数值分析试卷及其答案2

合集下载

数值分析模拟试卷1,2,3

数值分析模拟试卷1,2,3

数值分析模拟试卷1一、填空(共30分,每空3分) 1 设⎪⎪⎭⎫⎝⎛-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________.2 设,2,1,0,,53)(2==+=k kh x xx f k ,则],,[21++n n n x x x f =________,],,[321+++n n n n x x x x f ,=________.3 设⎪⎩⎪⎨⎧≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则⎰=10)(dx x xq k ________,=)(2x q ________.5 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001aaa a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f ,(1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1) 证明R x ∈∀0均有∙∞→=x x n x lim (∙x 为方程的根);(2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分) 设有常微分方程的初值问题⎩⎨⎧=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分) 已知方程组b Ax =,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=21,13.021b A , (1) 试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性. (2) 若有迭代公式)()()()1(b Axa xxk k k ++=+,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛. 七、(8分) 方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明.其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟试卷2填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知⎪⎪⎭⎫⎝⎛-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:⎰-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________. 8. 求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。

数值分析试题与答案

数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。

下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。

以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。

以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。

根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。

要求精确到小数点后三位。

解:首先需要判断方程在区间[1, 2]上是否存在根。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析期末考试题及答案

数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。

答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。

它包括三个基本操作:行交换、行乘以非零常数、行相加。

2. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。

例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。

三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。

答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。

2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。

数值分析考试题和答案

数值分析考试题和答案

数值分析考试题和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,插值法的主要目的是()。

A. 求解线性方程组B. 求解非线性方程C. 构造一个多项式来近似一个函数D. 求解微分方程答案:C2. 线性方程组的高斯消元法中,主元为零时,应采取的措施是()。

A. 停止计算B. 回代求解C. 转置矩阵D. 行交换答案:D3. 以下哪种方法不是数值积分方法()。

A. 梯形规则B. 辛普森规则C. 牛顿法D. 复合梯形规则答案:C4. 以下哪种方法用于求解非线性方程的根()。

A. 欧几里得算法B. 牛顿迭代法C. 高斯消元法D. 线性插值法答案:B5. 在数值分析中,最小二乘法主要用于()。

A. 求解线性方程组B. 求解非线性方程C. 曲线拟合D. 微分方程数值解答案:C6. 以下哪种方法不是数值微分方法()。

A. 前向差分B. 后向差分C. 中心差分D. 欧拉方法答案:D7. 以下哪种方法用于求解常微分方程的初值问题()。

A. 欧拉方法B. 龙格-库塔方法C. 牛顿迭代法D. 高斯消元法答案:B8. 在数值分析中,矩阵的特征值问题可以通过()方法求解。

A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形规则答案:B9. 以下哪种方法不是数值稳定性分析中的方法()。

A. 绝对稳定性B. 相对稳定性C. 条件数D. 牛顿法答案:D10. 在数值分析中,条件数用于衡量()。

A. 算法的效率B. 算法的稳定性C. 算法的准确性D. 算法的复杂度答案:B二、填空题(每题2分,共20分)1. 在数值分析中,插值多项式的次数最高为______,其中n是插值点的个数。

答案:n-12. 线性方程组的高斯消元法中,如果某行的主元为零,则需要进行______。

答案:行交换3. 梯形规则的误差与被积函数的______阶导数有关。

答案:二4. 牛顿迭代法中,每次迭代需要计算______。

答案:函数值和导数值5. 最小二乘法中,残差平方和最小化时,对应的系数向量是______。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。

**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。

以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。

以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。

2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。

......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。

解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。

2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。

请简要描述高斯消元法的基本思想并给出求解步骤。

高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。

求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。

步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。

数值分析第二次作业答案answer2

数值分析第二次作业答案answer2

S4 = 0.11157238253891,S8 = 0.11157181325263。 同学们根据自己理解计算 S4 ,S8 都可。 复合梯形公式和复合 Simpson 公式的代码已重复多次,同学们自己整 理。 3. 用 Simpson 公式计算积分 误 差 为 |R(f )| = | − η ∈ (0, 1)。 4. 推导下列三种矩形求积公式: ∫b f (x)dx ∫a b f (x)dx ∫a b a f (x)dx = (b − a)f (a) + = (b − = (b −
14.7 53.63 从而 a = −7.855048,b = 22.25376。 2. 已知实验数据如下: 。 xi 19 25 31 38
44
yi 19.0 32.3 49.0 73.3 97.8 用最小二乘法求形如 y = a + bx2 的经验公式。 答案:两个待定常数,只能两个 φ。 φ0 ,φ1 也必须形如 y = a + bx2 。 可设 φ0 = 1,φ1 = x2 。法方程为: ( 5 5327 )( a b ) = ( 271.4 369321.5 )
第三章 函数逼近 1. 观测物体的直线运动,得出以下数据: 时间 t(s) 0 0.9 1.9 3.0 3.9 5.0 距离 s(m) 0 求运动方程。 ( 10 φ0 = 1,φ1 = t。法方程为: 6 14.7 )( a b ) = ( 280 1078 )
6
1. 用 LU 分解及列主元高斯消去法解线性方程组 8 10 −7 0 1 x1 −3 2.099999 6 2 x 5.900001 2 = 5 5 − 1 5 − 1 x 3 x4 1 2 1 0 2 输出 Ax = b 中系数 A = LU 分解的矩阵 L 及 U ,解向量 x 及 det A;列 主元法的行交换次序,解向量 x 及 det A;比较两种方法所得的结果。 代码: A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2]; b=[8,5.900001,5,1]'; x=A\b;x(1) 结果:1.7764e-016 LU分解代码: A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2]; b=[8,5.900001,5,1]'; [m,n] = size(A); if m~=n, error('A matrix needs to be square'); end for i=1:n-1 pivot = A(i,i); if abs(pivot)<50*eps, error('zero pivot encountered'); end for k = i+1:n A(k,i) = A(k,i)/pivot; A(k,i+1:n) = A(k,i+1:n) - A(k,i)*A(i,i+1:n); end end 7

数值分析习题(含标准答案)

数值分析习题(含标准答案)

数值分析习题(含标准答案)
一、选择题(每题5分,共20分)
1. 下列哪个选项不属于数值分析的研究范畴?
A. 数值微分
B. 数值积分
C. 数值逼近
D. 数据库管理
答案:D
2. 在数值分析中,求解线性方程组常用的方法有?
A. 高斯消元法
B. 迭代法
C. 拉格朗日乘数法
D. 上述所有方法
答案:D
3. 下列哪种方法适用于求解非线性方程组?
A. 牛顿法
B. 梯度下降法
C. 高斯消元法
D. 上述所有方法
答案:D
4. 在数值积分中,下列哪种方法具有最高的精度?
A. 梯形法则
B. 辛普森法则
C. 高斯求积法
D. 上述所有方法
答案:C
二、填空题(每题5分,共20分)
1. 数值分析的主要目的是通过有限步骤的运算,对数学问题进行近似求解。

2. 在数值微分中,常用的差分公式有前向差分、后向差分和中心差分。

3. 数值逼近的主要方法包括插值法和逼近法。

4. 在数值积分中,常用的方法有梯形法则、辛普森法则和高斯求积法。

三、解答题(每题10分,共30分)
1. 已知函数 f(x) = e^x,求其在 x = 0.5 处的导数。

答案:f'(0.5) ≈ 1.6487
2. 求解线性方程组 2x + 3y = 5,4x y = 1。

答案:x ≈ 0.625,y ≈ 1.25
3. 已知函数 f(x) = x^3 3x^2 + 4,求其在区间 [0, 2] 上的积分。

答案:f(x) 在区间 [0, 2] 上的积分≈ 3.6667。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。

A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。

A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。

A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。

A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。

A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。

A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。

A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

数值分析试题答案

数值分析试题答案

数值分析试题答案一、选择题1. 以下哪个数值方法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 欧几里得算法D. 拉格朗日插值法答案:B2. 在数值分析中,舍入误差通常是由什么引起的?A. 人为计算错误B. 计算机表示数字的限制C. 测量误差D. 数据输入错误答案:B3. 插值和拟合的区别在于:A. 插值通过所有数据点,而拟合不通过B. 拟合通过所有数据点,而插值不通过C. 插值是线性的,拟合是非线性的D. 插值是精确的,拟合是近似的答案:A4. 以下哪种方法最适合求解非线性方程?A. 雅可比迭代法B. 牛顿-拉弗森方法C. 托马斯算法D. 布雷尔-史密斯算法答案:B5. 在数值分析中,条件数用于衡量什么?A. 方程组解的存在性B. 方程组解的唯一性C. 方程组解的稳定性D. 方程组解的精确性答案:C二、填空题1. 在数值分析中,__________误差指的是由于计算机舍入而产生的误差,而__________误差指的是由于数据不精确或截断而产生的误差。

答案:截断;舍入2. 线性方程组的矩阵表示为__________,其中A是系数矩阵,x是变量向量,b是常数向量。

答案:Ax = b3. 牛顿法求解非线性方程时,需要计算函数的__________。

答案:导数4. 拉格朗日插值法通过构建一个多项式来近似数据点,该多项式的每一段都与数据点的__________相匹配。

答案:切线5. 为了减少数值分析中的误差,通常采用__________方法来提高计算的精度。

答案:增量三、简答题1. 请简述高斯消元法的基本思想及其在求解线性方程组中的应用。

高斯消元法的基本思想是通过行变换将系数矩阵转化为阶梯形矩阵,进而简化方程组的求解过程。

在求解线性方程组时,首先将增广矩阵进行行变换,使得主元下方的元素为零,然后通过回代过程逐步求解出未知数。

2. 描述牛顿-拉弗森方法求解非线性方程的迭代过程。

牛顿-拉弗森方法是一种迭代求解非线性方程的方法。

数值分析试题及答案汇总

数值分析试题及答案汇总

数值分析试题及答案汇总一、单项选择题(每题5分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 牛顿法B. 插值法C. 迭代法D. 泰勒展开法答案:C2. 以下哪个选项是数值分析中用于求解非线性方程的迭代方法?A. 高斯消元法B. 牛顿法C. 多项式插值D. 辛普森积分法答案:B3. 以下哪个选项是数值分析中用于数值积分的方法?A. 牛顿法B. 辛普森积分法C. 牛顿-拉弗森迭代D. 拉格朗日插值答案:B4. 在数值分析中,下列哪个方法用于求解常微分方程的初值问题?A. 欧拉法B. 牛顿法C. 辛普森积分法D. 高斯消元法答案:A二、填空题(每题5分,共20分)1. 插值法中,拉格朗日插值法的插值多项式的阶数是______。

答案:n2. 泰勒展开法中,如果将函数展开到第三阶,那么得到的多项式是______阶多项式。

答案:三3. 在数值分析中,牛顿法求解非线性方程的迭代公式为______。

答案:x_{n+1} = x_n - f(x_n) / f'(x_n)4. 辛普森积分法是将积分区间分为______等分进行近似计算。

答案:偶数三、简答题(每题10分,共30分)1. 请简述数值分析中插值法的基本原理。

答案:插值法的基本原理是根据一组已知的数据点,构造一个多项式函数,使得该函数在给定的数据点上与数据值相等,以此来估计未知数据点的值。

2. 解释数值分析中误差的概念,并说明它们是如何影响数值计算结果的。

答案:数值分析中的误差是指由于计算方法或计算工具的限制,导致计算结果与真实值之间的差异。

误差可以分为舍入误差和截断误差。

舍入误差是由于计算机表示数值的限制而产生的,而截断误差是由于计算方法的近似性质而产生的。

这些误差会影响数值计算结果的准确性和稳定性。

3. 请说明在数值分析中,为什么需要使用迭代法求解线性方程组。

答案:在数值分析中,迭代法用于求解线性方程组是因为对于大规模的方程组,直接方法(如高斯消元法)的计算成本很高,而迭代法可以在较少的计算步骤内得到近似解,并且对于稀疏矩阵特别有效。

数值分析试题(卷)与答案解析

数值分析试题(卷)与答案解析

数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是(B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

x 0 0.5 1 1.5 2 2.5 y =f (x )-2-1.75-10.2524.2511. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛 (8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss —Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f (x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x (x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x (x-1)=442++x x 4分9. 求f (x )=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x , k=2x ,计算得: (m ,m)=dx ⎰-111=0 (m,n )=dx x ⎰-11=1 (m,k)=dx x ⎰-112=0(n,k )=dx x ⎰-113=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(本题5分)试确定722作为π的近似值具有几位有效数字,并确定其相对误差限。

解 因为722=3.142857…=1103142857.0-⨯Λ π=3.141592…所以 31210211021005.0001264.0722--⨯=⨯=<=-Λπ (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知722作为π的近似值具有3位有效数字。

(1分) 而相对误差限310210005.00004138.0001264.0722-⨯=<≈=-=πππεΛr (2分) 2、(本题6分)用改进平方根法解方程组:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--654131*********x x x ;解 设⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛===⎪⎪⎪⎭⎫ ⎝⎛--111111131321112323121321323121l l l d d d l l l LDL A T由矩阵乘法得:57,21,21527,25,2323121321-==-==-==l l l d d d (3分)由y D x L b Ly T1,-==解得T T x y )923,97,910(,)563,7,4(== (3分) 3、(本题6分)给定线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=-+17722238231138751043214321321431x x x x x x x x x x x x x x1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式;2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为⎪⎪⎩⎪⎪⎨⎧-+-=----=+-=+--=++++)2217()8()2323(8)311(10)57()(3)(2)(1)1(4)(4)(2)(1)1(3)(3)(1)1(2)(4)(3)1(1k k k k k k k k k k k k k k x x x x x x x x x x x x x x (2分)Gauss-Seidel 迭代格式为⎪⎪⎩⎪⎪⎨⎧-+-=----=+-=+--=++++++++++7)2217()8()2323(8)311(10)57()1(3)1(2)1(1)1(4)(4)1(2)1(1)1(3)(3)1(1)1(2)(4)(3)1(1k k k k k k k k k k k k k k x xxx x x x x x x x x x x (2分)2)由于所给线性方程组的系数矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=72211823038151010A 是严格对角占优的,所以Jacoib 迭代格式和Gauss-Seidel 迭代格式均是收敛的。

(2分)4、(本题6分)已知方程08.023=--x x在5.10=x 附近有一个根。

将此方程改写成如下2个等价形式:8.0,8.0332-=+=x x x x构造如下两个迭代格式:1)Λ,2,1,0,8.0321=+=+k x x k k 2)Λ,2,1,0,8.031=-=+k x x k k判断这两个迭代格式是否收敛;解 1)记328.0)(x x +=ϕ,则322)8.0(32)('x xx +=ϕ,14755.005.31)5.18.0(1)5.18.0(35.12)5.1('32322322<==+=+⨯=ϕ (2分) 所以该迭代格式是局部收敛的。

(1分) 2)记8.0)(3-=x x ϕ,则8.023)('32-=x x x ϕ,1103.28.05.125.13)5.1('32>=-⨯=ϕ (2分)所以该迭代格式是发散的 (1分) 5、(本题6分)设23)()(a x x f -= (1)写出解0)(=x f 的牛顿迭代格式; (2)证明此迭代格式是线性收敛的。

解 (1)因23)()(a x x f -=,故)(6)('32a x x x f -=,由牛顿迭代公式 )(')(1n n k k x f x f x x -=+,Λ,1,0=k (1分)得kk k k k k k x ax a x x a x x x 665)(6)(32231+=---=+,Λ,1,0=k (2分) (2)因迭代函数2665)(x ax x +=ϕ, 3365)('xax -=ϕ, (1分)3*a x =故021)(365)('33*≠=-=a a x ϕ 此牛顿迭代格式是线性收敛的。

(2分)6、(本题9分)给定数据(1) 写出)(x f 的3次Lagrange 插值多项式)(3x L ; (2) 写出)(x f 的3次Newton 插值多项式)(3x N ; 解 (1)由题意知5,3,2,03210====x x x x2)(,4)(,3)(,1)(3210=-=-==x f x f x f x f +------=))()(())()(()()(30201032103x x x x x x x x x x x x x f x L+------))()(())()(()(3121013201x x x x x x x x x x x x x f+------))()(())()(()(3212023102x x x x x x x x x x x x x f))()(())()(()(2313032103x x x x x x x x x x x x x f ------ (3分)+------⨯-+------⨯=)52)(32)(02()5)(3)(0()3()50)(30)(20()5)(3)(2(1x x x x x x)35)(25)(05()3)(2)(0(2)53)(23)(03()5)(2)(0()4(------⨯+------⨯-x x x x x x)5)(3(21)5)(3)(2(301-------=x x x x x x )3)(2(151)5)(2(32--+--+x x x x x x (2分)(2)用牛顿插值公式,构造差商表(3分)则有)3)(2)(0(5)2)(0(3)0(21)(3---+--+--=x x x x x x x N )3)(2(51)2(3121--+-+-=x x x x x x (1分)7、(本题6分)作一个5次多项式)(x H 使得2)4(',1)2(',2)1('3)4(,1)2(,3)1(====-==H H H H H H解 构造有重节点的牛顿插商表(4分) 则有)2()1(11)1(6)1(23)(22--+---+=x x x x x H )4()2()1(3655)2()1(6252222---+---x x x x x (2分)8、(本题6解 设x x y y =-=-3,14,则上表可化为这时,取2210)(,)(,1)(x x x x x ===ϕϕϕ,并设所求二次多项式为 )()()()(2*21*10*0*2x a x a x a x ϕϕϕϕ++=,容易得到71),(33200==∑-=i ϕϕ,0),(3310==∑-=i i x ϕϕ,28),(33220==∑-=i i x ϕϕ28),(33211==∑-=i ixϕϕ,0),(33321==∑-=i ix ϕϕ,196),(33422==∑-=i i x ϕϕ4),(330==∑-=i iyy ϕ,5),(331==∑-=i i i y x y ϕ,31),(3322==∑-=i i i y x y ϕ (3分)得正规方程组如下:⎪⎩⎪⎨⎧=+==+31196285284287*2*0*1*2*0a a a a a 解得285,285,71*2*1*0==-=a a a 即228528571x x y ++-= (2分)回代得2)3(285)3(2857114-+-+-=-x x y (1分)9、(本题5分)给定求积节点,43,4110==x x 试推出计算积分⎰10)(dx x f 的插值型求积公式解 由于43,4110==x x所以 )34(21434143)(0--=--=x x x l (1分))14(21414341)(1-=--=x x x l (1分) 21)34(21)(101000=--==⎰⎰dx x dx x l A (1分)21)14(21)(101011=-==⎰⎰dx x dx x l A (1分)故求积公式为)]43()41([21)(10f f dx x f +≈⎰ (1分)10、(本题6分)分别用梯形公式和辛普森公式计算积分:⎰91dx x 4=n解 (1)用梯形公式 4=n ,2419=-=h 2277402.17)]9()(2)1([2314≈++=∑=f x f f hT i i (3分)(2)用辛普森公式332087.17)]9()(2)(4)1([63130214≈+++=∑∑==+f x f x f f hS i i i i (3分)11、(本题8分)求高斯型求积公式)()()(11001x f A x f A dx x f x +≈⎰的系数.,,1010x x A A 及节点解 令为权的二次正交多项式构造以x x x x =∈=)(],1,0[,1)(0ρϕ: )()()()()()()(01122011x x x x x x x ϕβϕαϕϕαϕ--=-= (1分)由53),(),(10211100001===⎰⎰dx x xdx x x ϕϕϕϕα 得 53)(1-=x x ϕ 再由5111111.04523)53()53(),(),(1021210111112≈=--==⎰⎰dx x x dxx x x x ϕϕϕϕα (2分)06857.017512)53(),(),(1211022100111≈=-==⎰⎰dxx dxx x ϕϕϕϕβ (1分)得23809666.011111.106857.0)53)(4523()(22+-=---=x x x x x ϕ 所以0)(2=x ϕ的根为821159.0,289951.010==x x (2分)389112.0)(277555.0)(110101111011000≈--==≈--==⎰⎰⎰⎰dx x x x x x dx x l x A dx x x x x xdx x l x A (2分)12、(本题6分)设)(x f 为k 次多项式,n x x x x Λ,,,210为1+n 个互异点,)(x L n 为)(x f 的n 次插值多项式。

相关文档
最新文档