东走1.5千米到小兵家,再向西走5千米到小英家,最后回到学校.(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵小英三人家的位置.(2)小明家距离小英家多远?(3)这次家访,班主任共走了多少千米路程?【解答】(1)见解析;(2)小明家距小英家3.5千米;(3)10千米【解析】(1)规定向东为正,则向西为负,学校为原点,表示的数为0,小明家表示的数为0.5,小兵家表示的数为2,小英家所表示的数为﹣3,数轴如图所示:(2)0.5﹣(﹣3)=3.5千米,答:小明家距小英家3.5千米;(3)0.5+1.5+5+3=10千米,答:这次家访,班主任共走10千米的路程.21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,然后又向东走了14千米,又向西走了11千米,又向东走了10千米,最后向西走了8千米.(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?【解答】(1)+15,﹣13,+14,﹣11,+10,﹣8;(2)出车点东7千米;(3)最远为16千米;(4)19.17元【解析】(1)用正负数表示小张向东或向西运动的路程(单位:千米)为:+15,﹣13,+14,﹣11,+10,﹣8,(2)(+15)+(﹣13)+14+(﹣11)+10+(﹣8)=7千米,答:将最后一名乘客送到目的地时,小张在下午出车点东7千米的地方,(3)将每一位顾客送到目的地,离出发点的距离为,15千米,2千米,16千米,5千米,15千米,7千米,因此最远为16千米,答:离开下午出发点最远时是16千米.(4)0.06×4.5×(15+13+14+11+10+8)=19.17元,答:这天下午共需支付19.17元的油钱.22.一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x是小于5的正数,单位:km):第1次第2次第3次第4次x x﹣6 2(8﹣x)(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当x=2时,求这辆出租车在这四次的行驶中总共耗油多少升?【解答】(1)见解析;(2)1.9升【解析】(1)第1次,向东行驶x千米,第2次,向西行驶x千米,第3次,向西行驶(6﹣x)千米,第4次,向东行驶2(8﹣x)千米;(2)行驶的总路程为:x x+6﹣x+2(8﹣x)=22x,当x=2时,原式=22﹣3=19,0.1×19=1.9升,答:这辆出租车在这四次的行驶中总共耗油1.9升.23.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】(1)1;(2)﹣3.5或1.5;(3)P﹣45,Q﹣47【解析】(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.24.已知数轴上A,B两点对应数分别为﹣2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?【解答】(1)P点对应的数为或;(2)x;(3)第分钟时,A为BP的中点;第分钟时,B为AP的中点;第3分钟时,P为AB的中点【解析】(1)因数轴上A、B两点对应的数分别是﹣2和5,所以AB=7,又因P为线段AB的三等分点,所以AP=7÷3或AP=7÷3×2,所以P点对应的数为或;(2)若P在A点左侧,则﹣2﹣x+5﹣x=10,解得:x;若P在A点、B中间,∵AB=7,∴不存在这样的点P;若P在B点右侧,则x﹣5+x+2=10,解得:x;(3)设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x,①当P为AB的中点,则5﹣6x+(﹣2﹣x)=2×(﹣3x),解得:x=3;②当A为BP中点时,则2×(﹣2﹣x)=5﹣6x﹣3x,解得:x,③当B为AP中点时,则2×(5﹣6x)=﹣2﹣x﹣3x,解得:x,答:第分钟时,A为BP的中点;第分钟时,B为AP的中点;第3分钟时,P为AB的中点.。

中考数学复习考点题型专题讲解07 数轴上动点相距问题

中考数学复习考点题型专题讲解07 数轴上动点相距问题

中考数学复专题1.如图,已知数轴上的点A 、(1)若P 到点A 、B 的距离相等,(2)动点P 从点A 出发,以2个长度个时刻t ,恰好使得P 到点A 的距在,请说明理由;(3)若动点P 从点A 出发向点B 运动点P 从点A 出发向点B 运动,同时点与Q 点的运动速度(长度单位【答案】(1)2−; (2)存在;2或6;(3)2单位长度/秒;1单位长度/【解析】 【分析】(1)设点P 对应的数为x ,(2)表示出点P 对应的数,进而(3)设P 点的运动速度m 单位长的二元一次方程组求解即可得出答(1)A B -51数学复习考点题型专题讲解07 07 数轴上动点相距问题数轴上动点相距问题B 对应的数分别是-5和1.,求点P 对应的数;个长度单位/秒的速度向右运动,设运动时间为t 秒的距离是点P 到点B 的距离的2倍?若存在,请求出运动,同时,动点Q 从点B 出发向点A 运动,经过同时,动点Q 从点B 出发与点P 同向运动,经过单位/秒) 秒表示出BP 与P A ,根据BP =P A 求出x 的值,即可确定出进而表示出P A 与PB ,根据P A =2PB 求出t 的值即可单位长度/秒,Q 点的运动速度n 单位长度/秒,根据题意得出答案.题讲解问题问题秒,问:是否存在某请求出t 的值;若不存经过2秒相遇;若动经过6秒相遇,试求P 确定出点P 对应的数; 值即可;根据题意列出关于m 、n设点P 对应的数为x ,则5PA x =+,1PB x =−,∵PA PB =, ∴51x x +=−,解得:2x =−,∴点P 对应的数为-2;(2)P 对应的数为52t −+,∴2PA t =,52126PB t t =−+−=−, ∵2PA PB =, ∴2226t t =−,当26t t =−时,6t =, 当260t t +−=时,2t =,答:当2t =或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍; (3)设P 点的运动速度m 单位长度/秒,Q 点的运动速度n 单位长度/秒,根据题意得, 226666m n m n +=−−=, 解得:21m n = = ,答:P 点的运动速度2单位长度/秒,Q 点的运动速度1单位长度/秒. 【点睛】本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.2.如图,数轴上的点O 和A 分别表示0和10,点P 是线段OA 上一动点,沿O→A→O 以每秒2个单位的速度往返运动1次,B 是线(1)线段BA 的长度为;(2)当t =3时,点P 所表示的数(3)求动点P 所表示的数(用含(4)在运动过程中,当PB =【答案】(1)5;(2)6;(3)当的数是20﹣2t ;(4)1.5或3.5【解析】 【分析】(1)根据B 是线段OA 的中点,(2)根据已知条件即可得到结论(3)分两种情况讨论:①当(4)分两种情况讨论:①当【详解】(1)∵B 是线段OA 的中点,故答案为5;(2)当t =3时,点P 所表示的数是故答案为6;(3)分两种情况讨论:①当0≤t ≤5时,动点P 所表示②当5<t ≤10时,动点P 所表4①0≤t ≤5P是线段OA 的中点,设点P 运动时间为t 秒(0≤t≤10示的数是;用含t 的代数式表示); 2时,求运动时间t .当0≤t ≤5时,动点P 所表示的数是2t ,当5<t 或6.5或8.5. ,即可得到结论; 结论;0≤t ≤5时,②当5<t ≤10时,即可得到结论;0≤t ≤5时,②当5<t ≤10时,根据线段的和差即可得∴BA 12=OA =5. 的数是2×3=6. 所表示的数是2t ; 所表示的数是20﹣2t ; 2t≤t≤10).≤10时,动点P 所表示即可得到结论.∵PB=2,∴|2t﹣5|=2,∴2t﹣5=2②当5<t≤10时,动点P所表示的∵PB=2,∴|20﹣2t﹣5|=2,∴20综上所述:所求t的值为1.5或【点睛】本题考查了一元一次方程的应用以是解题的关键.3.已知A,B在数轴上对应的数分左侧,将点B先向右平移35个单位个动点.(1)在数轴上标出A、B的位置,(2)已知线段OB上有点C且BC=(3)动点P从原点开始第一次向左移动5个单位长度,第四次向右移动请说明理由.若能,第几次移动与【答案】(1)A、B位置见解析,与点B不重合.【解析】【分析】(1)点B距离原点10个单位长度点A表示的数,在数轴上表示出距离即可;(2)设P 点对应的数为x ,当P (3)根据第一次点P 表示-1,第二即可得出结论. 【详解】解:(1)∵点B 距离原点10个单位∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度∴点A 表示的数为20, ∴数轴上表示如下:AB 之间的距离为:20-(-10)=30(2)∵线段OB 上有点C 且BC∴点C 表示的数为-4, ∵2PB PC =,设点P 表示的数为x , 则1024x x +=+, 解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:点P 第二次移动后表示的数为:点P 第三次移动后表示的数为:…,∴点P 第n 次移动后表示的数为∵点A 表示20,点B 表示-10当n=20时,(-1)n •n=20; 当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 【点睛】本题考查的是数轴,绝对值,数轴注意:数轴上各点与实数是一一对4.已知:A ,B 在数轴上对应的数数轴上的一个动点.(1)在数轴上标出A 、B 的位置, (2)已知线段OA 上有点C 且|(3)在(2)的条件下,点P 第一次向右移动5个单位长度第四次向左不能,请直接回答.若能,请指出【答案】(1)15 (2)-1或7(3)能,当P 从-1出发时,第4次移第3次移动后与点A 重合,第:-1+3-5=-3, 数为(-1)n •n ,,与点B 不重合.数轴上两点之间的距离的综合应用,正确分类是解题一一对应关系.应的数分别用a ,b 表示,O 表示原点,且()210a −,并求出A 、B 之间的距离.AC |=9,当数轴上有点P 满足PB =2PC 时,求P 点对第一次向右移动1个单位长度,第二次向左移动3个单次向左移动7个单位长度,点P 能移动到与A 或B 重合请指出,第几次移动与哪一点重合? 次移动后与点B 重合,第11次移动后与点A 重合12次移动后与点B 重合 是解题的关键.解题时21000ab ++=,P 是点对应的数. 个单位长度,第三次重合的位置吗?若都;当P 从7出发时,【分析】(1)根据非负性求出a 、b 的值(2)设P 对应的数是x ,根据条件(3)分别针对第(2)问的两种结 (1)解:由题可知a =10,b =-5,A AB =10-(-5)=15; (2)解:∵点C 在线段OA 上,且|∴点C 对应的数是:10-9=1,设点P 对应的数是x ,则当P 在点B 左侧时,PB <PC ,此种当P 在线段BC 上时,x -(-5)当P 在点C 右侧时,x -(-5)∴点P 对应的数是-1或7;(3)解:设点P 第n 次移动后表示的数①当点P 对应的数是-1时,则P 1=-1+1=0,P 2=0-3=-3,P 3=-3∴n 为奇数时,Pn =n -1,n 为偶数时∵点B 表示的数是-5,点A 表示的的值,进而得出A 、B 两点的距离; 据条件PB =2PC ,列出方程,求出P 对应的数; 两种结果,探究点P 移动的位置,得出结论. 、B 位置如图所示:AC |=9,此种情况不成立, =2(1-x ),x =-1, =2(x -1),x =7,示的数为Pn ,, 3+5=2,P 4=2-7=-5,…, 偶数时,Pn =-(n +1), 表示的数是10,∴P 点第4次移动后与点B 重合②当点P 对应的数是7时,则P 1=7+1=8,P 2=8-3=5,P 3=5+5=1∴n 为奇数时,Pn =n +7,n 为偶数时∵点B 表示的数是-5,点A 表示的∴P 点第3次移动后与点A 重合综上所述,当P 从-1出发时,第发时,第3次移动后与点A 重合【点睛】本题考查了非负数的性质,两点间动点问题,解决本题的关键在于平5.已知,A 、B 在数轴上对应的数点.(1)在数轴上标出A 、B 的位置(2)已知线段OB 上有点C 且|BC (3)动点P 从原点开始第一次向左左移动5个单位长度,第四次向右若不能,请直接回答;若能,请直【答案】(1)数轴见解析,30【解析】 【分析】1重合,第11次移动后与点A 重合; 5+5=10,P 4=10-7=3,…, 偶数时,Pn =-(n -7), 表示的数是10, 重合,第12次移动后与点B 重合, 第4次移动后与点B 重合,第11次移动后与点重合,第12次移动后与点B 重合. 两点间的距离,图形类规律探究,一元一次方程的应用在于平方数和绝对值的非负性,求出a 、b 以及分类思应的数分别用a 、b 表示,且(a-20)2+|b+10|=0,位置,并求出A 、B 之间的距离;|BC|=6,当数轴上有点P 满足PB=2PC 时,求P 点对次向左移动1个单位长度,第二次向右移动3个单位次向右移动7个单位长度,…….点P 能移动到与A 请直接指出,第几次移动,与哪一点重合.;(2)P 点对应的数为-6或2.(3)第20次P a b A BA 重合;当P 从7出的应用,以及数轴上的分类思想的应用.P 是数轴上的一个动点对应的数; 个单位长度,第三次向或B 重合的位置吗?与A 重合.离公式,求出A 、B 之间的距离即(2)设P 点对应的数为x ,当可;(3)根据第一次点P 表示-1,第二即可得出结论. 【详解】(1)∵(a-20)2+|b+10|=0,∴a=20,b=-10, ∴AB=20-(-10)=30,数轴上标出A 、B 得:(2)∵|BC|=6且C 在线段OB 上∴x C -(-10)=6, ∴x C =-4, ∵PB=2PC ,当P 在点B 左侧时PB <PC ,此种情当P 在线段BC 上时, x P -x B =2(x c -x p ),∴x p +10=2(-4-x p ),解得:x p =-6; 当P 在点C 右侧时, x p -x B =2(x p -x c ), x p +10=2x p +8,距离即可;P 点满足PB=2PC 时,分三种情况讨论,根据PB=2第二次点P 表示2,点P 表示的数依次为-3,4上,此种情况不成立,PB=2PC求出x 的值即,-5,6…,找出规律x p =2.综上所述P 点对应的数为-6或(3)第一次点P 表示-1,第二次点则第n 次为(-1)n•n ,点A 表示20,则第20次P 与点B 表示-10,点P 与点B 不重合【点睛】本题考查的是数轴,非负数的性质题的关键.解题时注意:数轴上各 6.如图所示,在数轴上原点所表示的数是b ,并且a 、b (1)点A 表示的数a 为;点B 表示的(2)若点P 从点A 出发沿数轴向右运动,速度为每秒1个单位长度,①若P 、Q 在点C 处相遇,求点②在P 、Q 运动的过程中,当【答案】(1)﹣8,4;2.二次点P 表示2,依次-3,4,-5,6…A 重合; 重合. 的性质以及同一数轴上两点之间的距离公式的综合应用轴上各点与实数是一一对应关系.O 表示数0,A 点在原点的左侧所表示的数是a 满足|a +8|+(b ﹣4)2=0.表示的数b 为.向右运动,速度为每秒3个单位长度;点Q 从点,P 、Q 两点同时运动. 求点C 所表示的数.P 、Q 两点的距离为2个单位长度时,求运动时间合应用,正确分类是解;B 点在原点的右侧,B 出发沿数轴向左运时间.(2)①C所表示的数为:1;②运动时间为52秒或72秒【解析】【分析】(1)直接利用非负数的性质得出a,b的值,进而得出答案;(2)①直接利用两点之间的距离为12,进而得出等式求出答案;②直接利用两点相遇前或相遇后分析得出答案.(1)解:∵|a+8|+(b﹣4)2=0,∴a+8=0,b﹣4=0,解得:a=﹣8,b=4,故答案为:﹣8,4;(2)①设x秒时两点相遇,则3x+x=4﹣(﹣8),解得x=3,即3秒时,两点相遇,此时点C所表示的数为:﹣8+3×3=1;②当两点相遇前的距离为2个单位长度时,3x+x=10,解得:x52=,当两点相遇后的距离为2个单位长度时,3x+x=14,解得:x 72=, 综上所述,运动时间为52秒或【点睛】此题主要考查了一元一次方程的应解题关键.7.在一条不完整的数轴上从左到右为7,如图所示:设点A B ,(1)若以C 为原点,则m 的值是(2)若原点O 在图中数轴上,且点(3)动点P 从A 点出发,以每秒每秒1个单位的速度向终点C 移动【答案】(1)-17;(2)m=-5【解析】 【分析】(1)根据已知点A 到点B 的距离(2)分为两种情况,当O 在即可求出m ;(3)分为两种情况,当P 在数,列出算式,即可求出t . 【详解】(1)当以C为原点时,A 、B 对应72秒.程的应用,熟练掌握两点之间距离以及绝对值的性质左到右有点A B C ,,,其中点A 到点B 的距离为3C ,所对应的数的和是m . 的值是.且点C 到原点O 的距离为4,求m 的值.每秒2个单位长度的速度向终点C 移动,动点Q 同时移动,当几秒后,P Q 、两点间的距离为2?(直接或-29;(3)1秒或5秒. 的距离为3和点C 到点B 的距离为7求出即可;C 的左边时,当O 在C 的右边时,求出每种情况Q 的左边时,当P 在Q 的左边时,假如C 为原点,对应的数分别为-10,-7, 性质,正确分类讨论是,点C 到点B 的距离同时从B 点出发,以直接写出答案即可)情况A 、B 、C 对应的数,,求出P 、Q 对应的则m=-10+(-7)+0=-17, 故答案为:-17;(2)当O 在C 的左边时,A 、则 m=-6-3+4=-5,当O 在C 的右边时,A 、B 、C 三点则m=-14-11-4=-29, 综上所述:m=-5或-29;(3)假如以C 为原点,则A 、(10-2t ),当P 在Q 的左边时,[-(7-t )]-解得:t=1当P 在Q 的右边时,[-(10-2t 解得:t=5,即当1秒或5秒后,P 、Q 两点间的【点睛】此题考查一元一次方程的应用,行分类讨论.8.如图,已知数轴上点A 表示的数为10,动点P 从点A 出发,以每秒动.(1)数轴上点B 表示的数是______B 、C 三点在数轴上所对应的数分别为-6、-3、4三点在数轴上所对应的数分别为-14、-11、-4,B 、C 对应的数为-10,-7,0,Q 对应的数是-(7-[-(10-2t )]=2, )]-[-(7-t )]=2, 点间的距离为2. ,数轴,列代数式,能求出符合的每种情况是解题的示的数为6,点B 是数轴上在点A 左侧的一点,且以每秒6个单位长度的速度沿数轴向左匀速运____;, 7-t ),P 对应的数是-解题的关键,注意要进且A ,B 两点间的距离(2)运动1秒时,点P表示的数是______;(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,请完成填空:①当点P运动______秒时,点P与点Q相遇;②当点P运动______秒时,点P与点Q的距离为8个单位长度.【答案】(1)4−(2)0(3)①5;②1或9【解析】【分析】(1)点向左移动时,用点表示的数减去移动的距离,即可得到移动后点表示的数,利用点移动规律解答;(2)用6减去点P移动的距离即可得到点P表示的数;(3)①设点P运动t秒时,列方程6-6t=-4-4t,求解即可;②设点P运动x秒时,点P与点Q间的距离为8个单位长度,根据当Q在P点左边时,当P在Q 的左边时,分别列方程求解.(1)解:点B表示的数为6-10=-4,故答案为:-4;(2)−×=,解:点P表示的数为6160故答案为:0;(3)解:①设点P运动t秒时,由题意得:6-6t=-4-4t,解得:t=5,∴当点P运动5秒时,点P与点Q相遇,故答案为:5;②设点P运动x秒时,点P与点Q间的距离为8个单位长度,由题意得:当Q在P点左边时,4x+10-6x=8,解得:x=1,当P在Q的左边时,6x-(4x+10)=8,解得:x=9.故答案为:1或9.【点睛】此题考查数轴上两点之间的距离,数轴上动点问题,动点与一元一次方程,正确理解点的运动及表示点运动前后的数是解题的关键.9.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒1个单位长度,点N从点B出发速度为点M的3倍,点P从原点出发速度为每秒0.5个单位长度.(1)求A、B两点的距离为个单位长度.(2)若点M向右运动,同时点N向左运动,求经过多长时间点M与点N相距30个单位长度?(3)若点M、N同时向右运动,求经过多长时间点M、N相遇?并求出此时点N对应的数.(4)若点M、N、P同时都向右运动,当点M与点N相遇后,点M、P继续以原来的速度向右运动,点N改变运动方向,以原来的速度向左运动,求从开始运动后,经过多长时间点P到点M、N 的距离相等?【答案】(1)14;(2)4;(3)【解析】 【分析】(1)由题意根据两点间的距离公式(2)根据题意设经过x 秒点点N 从点B 出发速度为M 点的(3)由题意根据追及问题即时间等点N 对应的数;(4)根据题意设从开始运动后,P 到点M 、N 的距离相等,根据【详解】解:(1)∵数轴上两点A 、B 对应∴A 、B 两点的距离为6-(-8)故答案为:14;(2)设经过x 秒点M 与点N 依题意可列方程为:x +3x +14=30解方程,得x =4.4M N7秒,此时N 点对应的数是13;(4)23秒或7离公式即可求出A 、B 两点的距离;M 与点N 相距30个单位,由点M 从A 点出发速度为的3倍,得出x +3x +14=30求解即可;时间等于路程除以速度差求出点M 、N 相遇时间,,相遇前经过t 秒点P 到点M 、N 的距离相等,根据PM =PN 列出方程,进而求解即可.对应的数分别是6,-8, =14.相距30个单位. =30, 30秒或403秒 速度为每秒1个单位,,进而代入时间得出,或相遇后经过t 秒点(3)点M与点N相遇的时间为14÷(3﹣1)=7秒,此时N点对应的数是﹣8 + 7×3=13;(4)点M与点N相遇的时间为14÷(3﹣1)=7秒,设从开始运动后,相遇前经过t秒点P到点M、N的距离相等.依题意可列方程为:0.5t-(-8+3t)=6+t-0.5t,解得t=23,设从开始运动后,相遇后经过t秒点P到点M、N的距离相等.依题意可列方程为:(t+6)-0.5t=0.5t-[13-3(t-7)],解得t=403.所以23秒或7秒或403秒,点P到点M、N的距离相等.【点睛】本题主要考查数轴上的动点问题和一元一次方程的应用,利用行程问题的基本数量关系,以及数轴直观解决问题即可.10.已知数轴上两点A B、对应的数分别是6,8−,M N P、、为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.()1若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?()2若点M N P、、同时都向右运动,求多长时间点P到点,M N的距离相等?【答案】(1)5秒;(2)72秒或13秒【解析】【分析】1x M N54M A2NB 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t 秒点P 到点M ,N 的距离相等,得出(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),进而求出即可. 【详解】解:(1)设经过x 秒点M 与点N 相距54个单位. 依题意可列方程为:2x+6x+14=54, 解方程,得x=5.∴经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等. (2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8), t+6=5t-8或t+6=8-5t72t =或13t = ∴经过72秒或13秒点P 到点,M N 的距离相等【点睛】此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.11.已知数轴上两点A ,B 对应的数分别是﹣10,8,P ,Q ,N 为数轴上三个动点,点P 从点A 出发速度为每秒2个单位,点Q 从点B 出发,速度为点P 的2倍,点N 从原点出发,速度为每秒1个单位.(1)若P ,Q 两点不动,动点N 是线段AB 的三等分点时,点N 所表示的数是; (2)若点P 向左运动,同时点Q 向右运动,求多长时间点P 与点Q 相距32个单位? (3)若点P ,Q ,N 同时都向右运动求多长时间点N 到点P 和点Q 的距离相等?【答案】(1)2或﹣4;(2)经的距离相等 【解析】 【分析】(1)根据A 、B 所表示的数可得t 秒点P 与点Q 相距32个单位,系列出方程,再解即可;(3)N 的距离=N 、Q 的距离,根据等量【详解】解:(1)∵A ,B 对应的数分别是∴AB =18,∵动点N 是线段AB 的三等分点∴N 点表示的数为2或﹣4,故答案为:2或﹣4;(2)设经过t 秒点P 与点Q 2t+18+4t =32, 解得,t =73,答:设经73秒点P 与点Q 相距(3)设经过x 秒点N 到P ,Q 两点第#六感10﹣2x+x =8﹣x+4x ,x 0.573秒点P 与点Q 相距32个单位;(3)经过0.5可得AB =18,再由动点N 是线段AB 的三等分点可得答,由题意得P 的运动距离+AB 的长+Q 的运动距离设经过x 秒点N 到P ,Q 两点的距离相等,根据题意可据等量关系列出方程,再解即可.别是﹣10,8,分点, 相距32个单位,由题意得: 32个单位;两点的距离相等,由题意得:本号资料全部来源于微秒点N 到P ,Q 两点可得答案;(2)设经过距离=32,根据等量关题意可得等量关系:P 、源于微信公众号:数学答:经过0.5秒点N 到P ,Q 两点【点睛】本题考查一元一次方程的应用,12.已知代数式M =(a ﹣16在数轴上有A 、B 、C 三个点,且(1)直接依次写出a 、b 、c 的值(2)若动点P 、Q 分别从C 、为线段AP 的中点,F 为线段每秒3个单位长度,则BP AQEF−(3)若动点P 、Q 分别从A 、点C 出发,以每秒6个单位长度的C 、O 两点同时出发,3<t <时点M 的左侧,T 为线段MN 上的一=3PT (点T 不与点P 重合),求出【答案】(1)16,20,﹣8;(2【解析】 【分析】(1)根据32(16)201M a x x =−++b 以及AB 的值;结合AC =(2)设点P 的出发时间为t 秒,速度为每秒2个单位长度,动点两点的距离相等. ,解题关键是正确理解题意,找出等量关系,设出未)x 3+20x 2+10x +9是关于x 的二次多项式,且二次项系且A 、B 、C 三点所表示的数分别是a 、b 、c ,已知的值:,,;O 两点同时出发,向右运动,且点Q 不超过点BQ 的中点,若动点P 的速度为每秒2个单位长度的值是; B 两点同时出发,都以每秒2个单位长度的速度向左长度的速度沿数轴向右运动,设运动时间为t 秒,若动72时,数轴上有一点N 与点M 的距离始终为2个单位上的一点(点T 不与M 、N 重合),在运动的过程中求出此时线段PT 的长度.)2;(3)PT =1或PT 12= 0109x +是关于x 的二次多项式,二次项的系数为6AB ,通过计算即可得到答案;,根据点E 为线段AP 的中点,点F 为线段BQ 的中动点Q 的速度为每秒3个单位长度,分别得EF 、设出未知数,列出方程. 次项系数为b .如图,已知AC =6AB . A .在运动过程中,E 长度,动点Q 的速度为度向左运动,动点M 从若动点P 、Q 分别从个单位长度,且点N 在程中,若满足MQ ﹣NT系数为b ,可计算得a 、的中点,若动点P 的BP 、AQ ,通过计算21 / 22(3)设点P 的出发时间为t 秒,P 点表示的数为162t −,Q 点表示的数为202t −,M 点表示的数为68t −,N 点表示的数为610t −,T 点表示的数为x ,得MQ ,NT ,PT ;结合3MQ NT PT −=,通过求解方程即可完成求解.【详解】解:(1)∵32(16)20109M a x x x =−+++是关于x 的二次多项式,二次项的系数为b∴a =16,b =20,∴AB =4,∵AC =6AB ,∴AC =24,∴1624c −=,∴8c =−,故答案为:16,20,8−(2)设点P 的出发时间为t 秒,由题意得:①当t 163<时, EF =AE ﹣AF12=AP 12−BQ +AB 12=(24﹣2t )12−(20﹣3t )+4 =62t +, ∴BP ﹣AQ =(28﹣2t )﹣(16﹣3t )=12+t , ∴BP AQ EF−=2; ②当163t ≥时,此时点Q 与点A 重合, 即AQ =0,点F 对应的数值为12(16+20)=18;此时点P 在点O 的右侧,即OP =2t ﹣8,22 / 22 而PB =|2t ﹣8﹣20|=|28﹣2t |,则点E 对应的值为12(2t ﹣8+16)=t +4, 则EF =|18﹣(t +4)|=|14﹣t |,而BP ﹣AQ =PB =|28﹣2t |, 故BP AQEF −=2;故答案为:2(3)设点P 的出发时间为t 秒,P 点表示的数为16﹣2t ,Q 点表示的数为20﹣2t ,M 点表示的数为6t ﹣8,N 点表示的数为6t ﹣10,T 点表示的数为x , ∴MQ =28﹣8t ,NT =x ﹣6t +10,PT =|16﹣2t ﹣x |, ∵MQ ﹣NT =3PT ,∴28﹣8t ﹣(x +10﹣6t )=3|16﹣2t ﹣x |,∴x =15﹣2t 或x 332=−2t ,∴PT =1或PT 12=.【点睛】本题考查了数轴、代数式、整式加减、绝对值、一元一次方程的知识;解题的关键是熟练掌握数轴、代数式、整式加减、绝对值、一元一次方程的性质,从而完成求解.。

专题01 数轴上的动点问题(解析版) -2020-2021学年七

专题01 数轴上的动点问题(解析版) -2020-2021学年七

2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)专题01 数轴上的动点问题【典型例题】1.(2020·苏州市工业园区第一中学初一月考)如图,在数轴上点A表示的数是-3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是____________;点C表示的数是_________;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【答案】(1)由题意可得:AB=18, A0=3(0为原点),∴B0=AB-A0=15,∵BC=2AC,∴B0-0C=2(A0+0C),∴0C=3.故答案为15, 3(2)由题意可得:存在2种情况点P与点Q之间的距离为6,①点P与点Q相遇前,18-6=(4+2)t,则t=2秒;②点P与点Q相遇后,18+6=(4+2)t,则t=4秒.故答案为t=2或4.(3)由题意可得:AC=6,PC=│6-4t│,QB=2t, 若PC+QB=4,则│6-4t│+2t=4,解得t=1或5 3故答案为点P表示的数是1或5 3【专题训练】一、选择题1.(2020·博兴县吕艺镇中学月考)已知点A和点B在同一数轴上,点A表示数﹣2,又已知点B和点A相距5个单位长度,则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C2.(2020·东北师范大学东安实验学校七年级期中)数轴上一点A向右移动5个单位长度到达点B,再向左移动3个单位长度到达点C.若点C表示的数是-1,则点A表示的数是()A.-1B.-2C.-3D.2【答案】C3.(2020·河南平顶山四十四中月考)点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B所表示的实数是()A.1B.-6C.2或-6D.不同于以上答案【答案】C4.(2020·内蒙古初三三模)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3B.-2C.-1D.1【答案】A5.(2019·南京民办求真中学初一月考)如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是().A.-2πB.3-2πC.-3-2πD.-3+2π【答案】B6.(2020·台州市双语实验学校初一月考)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A,那么点A51所表示的数为()A3,…按照这种移动规律进行下去,第51次移动到点51A.﹣74B.﹣77C.﹣80D.﹣83【答案】B7.(2020·宜兴市树人中学月考)等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2020次后,点B()A.不对应任何数B.对应的数是2020C.对应的数是2019D.对应的数是2021【答案】B8.(2020·赣榆汇文双语学校月考)如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2020将与圆周上的哪个数字重合 ( )A.0B.1C.2D.3【答案】C二、填空题9.(2020·高邮市外国语学校初中部月考)在数轴上,与表示2.5的点距离为3.5的点表示的数是____________.【答案】6或-110.(2020·胶州市第二十六中学月考)如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.【答案】-111.(2020·温州市第十二中学月考)如图,数轴上点A表示的数是﹣2,将点A向右移动10个单位长度,得到点B,则点B 表示的数是_____.【答案】812.(2020·嘉祥县第四中学初一月考)一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为_____.【答案】2或﹣8.13.(2020·江苏建湖·汇文实验初中月考)折叠纸面,使-3表示的点与5表示的点重合,若数轴上A 、B 两点之间距离为11,(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数是 ___.【答案】-4.5,6.514.(2020·沧州市第十四中学初一月考)正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2019次后,数轴上数2019所对应的点是____________(填A 、B 、C 、D 中一个字母)【答案】C15.(2020·吉林长春外国语学校初一月考)如图所示,在数轴上,点A 表示1,现将点A 沿轴做如下移动,第一次点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_______.【答案】1316.(2020·泰兴市蒋华初级中学初一月考)如图,把半径为 0.5的圆放到数轴上,圆上一点 A 与数轴上表示 1的点重合,圆沿着数轴正方向滚动一周,此时点 A 表示的数是____________.(结果保留π)【答案】π+1三、解答题17.(2020·广西初一期中)在一条数轴上从左到右有点A,B,C三点,其中AC=5,BC=2,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A,C所对应的数分别为,p的值为;(2)若以A为原点,求p的值;(3)若原点O在数轴上点C的右边,且OB=15,求p的值.【答案】解:(1)∵以B为原点,AC=5,BC=2,∴点A,C所对应的数分别为-3、2,p的值为-3+2+0=-1;故答案为:﹣3、2,﹣1;(2)若以A为原点,则A点表示的数为0,由AC=5,BC=2可知,B点表示的数为3,C点表示的数为5,p=0+3+5=8.答:p的值为8;(3)由题意知:B点表示的数为-15,C点表示的数为-15+2= -13,A点表示的数为-15-3= -18,p=-15+(-13)+(-18)=-46,答:p的值为﹣46.【点睛】此题考查数轴上点与有理数的关系,数轴上两点间的距离,理解数轴上点与数的一一对应关系,掌握两点间的距离公式是解题的关键.18.(2020·江苏七年级期中)(概念提出)数轴上不重合的三个点,若其中一点到另外两点的距离的比值为n(n≥1),则称这个点是另外两点的n阶伴侣点.如图,O 是点A、B的1阶伴侣点;O是点A、C的2阶伴侣点;O也是点B、C的2阶伴侣点.(初步思考)(1)如图,C是点A、B的阶伴侣点;(2)若数轴上两点M、N分别表示-1和4,则M、N的32阶伴侣点所表示的数为;(深入探索)(3)若数轴上A、B、C三点表示的数分别为a、b、c,且点C是点A、B的n阶伴侣点,请直接用含a、b、n的代数式表示c.【答案】解:(1)∵O是点A、B的1阶伴侣点;O是点A、C的2阶伴侣点;O也是点B、C的2阶伴侣点,∴OA=OB,OC=2OA,OC=2OB,∴AC=3BC,∴C是点A、B的3阶伴侣点;故答案是:3(2)设表示的数为x,由题意有:①|x+1|=23|x-4|,解得,x=1或x=-11,②|x -4|=23|x +1|, 解得,x =2或x =14,综上所述,M 、N 的32阶伴侣点所表示的数为-11,1,2,14; (3)①当n =1时,c =2a b +. ②当n >1时,无论a >b 或a <b ,均有下列四种情况:点C 在点A 、B 之间且靠近点B 时,c =a +1n n + (b -a ); 点C 在点A 、B 之间且靠近点A 时,c =a +11n + (b -a ); 点C 在点A 、B 之外且靠近点B 时,c =a +1n n - (b -a ); 点C 在点A 、B 之外且靠近点A 时,c =a -11n - (b -a ). 【点睛】本题主要考查新定义“n 阶伴侣点”, 解题的关键是灵活运用所学知识,结合分类讨论思想解决问题.19.(2020·安徽七年级期中)如图,A 、B 两点在数轴上,这两点在数轴对应的数分别为12-、16.点P 、Q 分别从A ,B 两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t 秒,0点对应的数是0.(规定:数轴上两点A ,B 之间的距离记为AB )(1)如果点P 、Q 在A 、B 之间相向运动,当它们相遇时,t =_____,此时点P 所走的路程为______,点Q 所走的路程为______,则点P 对应的数是_______;(2)如果点P 、Q 都向左运动,当点Q 追上点P 时,求点P 对应的数;(3)如果点P 、Q 在点A 、B 之间相向运动,当8PQ =时,求P 点对应的数;【答案】解:(1)设经过t 秒时,点P 与点Q 相遇,由题意得:2t +4t =16-(-12)∴6t =28∴t =143∴此时点P 所走的路程为14282=33⨯, 点Q 所走的路程为14564=33⨯ 点P 对应的数为:-12+2×143=-83 故答案为:143、283、563、83- (2)因为16(12)28AB =--=个单位,所以Q 追上P 的时间28(42)14t=÷-=秒 1214240--⨯=-,所以点P 对应的数为40-(3)当8PQ =时,分两种情况:①P 、Q 相遇前相距8个单位,10(288)(24)3t =-÷+=,此时点P 对应的数为101612233-+⨯=-. ②P 、Q 相遇后相距8个单位,(288)(24)6t =+÷+=,此时点P 对应的数为12260-+⨯=综上所述,点P 对应的数为163-或0. 【点睛】本题综合考查了动点在数轴上的运动问题,其中涉及到了相遇行程问题,追及行程问题等知识点,具有较强的综合性.20.(2020·四川攀枝花第二初级中学初一期中)在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC=;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.【答案】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2,1,7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,2.5+(2.5−1)=4;故答案为:4.(3)A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为7+4t,∴AB=(1+2t)-(-2-t)=3t+3,AC=(7+4t)-(-2-t)=5t+9,BC=(7+4t)-(1+2t)=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.21.(2020·浙江初一期中)“收获是努力得来的”,在数轴上,若点C到点A的距离刚好是3,则点C叫做点A的“收获点”,若点C到A、B两点的距离之和为6,则点C叫做A、B的“收获中心”.(1)如图1,点A表示的数为﹣1,则A的收获点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的收获中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过t秒时,电子蚂蚁是A和B的收获中心,求t的值.【答案】解:(1)A的收获点C所表示的数应该是-1-3=-4或-1+3=2;(2)∵4-(-2)=6,∴M,N之间的所有数都是M,N的收获中心.故C所表示的数可以是-2或-1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的收获中心,依题意有①8-2x-4+(8-2x+1)=6,②4-(8-2x)+[-1-(8-2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的收获中心.【点睛】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.AC=. 22.(2020·福建七年级期中)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且8(1)直接写出数轴上点C表示的数;t t>秒,动点R从点C出发,(2)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为()0以每秒2个单位长度沿数轴向左匀速运动,求当t为何值时P,R两点会相遇.t t>秒,动点R从点C出发,(3)动点P从B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为()0,,以每秒2个单位长度沿数轴向左匀速运动,动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若P Q R 三点同时出发,当点P遇上点R后立即返回向点Q运动,遇到点Q后则停止运动.求点P从开始运动到停止运动,行驶的路程是多少个单位长度?【答案】解:(1)∵数轴上点A表示的数为4,AC=8,点C在点A左侧∴点C表示的数为4-8=-4;(2)∵点B表示的数为1,点C表示的数为-4∴BC=1-(-4)=5由题意可得3t+2t=5答:当t=1时,P,R两点会相遇;(3)由题意可得:AB=4-1=3点P遇上点R的时间为:5÷(3-2)=5(秒)此时点P与点Q的距离为3+(3-1)×5=13∴P、Q的相遇时间为13÷(3+1)=3.25(秒)∴点P从开始运动到停止运动,行驶的路程是3×(5+3.25)=24.75个单位长度答:点P从开始运动到停止运动,行驶的路程是24.75个单位长度.【点睛】此题考查的是数轴与动点问题,掌握数轴上两点之间的距离公式和行程问题公式是解题关键.。

数轴上的动点问题专题(完整资料).doc

数轴上的动点问题专题(完整资料).doc

【最新整理,下载后即可编辑】数轴上的动点问题专题1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。

⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。

若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B 的距离相等?2. 数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数。

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。

3.已知数轴上有顺次三点A, B, C 。

其中A 的坐标为-20.C 点坐标为40,一电子蚂蚁甲从C 点出发,以每秒2个单位的速度向左移动。

(1)当电子蚂蚁走到BC 的中点D 处时,它离A,B 两处的距离之和是多少?(2)这只电子蚂蚁甲由D 点走到BA 的中点E 处时,需要几秒钟?(3)当电子蚂蚁甲从E 点返回时,另一只电子蚂蚁乙同时从点C 出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B 点5个单位长度,求B 点的坐标4. 如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。

⑴求AB 中点M 对应的数;⑵现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。

中考数学动点问题专题讲解(22页)

中考数学动点问题专题讲解(22页)

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

【提优】数轴动点【讲义】教案.doc

【提优】数轴动点【讲义】教案.doc

数轴上动点问题知识精讲:数轴上的动点问题离不开数轴上两点之间的距离,即数轴上任意两点间线段长公式。

1.数轴上两点间的距离,为这两点所对应的数字差的绝对值,即数轴上两点间的距离=右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

数轴动点问题必须根据每种情况画线段图。

4.数轴线段中点公式AB=2ba+路程类问题回顾:相遇、追击、相离、环形跑道例题:【路程类(求点对应数字、时间)】1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点. (1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系11(35)2=-+,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是__________________.(3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x.3.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

2020~2021学年中考数学破解数轴上的动点问题的绝招

2020~2021学年中考数学破解数轴上的动点问题的绝招

破解数轴上的动点问题的绝招一、问题导读数轴上的动点问题,是七年级非常重要的问题,也是困难题,学生遇上了它就一个字——“晕”.但这个知识点又不得不学,因为这个知识比较综合,也比较抽象,是一类极为常见且重要的综合题,对学生的综合运用知识能力要求较高,涉及到“绝对值的几何意义、数在数轴上的表示、行程问题”等,更是学习“数形结合”思想的第一步.动点问题二、必备知识:1.数轴上两点之间的距离如何表示?可用绝对值来表示,即两点所表示的数差的绝对值.如,数轴上点A,B所表示的数是a,b,则AB=|a-b|或|b-a|.2.数轴上一个动点如何字母来表示?用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减.如,数轴上点A对应的数为-1,点P从A出发,以每秒2个单位长度的速度向右运动,设运动的时间是t,则点P所表示的数是-1+2t.3.怎样求数轴上任意两点间的线段的中点?两点所表示的数相加的和除以2,如数轴上的点所表示的数是a,b,则线段AB的中点所表示的数是(a+b)/2.三、策略方法:解决动点问题首先要做到仔细理解题意,弄清运动的整个过程和图形的变化,然后再根据运动过程展开分类讨论画出图形,最后针对不同情况寻找等量关系列方程求解。

而对于建立在数轴上的动点问题来说,由于数轴本身的特点,这类问题常有两种不同的解题思路。

一种是根据“形”的关系来分析寻找等量关系,也就是利用各线段之间的数量关系列方程求解;另一种是从“数”的方面寻找等量关系,就是利用各点在数轴上表示的数之间存在的内在关系列方程。

四、典例精析类型1 数轴上的规律探究问题招数:用由特殊到一般的思想例1.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第_____次移动到的点到原点的距离为2018.分析:本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣1/2(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:1/2(3n+2),当移动次数为奇数时,﹣1/2(3n+1)=﹣2018,n=1345,当移动次数为偶数时,1/2(3n+2)=2018,n=4034/3(不合题意).故答案为:1345.感悟:数轴上一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

专题02 数轴上动点问题的三种考法(解析版)(人教版)

专题02 数轴上动点问题的三种考法(解析版)(人教版)

专题02 数轴上动点问题的三种考法【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求值(速度、时间、距离)a______,b=______;(1)请直接写出=(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点点O出发沿数轴向左运动,运动时间为t,点P为线段(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为N,O,A为端点的所有线段的长度和为109时,求出此时点(1)直接写出点B表示的数;(2)一动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动;另一动点(1)若点Q运动速度为8cm/s,当点P和点Q都运动到线段中点时,求点Q运动的时间;(2)如图2,若点B也为射线OM上一点,且30cmAB=,当上且恰好满足13AQ AB=,求点Q的运动速度.(1)动点P从点A运动至E点需要秒,此时点(2)P,Q两点在点M处相遇,求出相遇点M(3)求当t为何值时,P,B两点在数轴上相距的长度与(1)数轴上A点表示的数为______,B点表示的数为______.(1)直接写出数a,b的值;(2)A,两点相距多少个单位长度?(1)求a、b的值;a______,(1)请直接写出a、b、c的值.=(1)求m、n的值;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,(1)若使C、B两点的距离是A、B两点的距离的(2)点A、B、C开始在数轴上运动,若点(1)填空,a=_______________,b=_______________(2)若点A与点C之间的距离表示为AC(1)AB= 、BC= 、AC= ;(1)求点B和点D分别表示的数;例.已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且12AB =.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向点B 匀速运动,动点Q 从点B 同时出发,以每秒2个单位长度的速度沿着数轴向点A 匀速运动,规定其中一个动点到达终点时,另一个动点也随之停止运动.设运动时间为t 秒.(1)【解决问题】:①当1t =秒时,写出数轴上点P ,Q 所表示的数;②问点P 运动多少秒与点Q 相距3个单位长度?(2)【探索问题】:若M 为AQ 的中点,N 为BP 的中点,直接写出线段MN 与线段PQ 的数量关系.【答案】(1)①点P 表示的数为5;点Q 所表示的数为2-;②点P 运动1.8秒或3秒时与点Q 相距3个单位长度;(2)212MN PQ +=或212MN PQ -=.【分析】(1)①根据已知可得B 点表示的数为812-;根据点的运动方式即可得出点P 、Q 表示的数t ;②点P 运动x 秒时,与Q 相距2个单位长度,则3AP x =,2BQ x =,根据∵3AP BQ AB +=-,∵3AP BQ AB +=+,有:MN MQ NP PQ+-=11且12AB=.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P的运动时间为t秒.(1)解决问题:t=时,写出数轴上点B,P所表示的数;①当1②若点P,Q分别从A,B两点同时出发,问点P运动多少秒与点Q相距3个单位长度?(2)探索问题:若M为AQ的中点,N为BP的中点.当点P在A,B两点之间运动时,探索线段MN与线段PQ的数量关系(写出过程).【答案】(1)①点B表示-4,点P表示5;②1.8秒或3秒(2)2MN+PQ=12或2MN-PQ=12,过程见解析【解析】(1)解:①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8-12=-4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴点P表示的数是8-3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB-3,∴3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∴3x+2x=15,解得:x=3.∴点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN-PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP-PQ=12AQ+12BP-PQ=12(AQ+BP-PQ)-12PQ=12AB-12PQ=12(12-PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN-PQ=12.课后训练t=时,线段PQ的长度是(1)当2(1)直接写出:a=______,②点Q 、点P 向右运动,点P 在点Q 右侧,316410t t -=-+,Q 点P 到达点C 的时间为32(364)33-¸=,32113>,11t \=不合题意,舍去;④点P 向左运动,点P 在点Q 左侧,121033232t t +-+-=,解得:312t =,(1)填空;a= ,b= ,(2)现将点A,点B和点C分别以每秒数轴上同时向右运动,设运动时间为。

数轴上的动点问题专题学习讲义

数轴上的动点问题专题学习讲义

【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:1、若数轴上点A 、点B 表示的数分别为a 、b ,则:①、A ,B 两点之间的距离b a AB -=,②、线段AB 的中点表示的数为2b a +. 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t>0).(1)填空:①A 、B 两点间的距离AB=_________,线段AB 的中点表示的数为_________;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为________.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,AB PQ 21=(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【变式】:已知:如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16.若线段AB 以每秒6个单位长度的速度向右匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒.(1)当点B 与点C 相遇时,点A 、点D 在数轴上表示的数分别为_________;已知:如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒.(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.【练习】:如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子是否有最小值?如果有,直接写出最小值;如果没有,说明理由.。

《数轴动点问题》课件

《数轴动点问题》课件
《数轴动点问题》PPT课件
目 录
• 数轴动点的定义与特性 • 数轴动点的运动规律 • 数轴动点的应用实例 • 数轴动点的解题策略与技巧 • 数轴动点的综合练习题 • 数轴动点问题的反思与总结
01
数轴动点的定义与特性
数轴动点的定义
01
数轴动点是指在数轴上可以移动 的点,这些点通常与某些数学问 题相关联,如追及问题、相遇问 题等。
相遇问题
总结词
相遇问题是数轴动点问题的另一种常见类型,主要研究两个动点在数轴上从两端相向而行直至相遇的 问题。
详细描述
相遇问题需要利用数轴上的距离和速度关系,计算出两个物体相遇所需的时间或距离。这类问题通常 涉及到相对速度的概念,即两个物体相对运动的速度等于各自速度之和或之差。
最大距离与最小距离问题
02
数轴动点问题通常涉及到速度、 时间、距离等概念,是数学中常 见的题型之一。
数轴动点的特性
数轴动点具有连续性
由于动点在数轴上可以连续移动,因 此其位置和状态会随着时间的变化而 变化。
数轴动点具有不确定性
由于动点的位置和状态是随机的,因 此其运动轨迹和结果也是不确定的, 需要根据具体问题进行分析和计算。
匀速运动规律
总结词
描述动点在数轴上以恒定速度进行的直线运动。
详细描述
在数轴上,如果一个动点以恒定的速度沿直线移动,那么它所经过的每一个单位 长度所用的时间都是相等的。匀速运动可以用公式表示为:距离 = 速度 × 时间 。
变速运动规律
总结词
描述动点在数轴上以非恒定速度进行的直线或曲线运动。
详细描述
04
数轴动点的解题策略与技巧
建立数轴模型
总结词
明确问题背景
详细描述

人教版七年级数学上册专题复习 数轴上的动点问题讲义 含部分答案

人教版七年级数学上册专题复习   数轴上的动点问题讲义  含部分答案

线段 AB 以 6 个单位长度/秒的速度向右匀速运动,同时线段 CD 以 2 个单位长度/秒的速度向左匀速运动。
(1)运动多少时,BC=8?
BD AP
(2)P 是线段 AB 上一点,当 B 点运动到线段 CD 上时,是否存在关系式
3,若存在,求线段
PC
PD 的长;若不存在,请说明理由。
【题 2】如图,点 A、B 和线段 CD 都在数轴上,点 A、C、D、B 起始位置所表示的数分别为-2,0,3,12;线
段 CD 沿数轴的正方向以每秒 1 个单位的速度移动,移动时间为t 秒。
(1)当 t 0秒时,AC 的长度为
;当 t 2秒时,AC 的长度为

(2)用含有 t 的代数式表示 AC 的长为 .
(2)①P 与 Q 相遇之前,即 P 在 Q 的左边,此时有数 Q>数 P, 0秒 t< 200 秒,此时: 3
PQ 200 2t t 200 3t ②P 与 Q 相遇后,Q 停止运动前,即 Q 在 P 的左边,此时有数 P>数 Q, 200 秒 t 100秒 ,此时:
【思考】线段(直线、射线)上的运动问题,可以转化为数轴上的运动问题来处理吗?
最后,放几个题结束本文。 【题 1】如图,数轴上 A、B 两点对应的有理数分别为-8 和 12,点 P 从原点 O 出发,以每秒 1 个单位长度 的速度沿数轴负方向运动,同时点 Q 从原点 O 出发,以每秒 2 个单位长度的速度沿数轴正方向运动,运动 时间为t 秒。 (1)求经过两秒后,数轴点 P、Q 分别表示的数; (2)当t 3 时,求 PQ 的值; (3)在运动过程中,是否存在时间 t,使得 AP=BQ,若存在,求出 t 值;若不存在,说明理由。
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数轴上的动点问题》专题讲义一.动点问题的处理方法“点-线-式”三步二.动点问题的解题步骤1.列点:将已知点用具体的数表示,未知动点用含t的式子表示①点的左右移动:数轴上的点向左移动用减法,移动几个单位长度就减去几,向右移动用加法,移动几个单位长度就加上几。

②点的表示:通常用含t的式子表示数轴上的动点,可以根据动点的位置、速度和移动的方向将点表示出来。

例题1:如图,数轴上点A表示的数为-3,点B表示的数为6,动点P从A出发向右运动,速度2为每秒个单位长度,动点Q从B出发向左运动,速度为每秒3个单位长度,t秒后,求动点P、Q表示的数。

2.列线:利用两点间距离的表示方法将线段用具体的数或式子表示出来数轴上两点之间的距离三种表示方式:①如果两个点所表示的数的大小已知,直接用较大的数减去较小的数;②如果两个点所表示的数的大小未知,则用两个数的差的绝对值表示;③动点的起始点和终止点之间的线段可以用动点所走的路程表示。

例题2:数轴上点A表示的数为-3,点B表示的数为6,动点P从A出发向右运动,速度为每秒2个单位长度,动点Q从B出发向左运动,速度为每秒3个单位长度,t秒后,求线段AB、AQ、BP、PQ、AP、BQ的长。

3.列式:解决数轴上的动点问题的一个重要方法就是方程法,可以根据题目中的线段之间的数量关系,列出方程并解方程例题3:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一点,对应的数为x。

若点P到A、B两点的距离相等,求点P对应的数。

三、动点问题的常用工具1.中点公式:如图,数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,且B为A、C中点,则b=2ca2.解绝对值方程:①|a|=b,则a=±b ②|a|=|b|,则a=±b ③|x-a|+|x-b|=c(零点分段法)3.分类讨论思想:例题4:已知数轴上两点A、B对应的数分别为-3、5,P为数轴上的动点,其对应的数为x。

数轴上是否存在点P,使得点P到A、B的距离之和为10,若存在,请求出x的值;若不存在,请说明理由。

四、动点问题的常见题型1.点的重合问题:通常是相遇与追击问题,通过点的运动状态可以判断出两个动点重合,重合则两个点表示的数相等,将两个动点用含t的式子表示出来,并令两个式子相等。

例题5 :已知数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)甲,乙在数轴上的哪个点相遇?(2)多少秒后,甲到A,B,C的距离和为48个单位?(3)在甲到A、B、C的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.2.中点问题:①题目中明确说明其中一个点为另外两个点的中点,如:A、B、C三点,点A是点B、C的中点,直接利用中点公式列方程②题目中说三个点有一个点是另外两个点的中点,如:A、B、C三点,有一点是另外两个点的中点,分三种情况进行讨论,然后利用中点公式列方程例题6:如图,数轴原点为O,A、B是数轴上的两点,点A对应的数是1,点B对应的数是﹣4,动点P、Q 同时从A、B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为t秒(t >0).(1)AB两点间的距离是;动点P对应的数是(用含t的代数式表示);动点Q对应的数是(用含t的代数式表示).(2)几秒后,点O恰好为线段PQ中点?(3)几秒后,恰好有OQ=2PO?3、线段长及线段的和、差、倍、比关系问题解题思路:题目中通常会说点与点之间的距离,即线段的长度,条件中会给出两条线段的和、差、倍数、或比例关系,先将题目中的线段用两点间的距离表示出来,然后根据具体的关系列方程,当动点之间的位置无法确定时,通常用绝对值来表示线段长度。

(1)线段之长问题(线段之和问题、线段之比问题、线段倍数问题、线段相等问题)例题7:如图,已知数轴上有A、B、C三个点,它们表示的数分别是a、b和8,O是原点,且(a+20)2+|b+10|=0.(1)填空:a= ,b= ;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长;并探索:BC﹣AB的值是否随着时间t的变化而变化?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动,设点P移动的时间为t秒,问:①当t为多少时,点Q追上点P;②当t为多少时,P、Q两点相距6个单位长度?4.线段定值问题:题目中给出几条线段的关系,要求判断其是否为定值,先将所给线段都用两点间的距离表示出来,然后再将题目中所给的式子用线段表示出来,化简之后可以将t消去,所得值为常数,因此可以确定是定值。

例题8:如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣6)2=0.若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.(1)a= ,b= ,c= ;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,设运动时间为t秒.①当t=1时,则AC= ,AB= ;②当t=2时,则AC= ,AB= ;③请问在运动过程中,3AC﹣4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.动点问题练习1.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P,Q 停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?2.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.3.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2.(1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)点A、B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB﹣mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.4.如图,已知数轴上点A表示的数为7,点B表示的数为﹣5,点P从点A出发,沿数轴以每秒3个单位长度的速度向左匀速运动,同时,另一点Q从原点O出发,也沿数轴以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)线段AB的长度为,数轴上点P和点Q表示的数分别为、(用含t的代数式表示);(2)在点P和点Q的运动过程中,经过多少秒点P追上点Q?经过多少秒点B恰为PQ的中点?(3)运动过程中,若时间t总满足|t+7|﹣|5﹣t|=12,则t的范围是.5.已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次多项式系数为b,数轴上A、B两点所对应的数分别是a和b.(1)则a= ,b= .A、B两点之间的距离= ;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P所对应的有理数.(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A 的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.6.已知a、b满足(a﹣2)2+|ab+6|=0,c=2a+3b.(1)直接写出a、b、c的值:a= ,b= ,c= .(2)若有理数a、b、c在数轴上对应的点分别为A、B、C,点A与点B之间的距离表示为AB,点B与点C 之间的距离表示为BC.如果数轴上有一点N到点A的距离AN=AB﹣BC,请直接写出点N所表示的数;(3)在(2)的条件下,点A、B、C在数轴上运动,若点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动.试问:是否存在一个常数m使得m•AB﹣2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.7.如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)请直接写出AB、BC、AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t 秒,试探索:EF﹣DE的值是否随着时间t的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N 同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位。

8.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,在点Q开始运动后,P,Q两点之间的距离能否为 2个单位长度?如果能,请求出t 的值和此时P表示的数;如果不能,写明理由。

相关文档
最新文档