第3章力矩与力偶

合集下载

工程力学I-第3章 力矩与平面力偶系

工程力学I-第3章 力矩与平面力偶系

D
x
§3-2 关于力偶的概念

力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。

力偶臂:两个力作用
线之间的垂直距离d。

F’
F
力偶的作用面:两个 力作用线所决定的平 面
§3-2 关于力偶的概念
F F
d
d
F
d
F
F
F
转动游戏方向盘
拧水龙头
扳手拧螺母
§3-2 关于力偶的概念

Q AABD AABC 显然, 并注意到力偶矩的转向也相同, 则有M ( F , F ) M ( P, P) P
M (P 1, P 1 ) M ( P, P ) 显然, 1, P 1) 从而有M ,( F , F ) M ( P
P1
力偶等效
M ( F , F ) M ( P 1, P 1)
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算

合力矩定理:
y Fy
(3)将力P和P’沿各自的作用 线移至任意点A’,B’,根 据力的可传性原理,有 (P,P’) =(P1,P1’) 。
§3-2 关于力偶的概念
(4) A′
P1′ b F′ A A F B Q′ D P′ B′ C
M (F , F ) AB BD 2 AABD ,
M(P, P') AB BC 2 AABC

第三章 力偶与平面力偶理论)

第三章  力偶与平面力偶理论)

M 0 F F h
力对点之矩(力矩)是一个代数量,它的绝 对值等于力的大小与力臂的乘积;
它的正负:力使物体绕矩心逆时针转向时为正,反之为负。 常用单位为 N· m 或 kN· m。 注意:力矩在下列几种情况下等于零 (1)力的大小等于零;
(2)力的作用线通过矩心,即力臂等于零;
(3) 互成平衡的二力对同一点之矩为零。
78.93N m
按合力矩定理 M O F M O Ft M O Fr



F cos θ r 78.93N m
例3-2 已知:q,l; 求: 合力及合力作用线位置. 解: 取微元如图
x q q l l x 1 P q dx ql 0 l 2
M Mi Mi
i 1 n
平面力偶系平衡的充要条件 M = 0,有如下平衡方程
Mi
0
平面力偶系平衡的必要和充分条件是:所有各力 偶矩的代数和等于零。
例3-1
已知: F=1400N, θ 20 , r 60mm
求: M O F .
解:直接按定义
MO

F F h F r cos θ
M1 F1 d M2 F2 d
M1 F1d
M 2 F2d
Mn Fn d
M n Fnd
=
=
FR F1 F2 Fn
F1 F2 Fn FR
=
=
=
M FRd F1d F2d Fnd M1 M 2 M n
定理:同平面内的两个力偶,如果力偶矩相等,则两力偶 彼此等效。 推论: 任一力偶可在它的作用面内任意转移,而不改变它对刚体 的作用。因此力偶对刚体的作用与力偶在其作用面内的位置无 关。 只要保持力偶矩不变,可以同时改变力偶中力的大小与 力偶臂的长短,对刚体的作用效果不变.

工程力学第三章力矩与平面力偶系

工程力学第三章力矩与平面力偶系

位置无关,因此力偶对刚体的效
应用力偶 矩度量。
F
A B
d
F'
x
O
mO ( F ) mO ( F ') F ( x d ) F 'x F d
4.力偶的表示方法
用力和力偶臂表示,或用带箭头的弧线表示,箭头表示 力偶的转向,M表示力偶的大小。
第三章力矩与平面力偶系
湖南工业大学土木工程学院
y

Fx
x

r cos x, r sin y
mo ( F ) xFy yFx
湖南工业大学土木工程学院
( )
a
第三章力矩与平面力偶系
§3-1力矩的概念和计算
mo (F ) xFy yFx
若作用在
( )
a
y
Fy
F

F2 、 A 点上的是一个汇交力系( F1 、 则可将每个力对 o 点之矩相加,有 Fn ), o
r
d

x
A
y

Fx
m (F ) x F
o
y
y Fx
(b)
x
由式( a ),该汇交力系的合力 R 它对矩心的矩
F
m0 (R) xRy yRx x Fy y Fx ( c )
比较( b )、( c )两式有
mo (R) M o (F )
第三章力矩与平面力偶系 湖南工业大学土木工程学院
l
A
o
第三章力矩与平面力偶系 湖南工业大学土木工程学院
d
F
力矩计算
简支刚架如图所示,荷载F=15kN,α=45 ,尺寸如图。试分别计 算F对A、B两点之矩。

建筑力学-第三章力矩和力偶

建筑力学-第三章力矩和力偶

平面力偶系平衡的充要条件 M=0

Mi 0
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
2
M Fd
2
2
Mn d
Fn
M F d
n
n
=
=
F F F F
R
1
2
n
F F F F
R
1
2
n
=
=
=
M FRd
F1d F2d Fnd
M M M
1
2
n
n
M M i M i i 1
2.3.2 平面力偶系的平衡方程
第三章 力矩和力偶
第一节 力对点之矩 第二节力偶和力偶矩 第三节平面力偶系的合成与平衡
4.1 力对点之矩
力对物体可以产生 移动效应--取决于力的大小、方向 转动效应--取决于力矩的大小、方向
一、力对点的矩
MO(F) F d
+—
二、合力矩定理
力系(F1、 F2、 F3、 … Fn)的合力为FR,则 MO(FR)= MO(F1) + MO(F2) +…+ MO(Fn)
4.2.2 力偶矩 力偶中两力所在平面称为力偶作用面。 力偶两力之间的垂直距离称为力偶臂。 三个要素 a.大小:力与力偶臂乘积 b.方向:转动方向 c.作用面:力偶的影响面

第3章力矩与力偶

第3章力矩与力偶

第3章力矩与平面力偶系教学提示:本章主要研究力矩、力偶和平面力偶系的理论。

这都是有关力的转动效应的基本知识,在理论研究和工程实际应用中都有重要的意义。

教学要求:本章让学生掌握力矩、力偶和平面力偶系的概念,掌握力对点之矩的两种求解方法,即直接作力臂的方法与利用合力矩定理求解的方法,掌握平面力偶的性质及平面力偶系的合成与平衡条件,会利用平衡条件求解约束反力。

力对点之矩1.力矩的概念力不仅可以改变物体的移动状态,而且还能改变物体的转动状态。

力使物体绕某点转动的力学效应,称为力对该点之矩。

以扳手旋转螺母为例,如图3-1所示,设螺母能绕点O转动。

由经验可知,螺母能否旋动,不仅取决于作用在扳手上的力F的大小,而且还与点O到F的作用线的垂直距离d有关。

因此,用F与d的乘积作为力F 使螺母绕点O转动效应的量度。

其中距离d称为F对O点的力臂,点O称为矩心。

由于转动有逆时针和顺时针两个转向,则力F对O点之矩定义为:力的大小F与力臂d 的乘积冠以适当的正负号,以符号m o(F)表示,记为m o(F)=±Fh(3-1)通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。

图由图3-1可见,力F对O点之矩的大小,也可以用三角形OAB的面积的两倍表示,即m o(F)=±2ΔABC(3-2)在国际单位制中,力矩的单位是牛顿•米(N•m)或千牛顿•米(kN•m)。

由上述分析可得力矩的性质:(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。

力矩随矩心的位置变化而变化。

(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次说明力是滑移矢量。

(3)力的大小等于零或其作用线通过矩心时,力矩等于零。

2.合力矩定理定理:平面汇交力系的合力对其平面内任一点的矩等于所有各分力对同一点之矩的代数和。

m o(F R)=m o(F1)+m o(F2)+…+m o(F n)即m o(F R)=Σm o(F)(3-3)上式称为合力矩定理。

工程力学(人民交通出版社)第3章 第2节力偶系

工程力学(人民交通出版社)第3章 第2节力偶系

Fy
F

C
B D
b
Fx x
a
MA( F ) MA( Fx ) MA( Fy ) Fx b Fy a F cos b F sin a Fa sin Fb cos
F Fx Fy
Fx F cos Fy F sin
Mo (F , F ' ) Mo (F ) Mo (F ' ) F (d x ) F ' x F d
⑦正负规定:逆时针为正 ⑧单位量纲:N m 或 kN m
二、力偶与力偶矩
2、力偶的特点 ⑨力偶的三要素: 力偶矩的大小、力偶的转向、力偶的作用面 ⑩力偶矩矢 用一个矢量表达三要素:力偶矩矢。
§3-2
力矩与力偶理论
一、力对点之矩 二、力偶与力偶矩 三、力偶系的合成与平衡
一、力对点之矩
1、平面中力矩的概念
力对物体可产生运动效应,在一般情况下,既可能产生移动(平动)效应, 也可能产生转动效应,或者同时产生这两种运动效应。力的移动效应取决于 力的大小和方向,而力使物体绕某点的转动效应,则用力对该点的矩来度量, 简称力矩。
2)合力矩定理 将力Fn分解为切由合力矩定理得:
M o (Fn ) M o (Ft ) M o (Fr ) Fn r cos 0 Fn r cos
小结力偶和力偶矩
1. 力矩是力学中的一个基本概念。度量力对物体的转动 效应:
即有: Mx mx My my Mz mz 同理: M Mx 2 My 2 Mz 2
( Mx ) ( My ) ( Mz )
2 2 2
z
MZ

力矩力偶

力矩力偶

力偶系的合成和平衡
空间力偶系的合成:


M Mi
M x M xi M y M yi M z M zi
合力偶矩的大小:

M ( M x )2 ( M y )2 ( M z )2
合力偶矩矢的方向:
cos(M , i )

M x
cos(M ,
MO (F) = MO (F cos)+MO(F sin )
例题 1
如 图 所 示 圆 柱 直 齿 轮 , 受 到 啮 合 力 Fn 的 作 用 。 设 Fn=1400N。压力角α=20o ,齿轮的节圆(啮合圆)的半径 r = 60
mm,试计算力 Fn 对于轴心O的力矩。
解: 计算力Fn对轴心O的矩,按力矩的定义得
其力偶矩矢为:
解得
FA

M1 r sin 30
再取摇杆BC为研究对象:
∑M = 0:
M 2 FA
r
sin
0
其中 FA FA
解得 M2 4M1 8 kN m
FO

FB

FA

M1 r sin 30
8
kN
例题 4
图示三角柱刚体是正方体的一半,其上作用着三个力偶。已知力 偶(F1,F1)的矩 M1= 20 N·m;力偶(F2, F2)的矩 M2= 20 N·m;力偶(F3,F3)的矩 M3= 20 N·m,试求合力偶矩矢 M。 又问若要使这个刚体平衡,还需要施加怎样一个力偶?
0
0l
3
力偶及其性质
力偶及其性质
1. 力偶与力偶矩 2. 力偶等效定理 3. 力偶系的合成和平衡
力偶的实例

第三章 力矩和力偶理论

第三章 力矩和力偶理论
力偶--两大小相等的反向平行力
o F’
B
m F
d
A
力偶没有合力,不能用一个力来代替,也不能用一个力 与之平衡。它是力学中的又一基本要素,其作用使物体 发生转动,以力偶矩表示。
m(F , F ) mo (F ) mo (F ) F OA F OB Fd
m + 逆时针 – 顺时针
理论力学
一、力矩和合力矩定理
(Theorem of Resultant Moment)
2. 力对轴之矩
力对轴之矩等于力在垂直于该轴 的平面上的投影对轴和平面的交 点之矩
m z ( F ) mo ( Fxy ) Fxy h 2 Aoab
F
z Fz a mz(F) o
Fxy
mx 0
my 0
mz 0
三个方程,解三个未知量。 一个方程,解一个未知量。
p.9
平面力偶系的平衡条件
m 0
理论力学
理论力学
本章主要内容
一、力矩和合力矩定理
1. 力对点之矩 2. 力对轴之矩
3. 力对点之矩和力对轴之矩的关系
4. 合力矩定理
二、力偶及其性质
1. 力偶与力偶矩 2. 力偶等效定理 3. 力偶系的合成和平衡

p.5
理论力学
理论力学
一、力矩和合力矩定理
(Theorem of Resultant Moment)
4. 合力矩定理
mo ( R) mo ( F1 ) mo ( F2 ) mo ( Fn ) mo ( F ) m z ( R) m z ( F1 ) m z ( F2 ) m z ( Fn ) mz (F )

第三章 力矩理论与 力偶理论

第三章 力矩理论与 力偶理论

的代数和。
m
i
2、空间力偶系的合成
设作用于刚体上的两个力偶 M1 , M 2
F1
M1
' F1
' M 1 {F1 , F1 }
r F F2 M 2 F F ' 2
' ' ' F F1 F2 F F1 F2 ' M R {F,F } r ( F1 F2 ) M R r F r F1 r F2
二、力偶的等效条件
M1 B
rBA F1 M1 M2 rCD F2
M2
rBA
A
F1 F2’
C
rCD
D
F2
F1’
M1 rBA F1
M 2 rCD F2
力偶矩矢相等的两力偶等效
(对刚体的作用效应完全决定于力偶矩矢量) 1).任意搬动(水平、垂直) 2).可同时改变力的大小和力偶臂的长短 10 = F 5 10 大小、转向相同 M F’
静力学
第三章 力矩理论与力偶理论 §3-1 力矩理论
一般情况,作用在物体上 质心以外点的力将使物体产生 移动,同时也能使物体产生相 对于质心的转动。
一、力对点的矩 1、平面
平面问题中, 力对点的矩 是代数量。
d
0
F A
0:矩心,d:力臂 M 0 (F)= ±Fd
单位:kN· m
+ _
2、空间
空间问题中, 力对点的矩是矢量。 力F 对o点的矩 等于力作用点 A 对o点的 矢径 r 与该力F 的矢量积。
F Fz
Fxy o d
Fxy
z

第三章 力矩理论与力偶理论

第三章 力矩理论与力偶理论

M2
例3-3 已知:F,q,b及六面体的边长a,b,h。试求力F对轴x的矩。 解: 利用力矩关系定理 力F对点O的矩
x
zF
b
q M O bk F F Fx i Fy j Fz k O F cos q cos bi F cos q sin bj F sin qk M O bF cosq (sin bi cos bj )
ix iy iz
M
i
0
例3-3:结构如图所示,已知主动力偶 M,哪种情况铰链的 约束力小,并确定约束力的方向(不计构件自重)
解:
1、研究OA杆 A
2、研究AB杆 A
M
B
F
O
M
(A)
B
F F
O
(B)
F
例3-4:图示杆BC上固定销子可在杆AD的光滑直槽中滑动, 已知:L=0.2m,M1=200N· m,a300,求:平衡时M2。
第三章
一、力对点的矩 1、平面
力矩理论与力偶理论
§3-1 力矩理论
0:矩心,d:力臂
M 0 (F)= ±Fd
单位:kN· m
+ _
2、空间
定义:
z
Байду номын сангаас
2)方向按右手法则(r F)确定;
3)作用在点O。 解析表达式: r xi yj zk ,

1)其大小;M O ( F ) F d 2 AOAB
合力偶矩矢的方向余弦
cos M , i 0.6786 cos M , j 0.2811 cos M,k 0.6786

力矩和平面力偶系

力矩和平面力偶系
(力偶三要素:力偶矩旳大小;力偶旳转向和力 偶旳作用面。)
所以两个力偶等效,必须是该两个力偶旳力偶矩 大小相同,转向相同,作用面相同。(对刚体, 可作用面平行。)
例题:
F
1.习题3-2
a
b
Fx F cosa
a
Fy f sin a
M A (F ) -Fx b Fy 0 -Fb cosa
M B (F ) -Fx b Fy a F (a sin a - b cosa )
2.习题3-7
正三角形ABC
B F2
F1 F2 F3 F
X F1 cos 60 F2 cos 60 - F3 0
F1
Y F1 sin 60 - F2 sin 60 0
A
即合力FR=0
F1x
F
cos 60
第三章: 力矩与平面力偶系
本章研究力矩和力偶旳概念、力偶旳 性质、平面力偶系旳合成与平衡。本 章与第二章旳理论是研究平面一般力 系旳基础。
§3-1 力矩旳概念和计算
一般情况下,力对物体作用时能够产 生移动和转动两种外效应。力旳移动 效应取决于力旳大小和方向。为了度 量力旳转动效应,需要引入力矩旳概 念。
设物体上作用有一 力偶臂为d旳力偶 (F,F‘)
该力偶对作用面内任 一点O之矩为:
O x
F
F’ d
Mo(F)+Mo(F’)=F(x+d)-Fx=Fd
力偶对作用面内任一点旳矩之大小恒等于力偶中 一力旳大小和力偶臂旳乘积,而与矩心旳位置无关。
力偶对物体旳转动效应可用力与力偶臂旳乘积Fd 及转向来度量,该物理量称为力偶矩。
互成平衡旳二力对同一点旳力矩之和为 零
虽然力矩概念由力对物体上固定点旳 作用引出。实际上,作用于物体上旳力 能够对任意点取矩,即矩心可是空间中 旳任意点。

第三节力矩与力偶

第三节力矩与力偶

效应的量度。用M或M(F,F′)表示。
Mo(F)=±Fh
M F d
力偶矩是代数量,一般规定:使物体逆时针转动的力 偶矩为正,反之为负。力偶矩的单位是N•m,读作“牛米”。
一般规定:逆时针转向力偶为正,顺时针转向力 偶为负。力偶矩的单位为N·m。
力偶的三要素:力偶的大小 转向 作用面
2.力偶的特性
【例2-4】圆柱直齿轮受啮合力F的作用。设F =1400N, 压力角α=20°,齿轮的节圆(啮合圆)半径r=60mm,试 计算力F对轴中心O的矩。
解题过程
3.力矩的平衡条件
(1)杠杆平衡应用实例
(2)绕定点转动物体平衡条件
各力对转动中心O点的矩的代数和等于零,即合力
矩为零。用公式表示为:
MO (F1) MO (F2 ) ... MO (Fn ) 0
M=M1+M2+…+Mn =∑M
三、平面力偶系的简化与平衡
1.平面力偶系的简化
平面力偶系——作用在物体上同一平面内由若干个力 偶所组成的力偶系。
平面力偶系的简化结果为一合力偶,合力偶矩等于各 分力偶矩的代数和,即
M M1 M2 Mn Mi
2.平面力偶系的平衡
必要和充分条件——所有力偶矩的代数和等于零。
Mi 0
半孔钻加工腰孔
1-工件 3-钻套
2-钻模板 4-半孔钻
【例2-5】多刀钻床在水平工件上钻孔,每个钻头的切削 刀刃作用于工件上的力在水平面内构成一力偶。已知切制三 个孔对工件的力偶矩分别为M1=M2=13.5N·m,M3=17N·m, 求工件受到的合力偶矩。如果工件在A、B两处用螺栓固定, A和B之间的距离 l=0.2m,试求两个螺栓在工件平面所受的 力。

工程力学第三章力矩力偶系

工程力学第三章力矩力偶系

M ( F ) r F sin O
定理:如果力系存在合力,则合力对某一点的矩等于力 系中各分力对同一点的矩的矢量和。
即:若作用在刚体上 { F , F , , F } { F } 1 2 n R
则:
M ( F ) M ( F O R O i)
i 1
n
例 水平梁 AB 受按三角形分布的载荷作用。载荷的最 大值为 q ,梁长为 l 。试求合力作用线的位置。
0
将 Q 和 q(x) 的数值代入可得
xC
2 l 3
§3-2 力偶理论
一.力偶和力偶矩
1、力偶 · 力偶的作用 效果 ·力偶的第一性质
力偶的定义:由大小相等,方 向相反且不共线的两个平行力 所组成的力系,称为力偶。记 之为: ( F, F ' )
F
hபைடு நூலகம்
F
'
h——力偶臂
力与力偶的作用效果比较:
FA
第三章 力矩 力偶系理论
§3-1 力对点之矩(力矩) 力对刚体的移动效应用力矢量来度量 力对刚体的转动效应用力矩来度量 一、力对点之矩
B F O
定义:
r
h
A
M r F oF

矢量积形式
M r F oF
二、 合力矩定理

大小: r F F h 2 OAB 方向: 由右手定则判定
25 N 0.4 m
M=10 Nm
25 N
§3-3 力偶系的合成与平衡
力偶系合成的结果为一合力偶
{ M , M , , M } { M } 1 2 n R
n
即:
M R Mi
i 1
力偶平衡的充分必要条件:

同济版_理论力学_王斌耀(同济理力最好老师)_第3章 力矩理论与 力偶理论

同济版_理论力学_王斌耀(同济理力最好老师)_第3章 力矩理论与 力偶理论

z
Fz B β
y=180mm
F Fy
A
Fx α Fxy
y
z=200mm
0 x x=0, =0, y=180mm, =180mm, z=200mm. =200mm.
§3-2力偶的概念
一、力偶与力偶矩
大小相等、方向相反、作用线相互平行的两个力所 大小相等、方向相反、 组成的力系称为力偶。 组成的力系称为力偶。
M O ( FR ) = M O ( F1 ) + M O( F2 ) = ∑ M O ( Fi )
合力对点(或轴) 合力对点(或轴)之矩等于各分力对 同点(或同轴)之矩的矢量和(代数和) 同点(或同轴)之矩的矢量和(代数和)。
z A
F1 F2
y
FR
r × FR = ∑ r × Fi
i =1
O
n
r
x
1、平面力偶
F
F’
1、平面力偶
F’ F
F’ F
F
A
d
rBA
B
F′
+ _
M=±Fd (Nm) ±
力偶作用平面
d:力偶臂
2、空间力偶 力偶的矢量表示
M A = rBA × F = M B = rAB × F
'
M
右手法 则为正
B
F
rBA
A
F’
力偶矩矢量垂直于力偶所在平面,其大小和方向与取矩点无关 力偶矩矢量垂直于力偶所在平面 其大小和方向与取矩点无关. 其大小和方向与取矩点无关
P力作用点的矢径 力作用点的矢径
r = xi + yj + zk ,
x = 5cm, y = 6cm, z = 0

大学本科理论力学课程第3章力矩与平面力偶理论

大学本科理论力学课程第3章力矩与平面力偶理论

理论力学电子教程
O2
第三章 力矩与平面力偶理论
A D
FB B
O1
E
F
H
FC AC
C
理论力学电子教程
第A三章 力矩与平面力偶理论
O
O1
FD 沿O1DO2
F
E
D
H
FE AC
O2 A
FA 沿AO2, AC
FD 沿O2DO1 D
D
FB B
A
FA 沿AO2, AC
O2
FB
B
E
F
D
FD
理论力学电子教程
第三章 力矩与平面力偶理论
思考题 不计自重的三杆组成系统,判断固定铰支座B和C处约 束反力方向(即画整体受力图)
A
a D
a B
E
F
H
C
a
a
理论力学电子教程
第三章 力矩与平面力偶理论
A O1
D
E
F
H
O2
FB B
C
(1)分析整体,FC的作用点为C,故无论其方向如何FC与F二者的 力的作用线必交于C点,利用三力平衡汇交原理判断固定铰支座对 DB处提供的约束反力合力的方位(沿BC)指向待定,FC的方向待 定。
H
FC AC
C
O1
E FE AC FC A
C
理论力学电子教程
第三章 力矩与平面力偶理论
第三章 力矩与平面力偶理论
§3-1力矩的概念与计算 §3-2力偶及平面力偶系
理论力学电子教程
第三章 力矩与平面力偶理论
力对物体作用时可以产生移动和转动两种效应。 力的移动效应取决于力的大小和方向; 为了度量力的转动效应,需引入力矩的概念。

理论力学第三章力矩与力偶

理论力学第三章力矩与力偶
解: 1)各力偶的合力偶矩为:
M mi m1 m2 m3 m4
4(15) 60 N m
例 :工件如图所示,它的四个面上同时钻五个孔,每个孔所受的切 削力偶矩均为80 N·m。求工件所受合力偶的矩在x,y,z轴上的投影 Mx,My,Mz,并求合力偶矩矢的大小和方向。
所以合力偶矩矢的大小
M
M
2 x

M
2 y

M
2 z
284.6 N m
合力偶矩矢的方向余弦



cos M,i 0.6786, cos M,j 0.2811, cos M,k 0.6786
三、力偶系的平衡
空间力偶系的合成结果是合力偶




Fy= F cos450cos600=1000×0.707×0.500 N= 354 N
Fz= Fsin450=1000.0×0.707 N= 707 N
力F 对三个坐标轴的矩分别为

M x (F ) ( yFz zFy ) 0.06 707 42.4 N m
M y (F ) (zFx xFz ) (0.05) 707 35.4 N m
力偶矩矢与O点的选取无关,因 此力偶对空间任意一点的矩是一个常
A rAB
dB
mO
rmOAo(FF)omrOoB(FF)


rOA

(F
)

rOB

F

(rOB
rOA )

F
rAB F 力偶矩矢大小
mO
F d
矢量
结论:力偶矩矢为自由矢 量,力偶对刚体的转动效应完 全取决于力偶矩,与矩心无关

第3章 力矩理论和力偶理论

第3章 力矩理论和力偶理论
cos M , i
二、力偶系的平衡 平衡条件:
M M 1 M 2 M n M i 0
M R ( M ix )2 ( M iy )2 ( M iz )2 0
M 空间力偶系的平衡条件: M M
ix iy iz
0 0 0
A
z
F B b
a
y
O x x=0,y=18,z=20,
Mx=18×43.3-20×17.7=426 N· m My=20×17.7=354 N· m Mz= –18×17.7=-318 N· m
l 3 30 cm, 例: 一长方体的边长分别为l1 50 cm,l 2 40 cm,
F=50 2 N,试求此力对OA轴之矩。
Fx
r xi yj zk
F Fx i Fy j Fz k
z
x
Fxy
Fy Fy
j
y Fx
y
x
Fxy
M z (F ) xFy yFx
M x (F ) yFz zFy M y (F ) zFx xFz
力对轴之矩
MO
z F
M x ( F ) yFz zFy M y ( F ) zFx xFz M z ( F ) xFy yFx
[整体]
z M2
Mx 0 My=0, M1+M3 sin300=0
M3= –10N· m
M1
Mz=0,
y
M2+M3 cos300=0
O
M 2 5 3N m
M3
300
x
例6:图示杆BC上固定销子可在杆AD的光滑直槽中滑动,已 知:L=0.2m,M1=200N· m,a=300,试求:平衡时M2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章力矩与平面力偶系教学提示:本章主要研究力矩、力偶和平面力偶系的理论。

这都是有关力的转动效应的基本知识,在理论研究和工程实际应用中都有重要的意义。

教学要求:本章让学生掌握力矩、力偶和平面力偶系的概念,掌握力对点之矩的两种求解方法,即直接作力臂的方法与利用合力矩定理求解的方法,掌握平面力偶的性质及平面力偶系的合成与平衡条件,会利用平衡条件求解约束反力。

力对点之矩1.力矩的概念力不仅可以改变物体的移动状态,而且还能改变物体的转动状态。

力使物体绕某点转动的力学效应,称为力对该点之矩。

以扳手旋转螺母为例,如图3-1所示,设螺母能绕点O转动。

由经验可知,螺母能否旋动,不仅取决于作用在扳手上的力F的大小,而且还与点O到F的作用线的垂直距离d有关。

因此,用F与d的乘积作为力F使螺母绕点O转动效应的量度。

其中距离d称为F对O 点的力臂,点O称为矩心。

由于转动有逆时针和顺时针两个转向,则力F对O 点之矩定义为:力的大小F与力臂d的乘积冠以适当的正负号,以符号m o(F)表示,记为m o(F)=±Fh(3-1)通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。

图由图3-1可见,力F对O点之矩的大小,也可以用三角形OAB的面积的两倍表示,即m o(F)=±2ΔABC(3-2)在国际单位制中,力矩的单位是牛顿•米(N•m)或千牛顿•米(kN•m)。

由上述分析可得力矩的性质:(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。

力矩随矩心的位置变化而变化。

(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次说明力是滑移矢量。

(3)力的大小等于零或其作用线通过矩心时,力矩等于零。

2.合力矩定理定理:平面汇交力系的合力对其平面内任一点的矩等于所有各分力对同一点之矩的代数和。

m o(F R)=m o(F1)+m o(F2)+…+m o(F n)即m o(F R)=Σm o(F)(3-3)上式称为合力矩定理。

合力矩定理建立了合力对点之矩与分力对同一点之矩的关系。

这个定理也适用于有合力的其它力系。

例试计算图中力对A点之矩。

图解本题有两种解法。

(1)由力矩的定义计算力F对A点之矩。

先求力臂d。

由图中几何关系有:d=ADsinα=(AB-DB)sinα=(AB-BCctg)sinα=(a-bctgα)sinα=asinα-bcosα所以m A(F)=F•d=F(asinα-bcosα)(2)根据合力矩定理计算力F对A点之矩。

将力F在C点分解为两个正交的分力和,由合力矩定理可得m A(F)= m A(F x)+ m A(F y)=-F x•b+ F y•a=-F(bcosα+asinα) =F(asinα-bcosα)本例两种解法的计算结果是相同的,当力臂不易确定时,用后一种方法较为简便。

力偶和力偶矩1.力偶和力偶矩在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,但不在同一直线上的两个平行力作用的情况。

例如,司机转动驾驶汽车时两手作用在方向盘上的力(图3.3a);工人用丝锥攻螺纹时两手加在扳手上的力(图);以及用两个手指拧动水龙头(图3.3c)所加的力等等。

在力学中把这样一对等值、反向而不共线的平行力称为力偶,用符号( F ,F′)表示。

两个力作用线之间的垂直距离称为力偶臂,两个力作用线所决定的平面称为力偶的作用面。

图实验表明,力偶对物体只能产生转动效应,且当力愈大或力偶臂愈大时,力偶使刚体转动效应就愈显著。

因此,力偶对物体的转动效应取决于:力偶中力的大小、力偶的转向以及力偶臂的大小。

在平面问题中,将力偶中的一个力的大小和力偶臂的乘积Fd加上适当的符号,作为力偶对刚体转动效应的量度,称为力偶矩,用M或M( F ,F′)表示,即M=±F•d (3-4)式中的正负号表示力偶使刚体转动的方向,通常规定:力偶使物体逆时针方向转动时,力偶矩为正,反之为负。

力偶矩的单位与力矩的单位相同,在国际单位制中,力矩的单位是牛顿•米(N•m)或千牛顿•米(kN•m)。

力偶是由两个力组成的特殊力系,它的作用只改变物体的转动状态。

力偶对物体的转动效应用力偶矩来度量。

平面力偶对物体的作用效应由以下两个因素决定:(1) 力偶矩的大小;(2) 力偶在作用面内的转向。

2.力偶的基本性质及等效条件力和力偶是静力学中两个基本要素。

力偶与力具有不同的性质:性质一力偶不能简化为一个力,即力偶不能用一个力等效替代。

因此力偶不能与一个力平衡,力偶只能与力偶平衡。

性质二力偶对其作在平面内任一点的矩恒等于力偶矩,与矩心位置无关。

图如图所示,力偶( F ,F′)的力偶矩m(F)=F•d在其作用面内任取一点O为矩心,因为力使物体转动效应用力对点之矩量度,因此力偶的转动效应可用力偶中的两个力对其作用面内任何一点的矩的代数和来量度。

设O到力F′的垂直距离为x,则力偶( F ,F′)对于点O的矩为m o( F ,F′)= m o( F )+ m o( F′)= F(x+d)-F′x=F•d = m 所得结果表明,不论点O选在何处,其结果都不会变,即力偶对其作用面内任一点的矩总等于力偶矩。

所以力偶对物体的转动效应总取决于力偶矩(包括大小和转向),而与矩心位置无关。

由上述分析得到如下结论:在同一平面内的两个力偶,只要两力偶的力偶矩相等,则这两个力偶等效。

这就是平面力偶的等效条件。

根据力偶的等效性,可得出下面两个推论:推论1力偶可在其作用面内任意移动或转动,而不会改变它对物体的作用效应。

推论2只要保持力偶矩不变,可同时改变力偶中力的大小和力偶臂的长度,而不会改变它对物体的作用效应。

由力偶的等效性可知,力偶对物体的作用,完全取决于力偶矩的大小和转向。

因此,力偶可以用一带箭头的弧线来表示如图所求,其中箭头表示力偶的转向,m表示力偶矩的大小。

图平面力偶系的合成与平衡条件1.平面力偶系的合成作用在刚体同一平面内的各个力偶,称为平面力偶系。

设作用于刚体的同一平面内的三个力偶( F1,F1′) ( F2,F2′) 和( F3,F3′),如图所示。

各力偶矩分别为:m1=F1•d1,m2=F2•d2,m3=-F3•d3,图在力偶作用面内任取一线段AB=d,按力偶等效条件,将这三个力偶都等效地改为以为d力偶臂的力偶( P1,P1′) ( P2,P2′) 和( P3,P3′)。

如图所示。

由等效条件可知P1•d=F 1•d1,P2•d=F2•d2,-P3•d=-F3•d3则等效变换后的三个力偶的力的大小可求出。

然后移转各力偶,使它们的力偶臂都与AB重合,则原平面力偶系变换为作用于点A、B的两个共线力系(图)。

将这两个共线力系分别合成,得F R=P1+P2-p3F R′=P1′+P2′-P3′可见,力F R与F R′等值、反向作用线平行但不共线,构成一新的力偶(F R,F R′),如图所示。

为偶(F R,F R′)称为原来的三个力偶的合力偶。

用M表示此合力偶矩,则M=F R d=(P1+P2-P3)d= P1•d+P2•d-P3•d=F 1•d1+F2•d2-F3•d3所以M=m1+m2+m3若作用在同一平面内有n个力偶,则上式可以推广为M=m1+m2+…+m n=Σm (3-5)由此可得到如下结论:平面力偶系可以合成为一合力偶,此合力偶的力偶矩等于力偶系中各分力偶的力偶矩的代数和。

2.平面力偶系的平衡条件平面力偶系中可以用它的合力偶等效代替,因此,若合力偶矩等于零,则原力系必定平衡;反之若原力偶系平衡,则合力偶矩必等于零。

由此可得到平面力偶系平衡的必要与充分条件:平面力偶系中所有各力偶的力偶矩的代数和等于零。

即Σm =0 (3-6)平面力偶系有一个平衡方程,可以求解一个未知量。

例 在一钻床上水平放置工件,在工件上同时钻四个等直径的孔,每个钻头的力偶矩为 ,求工件的总切削力偶矩和A 、B 端水平反力图解: 各力偶的合力偶矩为由力偶只能与力偶平衡的性质,力A N 与力 B N 组成一力偶。

根据平面力偶系平衡方程有: 例 一平行轴减速箱如图所示,所受的力可视为都在图示平面内。

减速箱输入轴I 上作用一力偶,其矩为500-1=m N ·m ;输出轴II 上作用一反力偶,其矩为20002=m N ·m 。

设AB 间距80=l cm ,不计减速箱重量。

试求螺栓A 、B 以及支承面所受的力。

图m N m m m m ⋅====154321mN 60)15(4 4321⋅-=-⨯=+++=m m m m M 02.04321=----⨯m m m m N BN3002.060==∴B N N300==∴B A N N解:取减速箱为研究对象。

减速箱除受1m 、2m 的两个力偶矩作用外,还受到螺栓与支承面的约束力的作用。

因为力偶必须用力偶来平衡,故这些约束力也必定组成一力偶,A 、B 处的约束反力方向如图所示,且B A F F =。

根据平面力偶系的平衡条件,列平衡方程∑==ni im10 021=-+l F m m A18758.0200050021=+-=+=l m m F A N 得1875==B A F F N约束力A F 及B F 分别由A 处支承面和B 处螺栓产生。

其中A F 是支承面的反作用力,因而,A 处支承面受压力,B 处螺栓受拉力。

例 如图所示,电动机轴通过联轴器与工作轴相连,联轴器上4个螺栓A 、B 、C 、D 的孔心均匀地分布在同一圆周上,此圆的直径d =150mm ,电动机轴传给联轴器的力偶矩m = kN •m ,试求每个螺栓所受的力为多少图解 取联轴器为研究对象,作用于联轴器上的力有电动机传给联轴器的力偶,每个螺栓的反力,受力图如图所示。

设4个螺栓的受力均匀,即F 1=F 2=F 3=F 4=F ,则组成两个力偶并与电动机传给联轴器的力偶平衡。

由 Σm =0, m -F ×AC -F ×d =0 解得本章小结本章研究了平面力偶系的合成和平衡问题:1.本章让学生掌握力矩、力偶和平面力偶系的概念,掌握力对点之矩的两种求解方法,即直接作力臂的方法与利用合力矩定理求解的方法,掌握平面力偶的性质及平面力偶系的合成与平衡条件,会利用平衡条件求解约束反力。

2.力偶系的合成和平衡应用下面公式进行求解∑==ni im M 1∑==ni im1习 题将图所示A 点的力F 沿作用线移至B 点,是否改变该力对O 点之矩图 图一矩形钢板放在水平地面上,其边长a =3m ,b =2m (如图所示)。

按图示方向加力,转动钢板需要P =P ′=250N 。

试问如何加力才能使转动钢板所用的力最小,并求这个最小力的大小。

一力偶( F 1 ,F 1′)作用在Oxy 平面内,另一力偶( F 2 ,F 2′)作用在Oyz 平面内,力偶矩之绝对值相等(图),试问两力偶是否等效为什么图图中四个力作用在某物体同一平面上A 、B 、C 、D 四点上(ABCD 为一矩形),若四个力的力矢恰好首尾相接,这时物体平衡吗为什么图力偶不能与一力平衡,那么如何解释图所示的平衡现象图试计算图中力F对点O的矩。

相关文档
最新文档