2014年初二升初三数学提优专题2(含答案)

合集下载

2014年中考提优训练62题

2014年中考提优训练62题
10.(常州·2011)(本小题7分)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售。这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第 天的总销量 (千克)与 的关系为 ;乙级干果从开始销售至销售的第 天的总销量 (千克)与 的关系为 ,且乙级干果的前三天的销售量的情况见下表:
(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).
设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:
(1)画出图形(保留画图痕迹):
①满足m=1,且n=0的点M的集合;
②满足m=n的点M的集合;
(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)
(1)求观测点B到航线l的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据: ≈1.73,sin76º≈0.97,cos76º≈0.24,tan76º≈4.01)
2.(常州·2009)(本题满分10分)
(1)观察与发现
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC边落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展开后得到△AEF(如图②).小明认为△AEF为等腰三角形,你同意吗?请说明理由.
⑴图形①中∠B=°,图形②中∠E=°;
⑵小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”。

2014北京石景山中考二模数学(含解析)

2014北京石景山中考二模数学(含解析)

点 A5 的坐标为_________,点 Cn 的坐标为_______________. 三、解答题(本题共 30 分,每小题 5 分)
1 13.计算: 27 2sin 60 ( )1 6

12 3 .

0
2 / 15
2 x 1≥x 1 14.解不等式组 . x 8≤4 x 1
1 / 15
C
y 4 3 2 B D'
y 4 C' 3 2 1 2 1 A' 3 x –3 –2 –1 O
图2
B'
D
1 A –3 –2 –1 O
图1
1
y 4
2
3 x
y 4 y 2 1 O 1 2
A.
3 2 1 3 x O 1 2
y 2 1 3 x O 1 2
3 2 1 3 x O 1
D.
2
3 x
B.
备用图
备用图 1
7 / 15
备用图 2
2014 年北京石景山区中考二模数学试卷答案
一、选择题(本题共 8 道小题,每小题 4 分,共 32 分) 题 号 答 案 1 D 2 B 3 C 4 D 5 B 6 A 7 C 8 D
二、填空题(本题共 4 道小题,每小题 4 分,共 16 分) 9. a( x 2 y)( x 2 y) ; 10. b 0 即可,答案不唯一; 11. m 2 ; 12. (16 , 0) ; (2n , 2n1 ) .
y
O
x
6 / 15
24.将 △ABC 绕点 A 顺时针旋转 得到 △ADE , DE 的延长线与 BC 相交于点 F ,连接 AF . (1)如图 1 ,若 BAC 60 , DF 2BF ,请直接写出 AF 与 BF 的数量关系; (2) 如图 2 , 若 BAC 60 ,DF 3BF , 猜想线段 AF 与 BF 的数量关系, 并证明你的猜想; (3)如图 3 ,若 BAC , DF mBF ( m 为常数) ,请直接写出 表示) .

2014年中考数学二轮精品复习试卷(四边形)含答案解析

2014年中考数学二轮精品复习试卷(四边形)含答案解析

2014年中考数学二轮精品复习试卷:四边形1、如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是【】A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC2、(2013年四川资阳3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是【】A.48 B.60 C.76 D.803、正六边形的边心距与边长之比为A.B.C.1:2 D.4、如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是A.矩形B.菱形C.正方形D.梯形5、如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为A.78°B.75°C.60°D.45°6、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为A.B.C.D.7、如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为【】A.B.C.D.128、如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为【】A.14 B.15 C.16 D.179、如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为【】A.1 B.2 C.3 D.410、下列命题中是假命题的是【】A.平行四边形的对边相等B.菱形的四条边相等C.矩形的对边平行且相等D.等腰梯形的对边相等11、如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为A.B.C.4 D.812、如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为A.cm2B.cm2 C.cm2D.cm213、下列命题中的真命题是A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形14、如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有A.1个B.2个C.3个D.4个15、在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【】A.∠BDC =∠BCD B.∠ABC =∠DAB C.∠ADB =∠DAC D.∠AOB =∠BOC16、如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为【】A.6cm B.4cm C.2cm D.1cm17、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有【】个.A.2 B.3 C.4 D.518、顺次连接等腰梯形四边中点所得的四边形一定是【】A.矩形B.正方形C.菱形D.直角梯形19、如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=A.B.C.2 D.120、如图,在平行四边形ABCD中,AB>CD,按以下步骤作图:以A为圆心,小于AD 的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H。

2014中考数学答案

2014中考数学答案

2014年初中毕业生毕业升学考试数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。

2.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则。

3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤。

4.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

一、选择题(每小题3分,共24分)1. D2. B3. C4. C5. D6. B7. B8. A 二、填空题(每小题3分,共24分)9. 141077.5⨯ 10.1x ≥且2≠x 11.2221s s < 12. 36 13.25 14. 120 15.-31614n -⎝⎭或 三、解答题(17小题8分,18小题8分,共16分)17.方法一:解:原式()()⎪⎪⎭⎫⎝⎛-----÷+-+-=b a b ab ba ab a b a b a b a a b 222……………………………(2分) ()ba b ab a b a a b -+-÷--=2222()()22b a ba b a a b --⋅--= …………………………………(4分)a b -=2. …………………………………(5分)这里145tan ==a ,323260sin 2=⨯==b , ………………………(7分) 当3,1==b a 时,原式()213132=-=-=. ………………………………(8分)方法二:解:原式()()()⎪⎭⎫⎝⎛---÷+-+--=b a b a b a b a b a b a a b 2…………………………………(2分)())(2b a b a a b -÷--= ………………………………………(4分)a b -=2. ……………………………………………………………(5分)当45tan =a ,60sin 2=b 时 , 原式()()2131345tan 60sin 222=-=-=-=………………………………(8分)18.(1)画出△111C B A …………(2分)1C (3,2) ……………(3分)(2)画出△222C B A …………(5分)2C (-6,4) ……………(6分)(3)2D (a 2,b 2) ……………(8分)四、解答题(19小题10分,20小题10分,共20分)19.(1)32 72 ………………………………(2分) (2)()人50052500=÷ 答:一共调查了500人. …… (4分)(3)()21010325000000=+⨯(人) …………………(5分) 6010407030210=---- (人) ………………(6分) 补全条形统计图如图 ………………………………(7分) ()()00004140000321058800⨯+=()人答:估计市民中会有58800人给出建议. ………………(10分) 20.(1)P (按照爸爸的规则小明能看比赛)=31………………………………………(3分)分)由表可知所有可能结果共有9种,且每种结果发生的可能性相同,其中抽取的两数之积是有理数的结果有5种,分别是9、2、4、4、8,所以小明看比赛的概率为95………(10分)第18题图调查中给出建议....的人数条形统计图 第19题图解法二:根据题意画树状图如下:由树状图可知所有可能结果共有9种,且每种结果发生的可能性相同,其中抽取的两数之积是有理数的结果有5种,分别是9、2、4、4、8,所以小明看比赛的概率为95. ……(10分) 五、解答题(21小题8分,22小题10分,共18分) 21.解:由题意可知,AE ∥BC ,∠ADB =∠EAD =53°,∠C=∠EAC =11° ………………………………………(2分)∵在Rt △ABC 中,AB =15,∠C =11°, ∴95.7819.01511tan ≈≈=AB BC ………(4分) ∵在Rt △ABD 中,∠ADB =53° ∴28.1133.11553tan ≈≈=AB BD ………………………………………………………(6分)∴8.6767.6728.1195.78≈=-≈-=BD BC CD (米) …………………………………………(7分) 答:C 、D 两点之间距离约为67.8米. ………………………………………………………(8分)22.(1)证明:方法一:如图,连接OC , ……………………………………………………… (1分)OB OC =,∴∠B =∠1. 又∵∠B =∠2,∴∠1=∠2. ………………………………(2分)AB 是⊙O 的直径,∴190ACB OCA ∠=∠+∠=, ………………(3分) ∴OCA ∠+290∠=, ∴∠OCF =90°,∴OC ⊥FC , ……………………………………(4分) ∴CF 为⊙O 的切线. ……………………(5分)第一次抽卡片第二次抽卡片 32 223 2 22 3 2 22开始所有可能结果 (3,3)(3,2)(3,22)(2,3)(2,2)(2,22)(22,3)(22,2)(22,22) (9)(32)(62)(32)(2) (4) (62) (4) (8)……(7分) 25题图第22题图 第22题第21题图方法二:如图,连接OC , …………………………………………………………… (1分)AB 是⊙O 的直径,∴∠ACB =90°. …………………………………………………………………………(2分)OB OC =,∴∠B =∠1.在△AFC 和△CFB 中,∠F +∠2+∠F AC =180°,∠F +∠B +∠FCB =180°, 又∵∠2=∠B ,∴∠F AC =∠FCB . ………………………………………………………………………(3分) ∵∠F AC=∠B +∠ACB =∠1+∠ACB ∠FCB =∠1+∠OCF , ∴∠OCF =∠ACB =90°,∴OC ⊥FC , ……………………………………………………………………………(4分)∴CF 为⊙O 的切线. …………………………………………………………………(5分)(2)解法一:如图, ∵直径AB 平分弦CD ,∴AB ⊥CD , …………………………………………………………………………(6分)∴∠AEC =∠OEC =90°. ∵在Rt △ACE 中,tan ∠AC D=12,AC =4 , ∴12AE EC =,即2CE AE =. ……………………………………………………………………(7分) ∴由勾股定理得,()22224AE AE +=,∴AE EC ==……………………………………………………………………(8分)在Rt △OCE 中,由勾股定理得,222OE CE OC +=,设OC =r ,则222r r ⎛+= ⎝⎭⎝⎭,……………………………………………………(9分)解得r =∴⊙O 的半径为…………………………………………………………………(10分) 解法二:∵直径AB 平分弦CD , ∴弧AC =弧AD ,∴∠ACD =∠B . …………………………………………………………………………(7分)又∵tan ∠AC D=12, ∴tan ∠B =12. …………………………………………………………………………(8分) 在Rt △ACB 中,tan ∠B =12AC BC =,又∵AC =4,∴BC =8. ……………………………………………………………………………………(9分) 根据勾股定理,得2222248AB AC BC =+=+,∴AB =∴OB =∴⊙O 的半径为 ………………………………………………………………………(10分)六、解答题(23小题10分,24小题10分,共20分)23.(1)方法一:设签字笔的单价为x 元,笔记本的单价为y 元,根据题意得⎩⎨⎧=+=+5.13325.82y x y x ………………………………………………………(2分) 解得⎩⎨⎧==5.35.1y x ………………………………………………………(4分)答:签字笔的单价为1.5元,笔记本的单价为3.5元. …………………………(5分) 方法二:设签字笔单价为x 元,则笔记本单价为25.8x-元,根据题意得 8.52313.52xx -+⋅=, ……………………………………………………(2分)解得x =1.5 ,5.325.15.8=-(元). …………………………………………(4分) 答:签字笔的单价为1.5元,笔记本的单价为3.5元. …………………………(5分)(2)方法一:设学校获奖的同学有a 人,根据题意得127207208.0+=⨯a a , …………………………………………………………(7分) 解得a =48, ……………………………………………………………………(8分) 经检验,a =48是原方程的根. …………………………………………………(9分) 答:学校获奖的同学有48人. …………………………………………………(10分) 方法二:设每本图书原价m 元,根据题意得m m 8.072012720=+, …………………………………………………………………(7分) 解得m =15, ……………………………………………………………(8分) 经检验,m =15是原方程的根. ………………………………………………(9分)所以每本图书原价为15元.4815720=(人) 答:学校获奖的同学有48人. ………………………………………………(10分)24.(1)如图,①当0≤x ≤90时,设b kx y +=,把(30,1500)和(60,2100)分别代入,得⎩⎨⎧+=+=bk bk 602100301500, ………………………(1分) 解得⎩⎨⎧==90020b k . …………………………(2分)所以当0≤x ≤90时,y 与x 之间的函数表达式为90020+=x y . ……………(3分)第24题图②将x =90代入90020+=x y 得,y =20×90+900=2700, . …………………(4分) 当x >90时,根据题意得30(90)270030y x x =-+=,所以,当x >90时,y 与x 之间的函数表达式为x y 30= . ………………(5分)(2) 方法一:将x =0代入y =20x +900,得y =900, 90045()20=天,答:厂家去年生产了45天. ……………………………………………(7分)方法二:将45900200-=+==x x y y ,得代入. 答:厂家去年生产了45天. ………………… ……………………………(7分)(3) 方法一:设改进技术后,还要n 天完成生产计划 ,根据题意得()3090n +≥6000,解得n ≥110, ……………………………………………………(9分) 答:至少还要110天,厂家才能完成生产计划. ……………………………(10分)方法二:设今年生产x 天完成生产计划,则306000x ≥,解得200x ≥, ………………………………………………(9分) 20090110-=(天).答:至少还要110天,厂家才能完成生产计划. ……………………………(10分)七、解答题(本题满分14分)25.(1)①证明:∵四边形ABCD 是正方形,∴AD =CD , ∠ADG =∠CDG . 又∵GD =GD ,∴△ADG ≌△CDG (SAS ) . ……………………………………………………………(1分) ∴∠DAG =∠DCG . ……………………………………………………………(2分) ②AG ⊥BE . …………………………………………………………………(3分)证明:∵四边形ABCD 是正方形, ∴AB =CD , ∠BAD =∠ADC =90°. 又∵AE =DF ,∴△ABE ≌△CDF (SAS ) .∴∠ABE =∠DCF . ………………………………(4分) 又∵∠DAG =∠DCG ,∴∠GAD =∠ABE . …………………………………………………………………(5分) 又∵∠BAH +∠DAG =90°, ∴∠BAH +∠ABE =90°,∴∠AHB =90°,∴AG ⊥BE . ……………………………………………………………(6分)第25题①图(2)证明:过点O 作OM ⊥AG 于点M ,ON ⊥BE 于点N , ∴∠ONH =∠OMH =90°,…………………………(7分) 又∵∠MHN =90°, ∴四边形OMHN 是矩形,∴∠MON =90°. ………………………………(8分) ∵四边形ABCD 是正方形, ∴OA =OB ,∠AOB =90°,∴∠BON+∠AON=∠AON+∠AOM ,∴∠BON =∠AOM , …………………………(9∴△AMO ≌△BNO (AAS ) ,∴OM =ON . …………………………(10又∵OM ⊥AG ,ON ⊥BE ,∴HO 平分∠BHG . …………………………(11(3)补充作图如图③所示, ………………(13∠BHO =45°. …………………………(14分)八、解答题(本题满分14分)26. 解:(1) 将点A ()0,1、)03(,B 、(0)C ,-3代入c bxax y ++=2中, 得⎪⎩⎪⎨⎧-==++=++30390c c b a c b a 解得143a b c =-⎧⎪=⎨⎪=-⎩.∴抛物线的表达式为342-+-=x x y ,…………………(3∵1)2(3422+--=-+-=x x x y ,∴顶点D 的坐标为)1,2(. ………………………………………………(5分) (2) 设直线BC 的表达式为b kx y +=,∴⎩⎨⎧-==+303b b k , 解得3,1-==b k .∴直线BC 的表达式为:3-=x y . …………………………………………………(6分) PE ∥y 轴,∴点E 、点P 的横坐标相同.设 ),(),,(E P y m E y m P .第25题③图第25题②图∴()22239433324P E PE y y m m m m m m ⎛⎫=-=-+---=-+=--+ ⎪⎝⎭.∴存在点P ,使线段PE 的长最大,最大值为49. …………………………………(8分) (3) 由题意易得,△ADB 、△ABF 是等腰直角三角形,AD ∥BC. ∴123ADB ABF ADBF S S S ∆∆=+=+=四边形.当0t ≤OAFC 移动到如图②的位置, 重叠部分图形为平行四边形FA F A '',2AF =,t F F =',F '到AF 距离为t 22, ∴t t S FA F A 2222=⨯=''平行四边形 …………………………………………(10分)t <≤AFCO 运动到如图③所示位置,重叠部分图形为五边形ND C F M '',FC t '=BF t '=.F MF C ND ADB AFC N MF B S S S S ''''=--五边形四边形平行四边形等腰直角三角形()2322t t =⨯-212t =-++ . …………………………………………………………………(12分)当t ≤时,四边形AFCO 运动到如图④所示位置,重叠部分图形为等腰直角三角形C BN ',BC t '=.2211)922BNC S t t '==-+三角形.………(14第26题②图。

济南市天桥区2014年中考数学二模试题(含答案)

济南市天桥区2014年中考数学二模试题(含答案)

济南市天桥区2014年中考数学二模试题(含答案)济南市天桥区2014年中考数学二模试题(含答案)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I卷(选择题共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的绝对值是A.B.C.6D.2.已知∠α=35°,则∠α的余角是A.35°B.55°C.65°D.145°3.某反比例函数图象经过点(-1,6),则下列各点也在此函数图象上的是A.(-3,2)B.(3,2)C.(2,3)D.(6,1)4.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数为A.mB.mC.mD.m5.如图所示,该几何体的俯视图是6.不等式组的解集在数轴上表示为7.把多项式分解因式所得的结果是A.B.C.D.8.我市五月份连续五天的最高气温分别为23,20,20,21,26(单位:℃),这组数据的中位数和众数分别是A.22,26B.21,20C.21,26D.22,209.如图,半径为4cm的定圆O与直线l相切,半径为2cm的动圆P在直线l上滚动,当两圆相切时OP的值是A.4cmB.6cmC.2cmD.2cm或6cm10.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为A.B.C.D.11.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A逆时针旋转90º后,所得直线的解析式为A.y=-x+2B.y=x-2C.y=-x-2D.y=-2x-112.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.3种B.4种C.5种D.6种13.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是A.①B.①③C.②③D.①②③14.已知二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是A.(1,0)B.(-1,0)C.(2,0)D.(-2,0)15.如图,△ABC中,∠ABC=90°,AB=8,BC=6,点F,D是直线AC 上的两个动点,且FD=AC.点B和点E分别在直线AD的两侧,AB=DE,AB//DE,当四边形BCEF是菱形时AF等于A.B.C.5D.4第Ⅱ卷(非选择题共75分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答.2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.得分评卷人二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.=_____________.17.计算:=____________.18.方程组的解为______________.19.如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O 的半径为_____________.20.如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数(x>0)的图象交于点Q(m,n).当一次函数y的值随x值的增大而增大时,m的取值范围是___________.21.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是________________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)得分评卷人22.(本小题满分7分)完成下列各题:(1)解方程:.(2)计算:.得分评卷人23.(本小题满分7分)完成下列各题:(1)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.(2)如图,矩形ABCD中,BC=8,对角线BD=10,求tan∠ACB.得分评卷人24.(本小题满分8分)某校为了进一步开展“阳光体育”活动,分别用1200元购买了一批篮球和排球.已知篮球单价是排球单价的1.5倍,且所购买的排球数比篮球数多10个.篮球与排球的单价各多少元?得分评卷人25.(本小题满分8分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)九年级(1)班体育测试的人数为_____________;(2)请把条形统计图补充完整;(3)扇形统计图中A级所在的扇形的圆心角度数是_______________;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为_______________人.得分评卷人26.(本小题满分9分)如图1,菱形中,,边长AB=10cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿方向以每秒2cm的速度运动,到点C停止,点Q沿方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设t秒后橡皮筋扫过的面积为ycm2.(1)当时,求橡皮筋扫过的面积;(2)如图2,当橡皮筋刚好触及钉子时,求t值;(3)求与t之间的函数关系式.得分评卷人27.(本小题满分9分)如图,在平面直角坐标系中,点A的坐标为(2,0),点P是y轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ,当点P运动到点O时,点Q记作点B.(1)求点B的坐标;(2)当点P在y轴上运动(P不与O重合)时,请说明∠ABQ的大小是定值;(3)是否存在点P,使得以A,O,Q,B为顶点的四边形是梯形?若存在,请写出点P的坐标;若不存在,请说明理由.得分评卷人28.(本小题满分9分)如图,在平面直角坐标系中,抛物线经过A(﹣1,0),B(3,0),C(0,3)三点,其顶点为D.连接BD,点P 是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PBE的面积为S,求S与x的函数关系式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请求出点P′的坐标.数学试题参考答案一、选择题:123456789101112131415CBACADCBDCABBDB二、填空题:16.117.9a618.19.420.1三、解答题:22.(1)解法一:……………………………………1分或……………………………………2分∴,.……………………………………3分解法二:移项,得配方,得……………………………………1分由此可得……………………………………2分∴,……………………………………3分解法三:..……………………………………1分……………………………………2分∴,……………………………………3分(2)解:原式……………………………………1分……………………………………2分……………………………………3分23.(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.……………………………………1分在△ABF和△DCE中,∴△ABF≌△DCE,……………………………………2分∴∠A=∠D.……………………………………3分(2)解:∵四边形ABCD是矩形∴AC=BD=10,……………………………………1分在Rt△ABC中,AB=,………………………………3分∴tan∠ACB=.……………………………………4分24.解:设排球的单价为元,则篮球的单价为元, (1)分根据题意得.……………………………4分解方程得.……………………………6分经检验,是原分式方程的根.……………………………7分.答:篮球单价为60元,排球单价为40元.…………………………8分25.解:(1)50;……………………………………2分(2)条形图补充正确;……………………………………4分(3)72°;……………………………………6分(4)330.……………………………………8分26.解:(1)当时,AP=6,AQ=3过P作,则……………………………………..2分……………………………………..3分(2)解法1:当橡皮筋刚好触及钉子时,,.………..4分,,…………………..5分.…………………..6分解法2:连结BD,则△BOP≌△DOQ(ASA)∴BP=DQ……..4分∴……..5分…….6分(3)当时,作PM⊥AD于M,,,PM=,………………….7分当时,,,,…………..8分当时,如图3,作OE∥.,,,.…………..9分27.解:(1)如图1,过点B作BC⊥OA,垂足为C∵△OAB为等边三角形,A的坐标(2,0)∴BO=OA=2,OC=1,∠BOC=60°••••••••••••••••••••1分∴BC=•••••••••••••••••••••••••••••••2分∴B的坐标•••••••••••••••••••••••••••••3分(2)∵△OAB与△APQ为等边三角形∴∠BAO=∠PAQ=60°∴∠BAQ=∠OAP•••••••••••••••••••••••••••••••4分在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB∴△APO≌△AQB(SAS),•••••••••••••••••••••••••••••••5分∴∠ABQ=∠AOP=90°,∴当点P在x轴上运动(P不与O重合)时,∠ABQ为定值90°;••••6分(3)存在.••••••••••••••••••••••••••••••7分P1•••••••••••••••••••••••••••••••8分P2•••••••••••••••••••••••••••••••9分28.解:(1)∵抛物线经过A(﹣1,0)、B(3,0)、C(0,3)三点∴抛物线解析式为:••••••••••••••••••••••••••••2分∴顶点D的坐标为:(1,4)••••••••••••••••••••••••••••3分(2)设BD的解析式为:,代入B,D的坐标∴BD的解析式为:••••••••••••••••••••••••••••4分∴S=••••••••••••••••••••••••5分∴S=∴当时,S取得最大值,最大值为.••••••••••••••••••••••••••••6分(3)如图,当S取得最大值时,点P的坐标为(,3)∵PE⊥y轴,PF⊥x轴∴四边形PEOF为矩形.作点P关于EF的对称点P′,连接P′E,P′F;作P′H⊥y轴于H,P′F交y轴于点M.设MC=m,则MF=m,∴P′M=3﹣m,P′E=∴由勾股定理得:∴解得:m=••••••••••••••••••••••••••7分∵CM•P′H=P′M•P′E∴P′H=∵△EHP′∽△HMP∴可得,EH=•••••••••••••••••••••••••••8分∴OH=∴P′坐标为(,)•••••••••••••••••••••••••••9分。

数学中考专题:统计与概率试题,两套及答案

数学中考专题:统计与概率试题,两套及答案

2014年中考数学总复习专题测试卷1(统计与概率) Fighting, Fighting, Fighting ……一、选择题(本题共10 小题,每小题4 分,满分40分) 1.若一组数据1,2,3,x 的极差为6,则x 的值是( )。

A .7 B .8 C .9 D .7或-32.样本X 1、X 2、X 3、X 4的平均数是X ,方差是S 2,则样本X 1+3,X 2+3,X 3+3,X 4+3的平均数和方差分别是( )。

A .x +3,S 2+3 B . x +3, S 2 C . x ,S 2+3 D . x , S 23.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的( )。

A 、方差B .平均数C .频数D . 众数 4.盒中装有5个大小相同的球,其中3个白球,2个红球,从中任意取两个球,恰好取到一个红球和一个白球的概率是( )。

A .254 B .101 C .53 D .215.如图所示的两个圆盘中,指针落在每一个数上的机会均等, 那么两个指针同时落在偶数上的概率是( )。

A .1925 ;B .1025 ;C .625 ;D .5256.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( )。

A . 明天本市70%的时间下雨,30%的时间不下雨B . 明天本市70%的地区下雨,30%的地区不下雨C . 明天本市一定下雨D . 明天本市下雨的可能性是70% 7.男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( )。

A .只发出5份调查卷,其中三份是喜欢足球的答卷 B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8 C .在答卷中,喜欢足球的答卷占总答卷的53D .发出100份问卷,有60份答卷是不喜欢足球 8.一个袋中装有2个黄球和2个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都摸到红球的概率为( )。

上海市闵行区2014年中考二模数学试卷-含参考答案及评分标准

上海市闵行区2014年中考二模数学试卷-含参考答案及评分标准

闵行区2014年中考二模数 学 试 卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分) 1.如果单项式13a x y +-与212bx y 是同类项,那么a 、b 的值分别为 (A )1a =,3b =; (B )1a =,2b =; (C )2a =,3b =; (D )2a =,2b =.2.如果点P (a ,b )在第四象限,那么点Q (-a ,b -4)所在的象限是(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.3.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400保留2个有效数字表示为(A )380000; (B )3.8×105; (C )38×104; (D )3.844×105. 4那么这11 (A )25,24.5; (B )24.5,25; (C )26,25; (D )25,25. 5.下列四个命题中真命题是(A )对角线互相垂直平分的四边形是正方形; (B )对角线垂直且相等的四边形是菱形;(C )对角线相等且互相平分的四边形是矩形; (D )四边都相等的四边形是正方形.6.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡比为41:3i =的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为(A )5m ; (B )6m ; (C )7m ; (D )8m .二、填空题:(本大题共12题,每题4分,满分48分) 7= ▲ .8.在实数范围内分解因式:241x x -+= ▲ .9.关于x 的方程2230x x m +-=有实数根,那么实数m 的取值范围是 ▲ .10.已知函数0(1)()3x f x x -=-,那么(1)f -= ▲ .11.如果反比例函数的图象过点(-1,2),那么它在每个象限内y 随x 的增大而 ▲ .12.把函数22y x =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ▲ . 13.一个骰子六个面上的数字分别为1、2、3、4、5、6,投掷一次,向上的一面是合数的概率是 ▲ .14.已知:233m a b =-,1124n b a =+,则4m n -= ▲ . 15.如图,直线AB ∥CD ∥EF ,那么∠α+∠β-∠γ= ▲ 度.16.如图,已知DE ∥BC ,且EF ︰BF =3︰4,那么AE ︰AC = ▲ . 17.如图,在Rt △ABC 中,∠C = 90°,AC =8,BC =6,两等圆⊙A 、⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为 ▲ .(保留π) (第6题图)18.如图,已知△ACB 与△DEF 是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图所示的形状,使点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合,将△ACB 绕点C 顺时针方向旋转,使得点E 在AB 边上,AC 交DE 于点G ,那么线段FG 的长为 ▲ cm (保留根号).三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:12322cos 45|81|-----. 20.(本题满分10分)解方程组:113,231 1.2x x y x x y⎧+=⎪-⎪⎨⎪-=⎪-⎩21.(本题共2小题,每小题5分,满分10分)已知:如图,在以O 为圆心的两个同心圆中,小圆的半径长为4,大圆的弦AB 与小圆交于C 、D 两点,且AC =CD ,∠COD = 60°.求:(1)求大圆半径的长;(2)如果大圆的弦AE 长为,求∠AEO 的余切. 并直接判断弦AE 与小圆的位置关系.(第16题图) (第15题图) AE C (F )D B (第18题图) EA BC D O22.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)某校九年级二班为开展“迎五一劳动最光荣”的主题班会活动,派小明和小丽两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的宝克牌钢笔每支8元,英雄牌钢笔每支4.8元,他们要购买这两种笔共40支. 小明和小丽根据主题班会活动的设奖情况,决定所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的12,但又不少于英雄牌钢笔的数量的14,如果他们买了宝克牌钢笔x 支,买这两种笔共花了y 元. (1)请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;(2)请帮助他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?23.(本题共2小题,每小题6分,满分12分)已知:如图,四边形ABCD 是平行四边形,分别以AB 、AD 为腰作等腰三角形△ABF 和等腰三角形△ADE ,且顶角∠BAF =∠DAE ,联结BD 、EF 相交于点G ,BD 与AF 相交于点H .(1)求证:BD =EF ;(2)当线段FG 、GH 和GB 满足怎样的数量关系时,四边形ABCD 是菱形,并加以证明. ABDEF(第23题图)G H24.(本题共2题,每小题6,满分12分)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线2=++经过O、A、C三点.y ax bx c (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(第24题图)25.(本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分)已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC =2α.如果用α表示∠BIC 和∠E ,那么∠BIC = ,∠E = ;(2)如果AB =1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=35,设BC =m ,试用m 的代数式表示BE .(第25题图②)F AB CDI(第25题图①)ABCDEI参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6.A . 二、填空题:(本大题共12题,每题4分,满分48分)7. 8.(22x x --; 9.m ≥98-; 10.14-; 11.增大;12.22(3)2y x =--; 13.13; 14.823a b -; 15.180; 16.3︰4; 17.254π;18三、解答题:(本大题共7题,满分78分)19.解:原式1114=-+…………………………………(2分+2分+2分+2分)14=-.…………………………………………………………………(2分)20.解:设1u x =,12v x y =-,则原方程组可化为331u v u v +=⎧⎨-=⎩.……………………(2分) 解这个方程组,得 12u v =⎧⎨=⎩.………………………………………………(2分)于是,得11122x x y ⎧=⎪⎪⎨⎪=⎪-⎩即1122x x y =⎧⎪⎨-=⎪⎩.……………………………………(2分) 解方程组得 132x y =⎧⎪⎨=⎪⎩. ………………………………………………………(2分)经检验132x y =⎧⎪⎨=⎪⎩是原方程组的解.……………………………………………(1分)所以,原方程组的解是132x y =⎧⎪⎨=⎪⎩ ……………………………………………(1分)21.解:(1)过O 作OF ⊥CD ,垂足为F ,联结OA .∵ OC = OD = 4,∠COD = 60°,∴ OC = OD = CD = 4.又∵ AC =CD ,∴ AC = CD = 4.………………………………………(1分) ∵ OF ⊥CD ,且OF 过圆心,CD = 4 ,∴ CF = FD = 2.∴ AF = 6.…………………………………………(1分) 在Rt △COF 中,222CO OF CF =+,∴ OF= .………………(1分) 在Rt △AOF 中,222AO OF AF =+,∴ AO= .………………(1分)即:大圆半径的长为.……………………………………………(1分) (2)过O 作OG ⊥AE ,垂足为G .∵ OG ⊥AE ,且OG 过圆心,AE=∴ AG = EG= 1分) 在Rt △EOG 中,222EO EG OG =+,∵ OE= ,∴ OG = 4.……………………………………………(1分) 在Rt △EOG中,cot EG AEO OG ∠===答: 弦AE 与小圆相切.………………………………………………(1分)22.解:(1)根据题意,得 84.8(40)3.2y x x x =⋅+-=+.…………………(3分)根据题意,得定义域为1(40)21(40)4x x x x ⎧<-⎪⎪⎨⎪≥-⎪⎩.………………………………(1分)解得,定义域为8≤ x <403的整数.…………………………(1分+1分) (2)由于一次函数 3.2192y x =+的k >0.所以 y 随x 的增大而增大.因此,当x =8时花的钱最少.…………………………………………(2分) 4032x -=, 3.28192217.6y =⨯+=.………………………………(1分)答:当购买英雄牌钢笔32支,宝克牌钢笔8支时,所花的钱最少,此时花了217.6元.………………………………………………(1分)23.(1)证明:∵ ∠BAF =∠DAE ,∴∠BAF+∠FAD =∠DAE +∠FAD ,即∠BAD =∠FAE .………(1分) 在△BAD 和△F AE 中∵ AB =AF ,∠BAD =∠FAE ,AD =AE ,……………………………(3分) ∴△BAD ≌ △F AE (SAS ).……………………………………(1分) ∴ BD = EF .…………………………………………………………(1分)(2)当线段满足2FG GH GB =⋅时,四边形ABCD 是菱形.…………………(1分)证明:∵2FG GH GB =⋅,∴FG GHBG FG=. 又∵∠BGF =∠FGB , ∴△GHF ∽ △GFB .∴ ∠EFA =∠FBD .………………………(1分) ∵△BAD ≌ △F AE , ∴ ∠EFA =∠ABD .∴ ∠FBD =∠ABD .…………………………………………………(1分) ∵ 四边形ABCD 是平行四边形, ∴ AD // BC .∴ ∠ADB =∠FBD .∴ ∠ADB =∠ABD .…………………………………………………(1分) ∴ AB =AD .……………………………………………………………(1分)又∵ 四边形ABCD 是平行四边形,∴ 四边形ABCD 是菱形.…………………………………………(1分)24.解:(1)∵ 抛物线2y ax bx c =++经过点O 、A 、C ,可得c = 0,…………(1分)∴2421a b a b +=⎧⎨+=⎩,解得32a =-,72b =;…………(2分) ∴ 抛物线解析式为23722y x x =-+.………………(1分)对称轴是直线76x =…………………………(1分) 顶点坐标为(76,4924)…………………(1分) (2)设点P 的横坐标为t ,∵PN ∥CD ,∴ △OPN ∽ △OCD , 可得PN =2t ,∴P (t ,2t).……(1分) 237如解答图,过M 点作MG ⊥AB 于G ,过P 点作PH ⊥AB 于H ,AG = y A -y M = 2-(23722t t -+)=237222t t -++,BH = PN =2t.…(1分)当AG =BH 时,四边形ABPM 为等腰梯形,∴2372222tt t -++=,…………………(1分)化简得3t 2-8t + 4=0,解得t 1=2(不合题意,舍去),t 2=23,………(1分) ∴点P 的坐标为(23,13).∴存在点P (23,13),使得四边形ABPM 为等腰梯形.………(1分)25.解:(1)∠BIC = 90°+α,…………………………………………………(2分)∠E = α.…………………………………………………………(2分) (2)由题意易证得△ICE 是直角三角形,且∠E = α.当△ABC ∽△ICE 时,可得△ABC 是直角三角形,有下列三种情况: ①当∠ABC = 90° 时,∵∠BAC = 2α,∠E = α;∴ 只能∠E = ∠BCA ,可得∠BAC =2∠BCA . ∴ ∠BAC = 60°,∠BCA = 30°.∴ AC =2 AB . ∵ AB = 1 ,∴ AC = 2.…………………(2分)②当∠BCA = 90° 时,∵∠BAC = 2α,∠E = α;∴ 只能∠E = ∠ABC ,可得∠BAC =2∠ABC . ∴ ∠BAC = 60°,∠ABC = 30°.∴ AB =2 AC . ∵ AB = 1 ,∴ AC =12.………………(2分) ③当∠BAC = 90° 时,∵∠BAC = 2α,∠E = α;∴∠E = ∠BAI = ∠CAI =45°.∴△ABC 是等腰直角三角形.即 AC = AB . ∵ AB = 1 ,∴ AC = 1.…………………(2分)∴综上所述,当△ABC ∽△ICE 时,线段AC 的长为1或2或12. (3)∵∠E = ∠CAI ,由三角形内角和可得 ∠AIE = ∠ACE .∴ ∠AIB = ∠ACF .又∵∠BAI = ∠CAI , ∴ ∠ABI = ∠F . 又∵BI 平分∠ABC , ∴ ∠ABI = ∠F =∠EBC .又∵∠E 是公共角, ∴ △EBC ∽△EFI .…………………………(2分)在Rt △ICF 中,sin ∠F=35,设IC = 3k ,那么CF = 4k ,IF = 5k .在Rt △ICE 中,∠E =30°,设IC = 3k ,那么CE = ,IE = 6k . ∵△EBC ∽△EFI .∴BC IF BE FE ==.又∵BC =m , ∴ BE =.………………………………(2分)。

2014中考数学培优能力提升(往年中考经典题)含答案

2014中考数学培优能力提升(往年中考经典题)含答案

2014中考数学培优题型(复习)第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H .在Rt △AOH 中,AO =2,∠AOH =30°,所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点,设y =ax (x -2),代入点A (1,3)-,可得33a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-.(2)由2232333(1)3333y x x x =-=--,得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=.所以∠BOM =30°.所以∠AOM =150°.(3)由A (1,3)-、B (2,0)、M 3(1,)3-,得3tan 3ABO ∠=,23AB =,233OM =. 所以∠ABO =30°,3OA OM=. 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°.△ABC 与△AOM 相似,存在两种情况:①如图3,当3BA OA BC OM ==时,23233BA BC ===.此时C (4,0). ②如图4,当3BC OA BA OM ==时,33236BC BA ==⨯=.此时C (8,0).图3 图4例2 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA =,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14b b =-.解得843b =±.所以符合题意的点Q 为(1,23+). ②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使⽤. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分.⼀、选择题(每⼩题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D ⼆、填空题(每⼩题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每⼩题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+??÷+??+++??…………………………2分 =2(1)(1)432(2)22x x x x x x x ??+--÷+??+++??…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+?++- …………………………5分=12x…………………………6分当x = tan45°+2cos60°=1+1=2 时, …………………………8分原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=41164= ………………………10分四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设⾝体状况 “良好”的学⽣有x ⼈, “及格”的学⽣有y ⼈.3463%200200x y xy -=??+= ………2分解得:8046x y =??=? ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000(⼈)……………………10分 2000×=560(⼈) ……………………12分五、解答题(22⼩题10分,23⼩题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂⾜为F. ∵∠ABC=120°∴∠FBC=30° ……………1分在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分)∴DF=AB=8 ………5分∴x +8 …………………6分在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分第23题图即3x 8-x ) …………………8分解得x=6-………………9分-=2..................10分 DC=CF+DF=6+≈9.5(⽶) ..................11分答:路灯C 到地⾯的距离约为9.5⽶ (12)分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分∴甲⾛完全程需4⼩时,∵甲出发3⼩时后⼄开车追赶甲,两⼈同时到达⽬的地∴⼄⾛完全程需1⼩时,∴⼄的速度是60601=(千⽶/时)………………2分(2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100)第24题图∴104100k b k b +=??+=? …………………4分C解得3020 kb==-?∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2⼩时后两⼈第⼀次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=+=…………………10分解得60140 mn==-∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6⼩时,2.4⼩时或3.6⼩时后两⼈相距12千⽶.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三⾓形∴AB=AC,∠B=∠CAF=60°⼜∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分⼜∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分⼜∵AE=CF=CG∴四边形AECG是平⾏四边形. ……………8分(2)四边形AECG是平⾏四边形………… 9分证明:如图2∵△ABC是等边三⾓形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°⼜∵AF=BE ∴△ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分⼜∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分第25题图2 ⼜∵AE=CG∴四边形AECG 是平⾏四边形. ……………14分⼋、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=-∴b=2. …………………2分(2)解:延长DC 交x 轴于点H ,∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上⽅时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代⼊21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平⾏四边形∴OE=CD=3,第26题图1E∴21319228m m --+=3 ……………9分解得152m =-,212m =- ……………10分∴B(2, 12-)或B(2, 5 2-) …………………11分当点D 在点C 下⽅时∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分第26题图2 综上,当四边形OEDC 是平⾏四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。

2014年中考数学二模试题及答案九

2014年中考数学二模试题及答案九

中考数学二模数学试题九考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .64.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a += D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ). A .85,75 B .75,85 C .75,80 D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ). A .15π B .14π C .13π D .12π第5题图2a bc MB A 18.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分) 9.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = .12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解: 14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式. 解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.y x31D BO AOBEACD OB EACD图1 图2 证明:⑴ ⑵20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长;⑵求sin ∠DAO 的值.解:⑴⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这FE D BO A C。

2014年中考数学训练题二(含解析答案) (2)

2014年中考数学训练题二(含解析答案) (2)

2014年中考数学训练题1、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,,点C的坐标为(12,0),点P为斜边OB上的一动点,则P A+PC的最小值为().A B C D.2、已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.24.(本题满分12)已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.6.(2013·潍坊,22,11分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'''D F CE ,旋转角为α.(1)当点'D 恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC 的中点,且0°<α<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.2014年中考数学训练题答案30.(2013江苏苏州,10,3分)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为( ).A B C D . 【答案】B .【解析】如图,作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时P A +PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解:如图,作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时P A +PC 的值最小.∵DP =P A ,∴P A +PC =PD +PC =CD .∵B (3,∴AB OA =3,∠B =60°.由勾股定理得:OB由三角形面积公式得:12×OA ×AB =12×OB ×AM ,即12×312×AM .∴AM =32.∴AD =2×32=3.∵∠AMB =90°,∠B =60°, ∴∠BAM =30°,∵∠BAO =90°,∴∠OAM =60°. ∵DN ⊥OA ,∴∠NDA =30°,∴AN =12×AD =32.由勾股定理得:DN ∵C (12,0),∴CN =3-12-32=1.在Rt △DNC 中,由勾股定理得:DC 2.即P A+PC的最小值是.2所以应选B.【方法指导】本题考查了三角形的内角和定理,轴对称的最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.【易错警示】弄不清楚最小值问题,赵不到最短距离而出错.7.(2013四川内江,16,5分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=5.解:6.(2013·潍坊,22,11分)如图1所示,将一个边长为2的正方形和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'''D F CE ,旋转角为α.(1)当点'D 恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC 的中点,且0°<α<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.答案:(1) ∵DC//EF ,∴∠DCD ′=∠CD ′E =∠CD ′E =α. ∴sin α=1'2CE CE CD CD ==,∴α=30°(2) ∵G 为BC 中点,∴GC =CE ′=CE =1, ∵∠D ′CG =∠DCG +∠DCD ′=90°+α, ∠DCE ′=∠D ′CE ′+∠DCD ′=90°+α,∴∠D ′CG =∠DCE ′又∵CD ′=CD , ∴△GCD ′≌△E ′CD , ∴GD ′=E ′D (3) 能. α=135°或α=315°考点:图形的旋转、三角函数、解直角三角形、全等三角形的判定点评:本题依据学生的认知规律,从简单特殊的问题入手,将问题向一般进行拓展、变式,通过操作、观察、计算、猜想等获得结论.此类问题综合性较强,要完成本题学生需要有较强的类比、迁移、分析、变形应用、综合、推理和探究能力.24.(本题满分12)已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点. (1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最大值. 24.解:(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点, 令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k =1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k=1.由题意得(k-1)x12+(k+2)=2kx1.将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=21kk-,x1x2=21kk+-,∴2k·21kk-=4·21kk+-.解得:k1=-1,k2=2(不合题意,舍去).∴所求k值为-1.②如图5,∵k1=-1,y=-2x2+2x+1=-2(x-12)2+32.且-1≤x≤1.由图象知:当x=-1时,y最小=-3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.图5。

2014年山东省济南市市中区中考数学二模试卷(菁优网全解全析)

2014年山东省济南市市中区中考数学二模试卷(菁优网全解全析)

2014年某某省某某市市中区中考数学二模试卷2014年某某省某某市市中区中考数学二模试卷一、选择题(本大题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2012•日照)﹣5的相反数是()A.﹣5 B.﹣C.5D.(2010•某某)如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是()2.(3分)3.(3分)(2010•某某)图中几何体的主视图是()A.B.C.D.4.(3分)(2010•某某)下列运算正确的是()A.x2•x3=x5B.(a+b)2=a2+b2C.(a2)3=a5D.a2+a3=a55.(3分)(2014•市中区二模)2013年国家为医疗卫生、教育文化等事业发展投资3500亿元.3500用科学记数法表示()A.3.5×10﹣3B.0.35×103C.3.5×103D.35×1036.(3分)(2009•莱芜)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)7.(3分)(2008•某某)不等式组的解集在数轴上可表示为()A.B.C.D.8.(3分)(2007•某某)甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较9.(3分)(2010•某某)为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A.5m B .15m C.20m D.28m10.(3分)(2009•某某)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.11.(3分)(2009•枣庄)如图,把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB的解析式是()A.y=﹣2x﹣3 B.y=﹣2x﹣6 C.y=﹣2x+3 D.y=﹣2x+612.(3分)(2014•市中区二模)圆0半径为5,AB 是圆0的直径,D是AB延长线上一点,DC是圆0切线,∠CAB=30°,则BD长()A.10 B.5C.5D.13.(3分)(2010•某某)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米14.(3分)(2012•某某)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC 于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+15.(3分)(2014•市中区二模)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论中,正确结论的有()个.①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.(3分)(2010•某某)分解因式:a3﹣2a2+a= _________ .17.(3分)(2010•庆阳)分式方程的解是_________ .18.(3分)(2014•市中区二模)随机掷一枚均匀的硬币两次,两次都是正面朝上的概率是_________ .19.(3分)(2010•某某)如图,在△ABC中,D是AB边上一点,连接CD,要使△ADC与△ABC相似,应添加的条件是_________ .20.(3分)(2014•市中区二模)如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_________ cm.21.(3分)(2013•某某)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为_________ .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(3分)(2014•市中区二模)计算:cos60°+﹣2﹣1.23.(4分)(2014•市中区二模)正方形ABCD中,G为CD上一点,以CG为边作正方形GFEC,求证:BG⊥DE.24.(3分)(2014•市中区二模)解方程:x2﹣6x+8=0.25.(4分)(2009•某某)如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B 点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.26.(8分)(2014•市中区二模)把一副扑克牌中的3X黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一X牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一X牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一X牌,记下牌面数字.当2X牌面数字相同时,小王赢;当2X牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.27.(8分)(2012•某某)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?28.(9分)(2014•市中区二模)如图,已知直线y=﹣x+4与x轴、y轴分别相交于A、B两点.P、Q分别是x 轴与y轴上的动点,点P从点A向x轴正方向移动,点Q从B点向点O移动,当点Q到达点0时,P、Q均停止运动,二者同时出发,速度相同.(1)求A,B两点的坐标;(2)设AP=t,△PAQ的面积为S,试求S与t的关系式;当S取最大值时,求PQ与AB的交点坐标;(3)若PQ交AB于点C,以QC为直径的圆交AB于另一点D,试判断CD的长度是否随P、Q的移动而变化,并说明理由.29.(9分)(2013•某某)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结.求证:∠ABC=∠A.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠A还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结.试探究∠ABC与∠A的数量关系,并说明理由.30.(9分)(2013•某某)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.2014年某某省某某市市中区中考数学二模试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2012•日照)﹣5的相反数是()A.﹣5 B.﹣C.5D.考点:相反数.分析:根据相反数的定义解答.解答:解:只有符号不同的两个数称为互为相反数,则﹣5的相反数为5,故选C.点评:本题考查了相反数的定义,只有符号不同的两个数互为相反数,a的相反数是﹣a.2.(3分)(2010•某某)如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.120°D.150°考点:平行线的性质;对顶角、邻补角.专题:应用题.分析:根据平行线的性质知道∠2的邻补角和∠1是同位角,而∠2的邻补角是80°,再根据邻补角的定义可以求出∠2.解答:解:如图,∵梯子的各条横档互相平行,若∠1=80°,∴∠3=80°,∴∠2=180﹣∠3=100°.故选B.点评:此题要求学生掌握平行线的性质以及邻补角的定义.3.(3分)(2010•某某)图中几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:压轴题.分析:根据实物的形状和主视图的概念判断即可.解答:解:图中几何体的主视图如选项B所示.故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.4.(3分)(2010•某某)下列运算正确的是()A.x2•x3=x5B.(a+b)C.(a2)3=a5D.a2+a3=a5考点:完全平方公式;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,完全平方公式,幂的乘方与合并同类项的运算法则计算即可.解答:解:A、正确;B、应为(a+b)2=a2+2ab+b2,故选项错误;C、应为(a2)3=a2×3=a6,故选项错误;D、a2与a3不是同类项,不能合并,故选项错误;故选A.考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法,完全平方公式,幂的乘方,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.5.(3分)(2014•市中区二模)2013年国家为医疗卫生、教育文化等事业发展投资3500亿元.3500用科学记数法表示()A.3.5×10﹣3B.0.35×103C.3.5×103D.35×103考点:科学记数法—分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:3500用科学记数法表示为3.5×103,故选C.点评:此题考查科学记数法的表示方法.科学记数为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2009•莱芜)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)考点:反比例函数图象上点的坐标特征.分析:只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.解答:解:∵点M(﹣2,3)在双曲线y=上,∴k=xy=(﹣2)×3=﹣6,纵坐标相乘,结果为﹣6的点在函数图象上.A、因为3×(﹣2)=﹣6=k,所以该点在双曲线y=上.故A 选项正确;B、因为(﹣2)×(﹣3)=6≠k,所以该点不在双曲线y=上.故B选项错误;C、因为2×3=6≠k,所以该点不在双曲线y=上.故C选项错误;D、因为3×2=6≠k,所以该点不在双曲线y=上.故D选项错故选:A.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.7.(3分)(2008•某某)不等式组的解集在数轴上可表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解出两不等式的解集再求其公共解,结合数轴的特点来解答.由①得x >﹣1由②得x ≤1所以解集为﹣1<x ≤1故选A .点评: 求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.8.(3分)(2007•某某)甲、乙两人各射击6次,甲所中的环数是8,5,5,a ,b ,c ,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是( )A . 甲射击成绩比乙稳定B . 乙射击成绩比甲稳定C . 甲、乙射击成绩稳定性相同D . 甲、乙射击成绩稳定性无法比较考点: 众数;算术平均专题:应用题.分析:要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.解答:解:∵这组数中的众数是8∴a,b,c中至少有两个是8∴a,b,c三个数其中一个是2∴∴乙射击成绩比甲稳定.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.(3分)(2010•某某)为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A.5m B.15m C.20m D.28m考点:三角形三边关系.专题:应用题.分析:首先根据三角形的三边关系定理求出AB的取值X围,然后再判断各选项是否正确.解答:解:∵PA、PB、AB能构成三角形,∴PA﹣PB<AB<PA+PB,即4m<AB<28m.故选D.点评:已知三角形的两边,则第三边的X围是:大于已知的两边的差,而小于两边的和.10.(3分)(2009•某某)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用所给的角的余弦值求解即可.解答:解:∵BC=5米,∠CBA=∠α.∴AB==.故选B.点评:此题主要考查学生对坡度、坡角的理解及运用.11.(3分)(2009•枣庄)如图,把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB的解析式是()A.y=﹣2x﹣3 B.y=﹣2x﹣6 C.y=﹣2x+3 D.y=﹣2x+6考点:一次函数图象与几何变换.专题:压轴题;数形结合.分析:平移时k的值不变,只有b发生变化.再把相应的点代入即可.解答:解:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6﹣2a).∵直线AB与直线y=﹣2x平行,∴设直线AB的解析式是:y=﹣2x+b1把(a,6﹣2a)代入函数解析式得:6﹣2a=﹣2a+b1,则b1=6,∴直线AB的解析式是y=﹣2x+6.故选D.点评:求直线平移后的解析式时要注意平移k值不变.12.(3分)(2014•市中区二模)圆0半径为5,AB是圆0的直径,D是AB延长线上一点,DC是圆0切线,∠CAB=30°,则BD长()A.10 B.5C.5D.考点:切线的性质.分析:连接OC,则△ODC是直角三角形,解直角三角形即可求得∠D的度数,然后求得OD的长,进而得到BD的长.解答:解:连接OC,∵DC是圆0切线,∴∠OCD=90°,∵OA=OC,∴∠A=∠OCA=30°,∴∠DOC=60°,∴∠D=30°,∴OD=2OC=10,∴BD=OD﹣OB=10﹣5=5.故选C.点评:本题考查了切线的性质定理,已知圆的切线,常用的思路是连接圆心和切点,构造直角三角形.13.(3分)(2010•某某)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米考点:三角形中位线定理.专题:应用题.分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出BC的长,也就是等边三角形的边长,周长也就不难得到.解答:解:∵点E,F分别是边AB,AC的中点,EF=5米,∴BC=2EF=10米,∵△ABC是等边三角形,∴AB=BC=AC,∴BE=CF=BC=5米,∴篱笆的长=BE+BC+CF+EF=5+10+5+5=25米.故选C.点评:本题利用三角形的中位线平行于第三边并且等于第三边的一半的性质和等边三角形三边相等的性质求解.14.(3分)(2012•某某)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+考点:平行四边形的性质;勾股定理.专题:计算题;压轴题;分类讨论.分析:根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC 的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:∵AB=5,AE=,在△ABE 中,由勾股定理得:BE=,同理DF=3,由①知:CF=5+3,∴CE+CF=11+.故选D.点评:本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.15.(3分)(2014•市中区二模)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论中,正确结论的有()个.①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及x=﹣1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c <0;所以abc>0;故②正确;③根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故③正确;的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④正确;所以这四个结论都正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的X围求2a与b的关系,以及二次函数与方程之间的转换,根的判别二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.(3分)(2010•某某)分解因式:a3﹣2a2+a= a(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.点评:本题考查了提公因式法与公式法分解因式,各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.(3分)(2010•庆阳)分式方程的解是x=1 .考点:解分式方程.专题:计算题.分析:观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+1),得检验:把x=1代入x(x+1)=2≠0.∴原方程的解为:x=1.故答案为x=1.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.(3分)(2014•市中区二模)随机掷一枚均匀的硬币两次,两次都是正面朝上的概率是.考点:列表法与树状图法.分析:首先可以利用列举法,求得随出现的所有等可能的结果,然后利用概率公式直接求解即可.解答:解:∵随机掷一枚均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反,∴两次都是正面朝上的概率是.点评:此题考查了列举法求概率的知识.解题的关键是注意不重不漏的列举出所有等可能的结果.用到的知识点为:概率=总情况数之比.19.(3分)(2010•某某)如图,在△ABC中,D是AB边上一点,连接CD,要使△ADC与△ABC相似,应添加的条件是∠ACD=∠B,∠ADC=∠ACB,.考点:相似三角形的判定.专题:开放型.分析:△ACD和△ABC中,已知了公共角∠A,若两个三角形相似,则需添加一组对应角相等,或夹∠A的两组对应边成比例.解答:解:△ABC和△ACD中,∠DAC=∠CAB,若要△ADC与△ABC,需添加的①∠ADC=∠ACB;②∠ACD=∠B;③,或AC2=AB•AD.点评:此题主要考查的是相似三角形的判定方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.20.(3分)(2014•市中区二模)如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4cm.考点:圆锥的计算.专题:计算题.分析:先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.解答:解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.21.(3分)(2013•某某)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8 .考点:几何变换综合题.专题:压轴题.分析:如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AOP为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.解答:解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠PAF+∠PAE=2∠PAB+2∠PAD=2(∠PAB+∠PAD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD 于点O,则有AF=CG,且AF ∥CG,∴四边形ACGF 为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB •AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.点评:本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(3分)(2014•市中区二模)计算:cos60°+﹣2﹣1.考点:二次根式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据负整数指数幂和特殊角的三角函数值得到原式=+﹣,然后合并即可.解答:解:原式=+﹣=﹣.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂和特殊角的三角函数值.23.(4分)(2014•市中区二模)正方形ABCD中,G为CD上一点,以CG为边作正方形GFEC,求证:BG⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:延长BG交DE于H,由正方形ABCD与正方形EFCG,利用正方形的性质得到两对边相等,一对角相等,利用SAS得到三角形。

哈尔滨2014届中考调研测试数学试题(二)及答案

哈尔滨2014届中考调研测试数学试题(二)及答案

道外区二模参考答案二.填空题三.解答题21.解:原式=2)2)(2(25(23+-+-+÷++a a a a a a=29)2(32+-÷++a a a a =a-31∵a =2sin60°+3tan45°=2×23+13⨯=3+3∴22.⑴正确画图(2)正确画图23.解:(1)4+6+8+7+5+2=32(名)∴该中学参加本次数学竞赛的有32名同学(2)%10032257⨯++=43.75% ∴该中学参赛同学的获奖率是43.75%24.解:(1)作PH ⊥AC 于点H由题意可知∠PAB =30°,∠PBC =60° ∴∠PAB =∠APB =30° ∴AB =BP =60×32=40 ∴客轮在B 距灯塔40海里.(2) 由题意可知∠BPH =30° ∵cos ∠BPH =BP PH =23333331-=+-=原式……3分 ……3分……2分 ……2分 ……2分 ……3分 ……2分PA B C60°30°H ……1分……1分 ……2分∴23=BP PH ∴PH =203≈34.64∵34.64>30 ∴客轮继续向东航行无触礁危险。

25. 证明:∵OA 、OD 为⊙O 的半径 ∴OA =OD ∴∠OAD =∠ODA ∵AD ∥OC∴∠OAD =∠COB ∠ODA =∠COD ∴∠COD =∠COB 在△CDO 和△CBO 中⎪⎩⎪⎨⎧=∠=∠=CO CO COB COD OB OD ∴△COD ≌△COB ∴∠CDO =∠CBO =90° ∴OD ⊥CD∴CD 是⊙O 的切线 (2)设OA =OD =x在Rt △EDO 中,ED 2+OD 2=EO 2∴22+x 2=(x+1)2 解得:x =23∴AB =2AO =3∴AB 的长为326.解:(1)设种蔬菜x 人,种烟叶y 人,则种小麦(20―x ―y)人,根据题意得2x +3y +4(20―x―y)=50解得y =30―2x ,∴20―x―y =x ―10 ∵每种农作物都种 ∴⎩⎨⎧>->-0100230x x ∴10<x<15 ∵x 为种蔬菜的人数,需取整数 ∴x 的值为11,12,13,14,……1分……1分……1分 ……1分 ……2分 ……1分 ……1分……1分……2分 ……1分 ……1分 ……1分……1分∴有4种种植方案. (2)设获利为w 元w =1100×2x+750×3y+600×4(20―x ―y)=2200x+2250(30-2x)+2400(x -10) 即w =100x+23500 ∵k =100>0, ∴w 随x 的增大而增大当x =14时,w =24900最大 30-2x =2 x -10=4∴当14人种28亩蔬菜,2人种6亩烟叶,4人种16亩小麦时,获利最高。

2014届中考二模数学试题含答案

2014届中考二模数学试题含答案

2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。

2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。

3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卷的整洁。

考试结束时,将试卷和答题卷一并交回。

一、选择题(本大题共10小题,每小题3分,共30分。

在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。

【VIP专享】2014年中考数学试题(副卷)参考答案及评分标准

【VIP专享】2014年中考数学试题(副卷)参考答案及评分标准

11.x≥-2 且 x≠0 12.0.8
93
16.
2
17.50° 18. 22n2 3a2 或 3 22n a2
三、解答题(19、20 每小题 9 分,共 18 分)
19.解:
20. 解:
=
=
x2 2x2
(x 1)(x 2x(x
(x 1)(x 1) 2x(x 2)
1 4x
1) 2)
= (x 1)(x 1) x2 4 3 2x(x 2) x 2
3
或 4n1 3a2
14. 60 60 3 x 2x 2
…………………………2 分
…………………………3 分
……………………………4 分
…………………………5 分
…………………………6 分 …………………………8 分
…………………………10 分
4
……… 8 分
15.(4,1)
∴P(A)= 4 1 16 4
= (x 1)(x 1) x 2 2x(x 2) (x 1)(x 1)
1
=
2x
ቤተ መጻሕፍቲ ባይዱ
(x
(x
2
x2 4 x2
当 x = tan45°+2cos60°=1+1=2 时,
11
原式= =
2x 4
1
x
2)(x x2
13. x(x 2)(x 2)
3
x
) 2
3
2)
2
2
4
x
3
始始
1 234 1 234 1 234 1 234
2
由树形图可知,所有可能出现的结果共有 16 个,且每种结果出现的可能性相等,其中两次

2014年中考二模数学试卷及答案

2014年中考二模数学试卷及答案

xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
C
D 图1
A
B
C
D
图2
等分面积问题
1.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________; (2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD =S △ABE .请
你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹); (3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等
分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.
2.如图,张大爷家有一块四边形的菜地,在A 处有一口井,张大爷欲想从A 处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分.请你为张大爷设计一种引水渠的方案,画出图形并说明理由.
3.问题探究:
(1)请你在图①中作一条..
直线,使它将矩形ABCD
分成面积相等的两部分; (2)如图②点M 是矩形ABCD 内一点,请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分。

问题解决
如图③,在平面直角坐标系中,直角梯形OBCD 是某市将要筹建的高新技术开发区用地示意图,其中DC ∥OB ,OB =6,CD =BC=4开发区综合服务管理委员会(其占地面积不计)设在点P (4,2)处。

为了方便驻区单位准备过点P 修一条笔直的道路(路宽不计),并且是这条路所在的直线l 将直角梯形OBCD 分成面积相等的了部分,你认为直线l 是否存在?若存在求出直线l 的表达式;若不存在,请说明理由
4.问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点
M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决
(3)如图③,在四边形ABCD 中,AB ∥CD
,AB +CD =BC ,点P 是AD 的中点,如果AB =a ,CD =b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.
图①
图②
A B
B
图③
A
C
D
P
(第4题图)
A
B C D
中考操练:
1(2014年天津市)在平面直角坐标系中,O 为原点,点A (﹣2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE ′D ′F ′,记旋转角为α.
(Ⅰ)如图①,当α=90°时,求AE ′,BF ′的长;
(Ⅱ)如图②,当α=135°时,求证AE ′=BF ′,且AE ′⊥BF ′;
(Ⅲ)若直线AE ′与直线BF ′相交于点P ,求点P 的纵坐标的最大值(直接写出结果即可).
2、(本题满分8分)某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.5万元;新建
3个地上停车位和2个地下停车位共需1.1万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元,且地上停车位要求不少于30个,问共有几种建造方案? (3)对(2)中的几种建造方案中,哪一个方案的投资最少?并求出最少投资金额.
3.(本题10分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示。

根据图象提供的信息,解答下列问题:
(1)图2中折线ABC 表示 槽中的深度与注水时间之间的关系,线段DE 表示 槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B 的纵坐标表示的实际意义是 ;
(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).
图1
图2


解:(1)中线所在的直线;(2分)
(2)方法一:连接BE,因为AB∥CE,AB=CE,所以四边形ABEC为平行四边形,
所以BE∥AC(3分),
所以△ABC和△AEC的公共边AC上的高也相等,
所以有S△A B C=S△A E C,
所以S梯形A B C D=S△A C D+S△A B C=S△A C D+S△A E C=S△A E D.(5分)
方法二:设AE与BC相交于点F.
因为AB∥CE所以∠ABF=∠ECF,∠BAF=∠CEF,
又因为AB=CE,
所以△ABF≌△ECF,(4分)
所以S梯形A B C D=S△A C D+S△A B C=S△A C D+S△A E C=S△A E D.(5分)
过点A的梯形ABCD的面积等分线的画法如图所示:作DE的垂直平分线,交DE于G,连接AG.则
AG是梯形ABCD的面积等分线;
(3)能,连接AC,过点B作BE∥AC交DC的延长线于点E,连接AE.
因为BE∥AC,所以△ABC和△AEC的公共边AC上的高也相等,所以有S△A B C=S△A E C,
所以S四边形A B C D=S△A C D+S△A B C=S△A C D+S△A E C=S△A E D.(8分)
因为S△A C D>S△A B C,
所以面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线,作图如下:。

相关文档
最新文档