第1节〓圆的有关性质.ppt
合集下载
人教版九年级数学上册第24章第1节《圆》课件
A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
《圆的有关性质》PPT课件
1. 如图,AB 是⊙O 的直径,AC 是弦,若∠ACO=32°,则∠COB 的度数等于 64°. 2.如图,⊙O 的直径 CD=10,弦 AB=8,AB⊥CD,垂足为 M,则 DM 的长为 8.
3.如图,△ABC 内接于⊙O,AB=BC,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么 BD =3 3.
1.垂径定理的应用 用垂径定理进行计算或证明,常需作出圆心到弦的垂线段(即弦心距),则垂足为弦的中 点,再利用解半径、弦心距和弦的一半组成的直角三角形来达到求解的目的 . 2.圆心角、圆周角性质的应用. 3.圆心角、弧、弦、弦心距之间的关系定理的应用.
(1)(2010·重庆)如图,△ABC 是⊙O 的内接三角形,若∠ABC=70°,则∠AOC 的
∴AB=2OB=4OP=4 3 cm. (2)①∵AB 是半圆的直径,点 C 在半圆上, ∴∠ACB=90°.在 Rt△ABC 中, AC= AB2-BC2= 102-62=8 ②∵PE⊥AB,∴∠APE=90°. 又∠ACB=90°, ∴∠APE=∠ACB.又∵∠PAE=∠CAB, ∴△AEP∽△ABC,∴BPEC=AACP ,∴P6E=10×8 12,∴PE=145.
A.17 cm B.7 cm C.12 cm D.17 cm 或 7 cm
(4)(2010·南通)如图,⊙O 的直径 AB=4,点 C 在⊙O 上,∠ABC=30°,则 AC 的长是( )
A.1
B. 2
C. 3
D.2
【点拨】本组题主要考查圆的有关基本知识,掌握有关性质或定理是做好此类题的关键.
【解答】(1)∵∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°,故选 A.
1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心 距相等.
第1部分第6章第1节圆的基本性质PPT课件
圆周角定理及其推论(必考) 4.(2019 安徽,13,5 分)如图,△ABC 内接于⊙O,∠CAB=30 °,∠CBA=45°,CD⊥AB 于点 D.若⊙O 的半径为 2,则 CD 的长 为 2.
【解析】本题考查圆周角定理和三角函数等,体现了逻辑推理和 数学运算的核心素养.如图,连接 OB,OC,则∠BOC=2∠A=60°. 又∵OB=OC,∴△BOC 是等边三角形,∴BC=OB=2.又∵∠CDB =90°,∠CBD=45°,CD=BC·sin45°=2× 22= 2.
弦心距,另一条直线是弦的一半.如图,设圆的半径为 r、弦长为 a、 弦心距为 d,弓形高为 h,则a22+d2=r2,h=r-d,这两个等式是关于 四个量 r,a,d,h 的一个方程组,只要已知其中任意两个量即可求出 其余两个量.
(2019·保定一模)小帅家的新房子刚装修完,便遇到罕见 的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图 1 所示的是他了 解的一款遮雨罩,它的侧面如图 2 所示,其中顶部圆弧 AB 的圆心 O1 在竖直边缘 AD 上,另一条圆弧 BC 的圆心 O2 在水平边缘 DC 的延长 线上,其圆心角为 90°,BE⊥AD 于点 E,则根据所标示的尺寸(单位: cm)可求出弧 AB 所在圆的半径 AO1 的长度为 61 cm.
2.圆内接四边形的任意一个角的外角等于它的⑳____内__对__角____, 如图,∠DCE=∠A.
利用垂径定理解决问题 圆中与弦有关的计算可通过连接半径和圆心到 弦中点的垂线段,把问题转化为解直角三角形的问 题来解决,垂径定理和勾股定理“形影不离”,常 结合起来使用.一般地,求解时将已知条件集中在 一个直角三角形中,这个直角三角形的斜边是圆的半径,一条直角边是
1.垂径定理:垂直于弦的直径⑦_平__分___这条弦,并且平分弦所对 的两条弧.
《圆》圆的有关性质PPT
参考答案:
5m
5m
4m
O
6.画出由所有到已知点的距离大于或等于2cm并且小于或
等于3cm的点组成的图形.
·
O
2cm
课堂小结
同心圆
定
义
有
概
等圆
等弧
同 圆 半 径 相 等
集 合 定 义
圆
同圆
要素:圆心和半径
旋 转 定 义
关
念
弦(直径)
弧
直径是圆中最长的弦,但弦不一定是直径
劣
弧
半
圆
优
弧
能 够 互 相 重 合 的 两 段 弧
• 求证:OC=OD.
• 证明:∵OA、OB为⊙O的半径,
• ∴OA=OB.
• ∴∠A=∠B.
• 又∵AC=BD,
• ∴△ACO≌△BDO.
• ∴OC=OD.
综合应用
• 7.已知:如图,在△ABC中,∠C=90°,求证:A、B、C三点在同一个圆上.
• 证明:作AB的中点O,连接OC.
• ∵△ABC是直角三角形.
半 圆 是 特 殊 的 弧
24.1.1 圆
推进新课
知识点1 圆的定义
圆的概念
如图,在一个平面内,线段 OA 绕它固定的一
个端点 O 旋转一周,另一个端点 A 所形成的图形叫
做圆.
A
固定的端点 O 叫做圆心;
线段 OA 叫做半径;
以点 O 为圆心的圆,记作⊙O,
读作“圆O”.
r
·
O
O
同心圆
等圆
集合性定义(静态):圆心为 O、半径
为 r 的圆可以看成是所有到定点 O 的距
离等于定长 r 的点的集合.
圆的有关概念及性质PPT课件
推论3:如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形.
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
圆的有关性质课件PPT
(2)由圆的定义可知:圆是一条封闭的曲线,不是圆面.确定圆的两
个条件是圆心和半径,其中圆心确定圆的位置,半径确定圆的大小.
4
教材新知精讲
知识点一
综合知识拓展
知识点二
例1 下列条件中,能确定圆的是(
)
A.以点O为圆心
B.以2 cm长为半径
C.以点O为圆心,以5 cm长为半径
D.经过已知点A
解析:根据圆的定义对各选项进行判断:A,点O为圆心,半径不确
知识点二
例2 如图,CD是☉O的直径,弦AB⊥CD于点E,∠BCD=30°,下列
结论:①AE=BE;②OE=DE;③AB=BC;④BE=
DE.其中正确的是
3
(
)
A.① B.①②③
C.①③
D.①②③④
20
教材新知精讲
知识点一
综合知识拓展
知识点二
解析:根据垂径定理以及等边三角形的性质和判定定理即可作出
中的弦有AB,BC,CE共三条.
答案:B
8
教材新知精讲
知识点一
综合知识拓展
知识点二
抓住“弦是端点在圆上的线段”是解决本题的关键.
9
教材新知精讲
知识点一
综合知识拓展
知识点二
例3 如图,在☉O中,半径有
有
,弦有
,劣弧有
有
.
,直径
,优弧
解析:根据半径、直径、弦、劣弧和优弧的定义分别求解.
答案:OA,OB,OC,OD AB AB,BC , , , ,
知识点二
知识点一圆的轴对称性
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
名师解读:不能错误地说成“圆的任何一条直径都是圆的对称轴”,
个条件是圆心和半径,其中圆心确定圆的位置,半径确定圆的大小.
4
教材新知精讲
知识点一
综合知识拓展
知识点二
例1 下列条件中,能确定圆的是(
)
A.以点O为圆心
B.以2 cm长为半径
C.以点O为圆心,以5 cm长为半径
D.经过已知点A
解析:根据圆的定义对各选项进行判断:A,点O为圆心,半径不确
知识点二
例2 如图,CD是☉O的直径,弦AB⊥CD于点E,∠BCD=30°,下列
结论:①AE=BE;②OE=DE;③AB=BC;④BE=
DE.其中正确的是
3
(
)
A.① B.①②③
C.①③
D.①②③④
20
教材新知精讲
知识点一
综合知识拓展
知识点二
解析:根据垂径定理以及等边三角形的性质和判定定理即可作出
中的弦有AB,BC,CE共三条.
答案:B
8
教材新知精讲
知识点一
综合知识拓展
知识点二
抓住“弦是端点在圆上的线段”是解决本题的关键.
9
教材新知精讲
知识点一
综合知识拓展
知识点二
例3 如图,在☉O中,半径有
有
,弦有
,劣弧有
有
.
,直径
,优弧
解析:根据半径、直径、弦、劣弧和优弧的定义分别求解.
答案:OA,OB,OC,OD AB AB,BC , , , ,
知识点二
知识点一圆的轴对称性
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.
名师解读:不能错误地说成“圆的任何一条直径都是圆的对称轴”,
《圆的有关性质》1精品PPT课件
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
教学重点、难点
• 教学重点:圆的有关性质的综合运用。 • 教学难点:典型题型的解题思路与方法。
教学方法:
启发式、讨论式
教学准备:
• 学生复习整理教材第62~102页的知识结 构。
教学过程:
• (一)复习 师生共同整理知识结构,使知识网络 化。
圆的有关性质
圆(等圆、同圆、同心圆)
概念 弦(直径)、弦心距 弧(半圆、劣弧、优弧、等弧、弓形)
C
• B.复习巩固运用“中
C
间化”进行证明题的
思路˛方法.
(3)如图4,若AC垂直BD,此时 有:EH⊥BC⇔AM=MD.若AM=MD,则OM=BC.
• 说明:强调图中两 个重要直角三角形. 复习证明线段倍分 的常用方法.
B
A A
E D
C
D C
(2)如图6,若AB=AD=BD,则有①CB+CD=CA; ②
圆心角、圆周角
过一点的圆 点与圆 过两点的圆
过三点的圆(三角形外心的定义、 位置、性质)
等对等定理 垂径定理及推论 重要性质 圆周角定理及推论 圆内接四边形性质
(二)举例与练习
• 例题:如图1,圆内接四边 形ABCD的对角线相交于 点E。
• (1)找出相等的圆周角 • (2)写出相似的三角形
B
A A
初中平面几何
《圆的有关性质》复习课
教学内容
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
教学重点、难点
• 教学重点:圆的有关性质的综合运用。 • 教学难点:典型题型的解题思路与方法。
教学方法:
启发式、讨论式
教学准备:
• 学生复习整理教材第62~102页的知识结 构。
教学过程:
• (一)复习 师生共同整理知识结构,使知识网络 化。
圆的有关性质
圆(等圆、同圆、同心圆)
概念 弦(直径)、弦心距 弧(半圆、劣弧、优弧、等弧、弓形)
C
• B.复习巩固运用“中
C
间化”进行证明题的
思路˛方法.
(3)如图4,若AC垂直BD,此时 有:EH⊥BC⇔AM=MD.若AM=MD,则OM=BC.
• 说明:强调图中两 个重要直角三角形. 复习证明线段倍分 的常用方法.
B
A A
E D
C
D C
(2)如图6,若AB=AD=BD,则有①CB+CD=CA; ②
圆心角、圆周角
过一点的圆 点与圆 过两点的圆
过三点的圆(三角形外心的定义、 位置、性质)
等对等定理 垂径定理及推论 重要性质 圆周角定理及推论 圆内接四边形性质
(二)举例与练习
• 例题:如图1,圆内接四边 形ABCD的对角线相交于 点E。
• (1)找出相等的圆周角 • (2)写出相似的三角形
B
A A
初中平面几何
《圆的有关性质》复习课
教学内容
圆的有关性质ppt课件
7.1.4 圆周角定理及推论
(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相 等,都等于这条弧所对的圆心角的一半. (2)推论:半圆(直径)所对的圆周角是直角,90°的圆周角所 对 的弦是直径.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
7.1.5 圆内接四边形
(1)定义:如果一个四边形的四个顶点在同一个圆上,那么这个 四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆. (2)性质:圆内接四边形的对角互补,并且任何一个外角都等于 它的内对角.
【例1】如图,在⊙O中, A,B是圆上的两点,已知∠AOB=40°,直 径CD∥AB,连接AC,则∠BAC= 35 度.
②经过切点且垂直于切线的直线必经过圆心. (3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.
【例1】在公园的O处附近有E、F、G、H四棵树,
位置如图所示(图中小正方形的边长均相等),现计划修建一座以
为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、
(3)正多边形的有关计算:
①边长:an=2Rn·sin180°/n
②周长:Pn=n·an
③边心距:rn=Rn·cos180°/n
④面积:Sn=
1 2
an·rn·n
⑤内角:n 2180
n
⑥外角:360
n
⑦中心角: 36n0(Rn为正多边形的半径,rn为边心距,an为边长)
7.3.2 圆的周长与弧长公式
圆的有关性质ppt
汽车设计
圆形在汽车设计中也扮演着重要的角色。汽车的轮胎是圆形的,轮毂也是圆 形的。圆形的设计使得汽车能更好地行驶和转向,同时也增加了汽车的美观 度。
04
圆的数学性质
圆的方程
标准方程
$(x-a)^2+(yb)^2=r^2$
一般方程
$x^2+y^2+Dx+Ey+F= 0$
参数方程
$x=r\cos\theta+a$, $y=r\sin\theta+b$
月球
月球的形状也是近似于一个球体,这是由于引力的作用使得月球保持圆形。圆形 使得月球能更均匀地承受太阳辐射,从而保持了月球表面的温度。
圆在建筑中的应用
古代建筑
在古代建筑中,圆形是一种常见的形状,如古罗马的斗兽场 、中国的天坛等。这些建筑利用了圆形的旋转对称性和稳定 性,使得它们能更稳固地承受重力。
圆与直线的关系
相交
当直线与圆相交时,它们有且 仅有一个交点
相切
当直线与圆相切时,它们没有公 共点,但它们之间的距离等于圆 的半径
相离
当直线与圆相离时,它们之间没有 交点,并且它们之间的距离大于圆 的半径
圆与圆的关系
内含
内切
当一个圆完全包含在另一个圆内时,它们之 间没有公共点,并且小圆到大圆的距离小于 大圆的半径
圆的绘制方法
圆规法
用圆规画圆,固定圆规的一个脚,移动另一个脚可以画出不同大小的圆
测量法
通过测量长度来画圆,用线段绕一个点一周回到原点,线段长度即为圆的周 长
圆的用途
圆形物体在生活和工作中随处可见,如车轮、圆形管道、 圆形井盖等
在平面几何中,圆也是基本图形之一,可以由此引申出很 多其他几何图形
圆形在汽车设计中也扮演着重要的角色。汽车的轮胎是圆形的,轮毂也是圆 形的。圆形的设计使得汽车能更好地行驶和转向,同时也增加了汽车的美观 度。
04
圆的数学性质
圆的方程
标准方程
$(x-a)^2+(yb)^2=r^2$
一般方程
$x^2+y^2+Dx+Ey+F= 0$
参数方程
$x=r\cos\theta+a$, $y=r\sin\theta+b$
月球
月球的形状也是近似于一个球体,这是由于引力的作用使得月球保持圆形。圆形 使得月球能更均匀地承受太阳辐射,从而保持了月球表面的温度。
圆在建筑中的应用
古代建筑
在古代建筑中,圆形是一种常见的形状,如古罗马的斗兽场 、中国的天坛等。这些建筑利用了圆形的旋转对称性和稳定 性,使得它们能更稳固地承受重力。
圆与直线的关系
相交
当直线与圆相交时,它们有且 仅有一个交点
相切
当直线与圆相切时,它们没有公 共点,但它们之间的距离等于圆 的半径
相离
当直线与圆相离时,它们之间没有 交点,并且它们之间的距离大于圆 的半径
圆与圆的关系
内含
内切
当一个圆完全包含在另一个圆内时,它们之 间没有公共点,并且小圆到大圆的距离小于 大圆的半径
圆的绘制方法
圆规法
用圆规画圆,固定圆规的一个脚,移动另一个脚可以画出不同大小的圆
测量法
通过测量长度来画圆,用线段绕一个点一周回到原点,线段长度即为圆的周 长
圆的用途
圆形物体在生活和工作中随处可见,如车轮、圆形管道、 圆形井盖等
在平面几何中,圆也是基本图形之一,可以由此引申出很 多其他几何图形
《圆的有关性质》圆ppt实用课件
与圆有关的概念
弦 连接圆上任意两点的线段(如图AC)
叫做弦,
注意: 经过圆心的弦(如图中的AB)叫做直径.
1、弦和直径都是线段。 2、直径是弦,是经过圆心的特殊 弦,是圆中最长的弦但弦不一定 是直径.
B
O·
A
C
弧
圆 为上端任点意 的两 弧点 记间作的A⌒部B 分,叫读做作“圆圆弧弧,A简B称”或弧“.弧以A、B
从画圆的过程可以看出什么呢?
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
归纳:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点的集合.
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的图 形叫做圆.
AB”.
圆的任意一条直径的两个端点把圆分成两条弧, 每一条弧都叫做半圆.
B
O·
A
C
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的A⌒C) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的A⌒CB)
B
O·
A
C
1.如何在操场上画一个半径是5m的圆? 说出你的理由
首先确定圆心, 然后用5米长的绳子一端固定为 圆心端,另一端系在一端尖木棒,木棒以5米长尖 端划动一周,所形成的图形就是所画的圆.
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]